首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper describes and discusses the main problems related to anaerobic batch and fed-batch processes for wastewater treatment. A critical analysis of the literature evaluated the industrial application viability and proposed alternatives to improve operation and control of this system. Two approaches were presented in order to make this anaerobic discontinuous process feasible for industrial application: (1) optimization of the operating procedures in reactors containing self-immobilized sludge as granules, and (2) design of bioreactors with inert support media for biomass immobilization. Received: 22 May 2000 / Received revision: 20 July 2000 / Accepted: 21 July 2000  相似文献   

2.
Tequila industries in general produce great volumes of effluents with high pollutant loads, which are discharged (untreated or partially treated) into natural receivers, thus causing severe environmental problems. In this contribution, we propose an integrated system as a first step to comply with the Mexican ecological norms and stabilize the anaerobic treatment of Tequila vinasses with main design criteria: simple and easy operation, reduce operating time and associated costs (maintenance), integrated and compact design, minimal cost of set-up, start-up, monitoring and control. This system is composed of a fully instrumented and automated lab-scale CSTR-type digester, on-line measuring devices of key variables (pH, temperature, flow rates, etc.), which are used along with off-line readings of chemical oxygen demand (COD), biogas composition, alkalinity and volatile fatty acids to guarantee the operational stability of the anaerobic digestion process. The system performance was evaluated for 200 days and the experimental results show that even under the influence of load disturbances, it is possible to reduce the COD concentration to 85% in the start-up phase and up to 95% during the normal operation phase while producing a biogas with a methane composition greater than 65%. It is also shown that in order to maintain an efficient treatment, the buffering capacity (given by the alkalinity ratio, α = intermediate alkalinity/total alkalinity) must be closely monitored.  相似文献   

3.
Anaerobic degradation of a semi-solid waste with a total solids content of 4% particulate matter, much of it insoluble, was investigated in four laboratory-scale reactors. Two of the reactors were equipped with different textile materials for immobilisation of microorganisms, while the other two were used as continuously-stirred-tank reactor references. A constant organic loading rate and hydraulic retention time were used in the start-up period; the hydraulic retention time was then decreased and the effects of this change were monitored. Volatile fatty acid (VFA) concentration and pH were chosen as indicators of the microbial status in the reactors. The reactors with support material showed a greater resistance to overload than did the continuously-stirred-tank reactors. This is in agreement with many studies undertaken on the anaerobic treatment of wastewater. However, no problems with clogging occurred, showing that a support material is also applicable in systems treating waste containing large amounts of insoluble, particulate matter. The pH was comparable to VFA for indicating an approaching process failure. However, the pattern of VFA accumulation was qualitatively different between the reactors with and without support material. Obviously the metabolic pattern of mixed cultures changes when the microorganisms are immobilised. Received: 3 December 1996 / Received revision: 7 February 1997 / Accepted: 14 February 1997  相似文献   

4.
The construction and use of an automatic on-line titration unit for routine or event- initiated monitoring of alkalinity, buffer capacity, and volatile fatty acid (VFA) levels is presented. Under computer control a sample of digester liquor is pumped into the titration vessel and weighed. A sequence of titration, sparging, and back-titration operations are then initiated during which the pH and weight are recorded continuously and a titration curve constructed. From the curve, estimates of the alkalinity, buffer capacity to any desired pH endpoint, and total VFA levels are computed. The data is stored to disk and output as hard copy together with the titration curve itself. Monitoring and control of the titration apparatus is effected by a microcomputer via two analog input lines and eight digital output lines, respectively. The system is suitable for downloading to a small, inexpensive dedicated microprocessor-based system. The apparatus is constructed from standard and widely available equipment and the titration sequence, being under software control, is fully adaptable to particular requirements. The use of this facility in the on-line monitoring, control and optimization of the anaerobic digestion process is discussed.  相似文献   

5.
Thein vitro toxic effect of different volatile fatty acids (VFA) on Shigella dysenteriae was studied in pure culture. Volatile fatty acids viz., acetate, propionate, butyrate, valerate, caproate and heptanoate, exerted pH dependent toxic effect on the pathogen, with minimum inhibitory concentration in the range of 10–3000 mg l−1. The effect of high levels of VFA on S. dysenteriae was studied during anaerobic digestion of human night soil in an experimental digester with VFA level ≅ 9000 mg l−1 and pH ≅ 6.5. Another digester, with VFA level ≅ 700 mg l−1 and pH 7.4, served as the control. In the experimental digester, S. dysenteriae was completely eliminated within 18 days. In the control digester, a four-log reduction in pathogen count was achieved however the pathogen was not completely eliminated. T 90 values for the experimental and control digesters were 2.2 and 3.7 days respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
In many biological reactors bicarbonate is the major species determining pH buffering capacity, or alkalinity. In anaerobic digesters bicarbonate levels should be within 10 to 50 mM for stable operation. Bicarbonate alkalinity in wastewater treatment processes in routinely measured off-line titrimetrically. Recently we have described the principle of a novel on-line method of measuring bicarbonate alkalinity. In the prototype device described here, a continuous stream (15 cm(3) min(-1)) of the substrate to be monitored was saturated with gaseous CO2, acidified by the addition of excess acid, and the rate of carbon dioxide evolution, proportional to the concentration of bicarbonate/carbonate in the liquid flow, continuously measured by a sensitive gas meter. The instrument was robust and its response was satisfactory for wastewater treatment process control applications, with linearity in the range 5 to 50 mM HCO3(-), a response time in the order of 30 min, and accuracy of the order of 7% in the concentration range 5 to 50 mM sodium bicarbonate. The device was not affected by interference from volatile fatty acids, does not make use of pH probes which in many wastes are subject to fouling, and may form the basis of a digester control strategy. (c) 1994 John Wiley & Sons, Inc.  相似文献   

7.
A study of the anaerobic digestion of wastewater derived from the production of protein isolates from extracted sunflower flour was carried out in a laboratory-scale, mesophilic (35 degrees C) fluidized-bed reactor with saponite as bacterial support. Chemical oxygen demand (COD) removal efficiencies in the range of 98.3-80.0% were achieved in the reactor at organic loading rates (OLR) of between 0.6 and 9.3 g COD/I d, hydraulic retention times (HRT) of between 20.0 and 1.1 d and average feed COD concentration of 10.6 g/l. Eighty percent of feed COD could be removed up to OLR of 9.3 g COD/l d. The yield coefficient of methane production was 0.33 l of methane (at STP) per gram of COD removed and was virtually independent of the OLR applied. Because the buffering capacity of the experimental system was maintained at favorable levels with excess total alkalinity present at all loadings, the rate of methanogenesis was not affected by loading. The experimental data indicated that a total alkalinity in the range of 2,000-2,460 mg/l as CaCO3 was sufficient to prevent the pH from dropping to below 7.0 for OLR of up to 9.3 g COD/l d. The volatile fatty acid (VFA) levels and the VFA/alkalinity ratio were lower than the suggested limits for digester failure (0.3-0.4) for OLR and HRT up to 9.3 g COD/l d and 1.1 d, respectively. For a HRT of 0.87 d (OLR of 12.1 g COD/l d) the start of acidification was observed in the reactor.  相似文献   

8.
A study of the anaerobic digestion of wastewater derived from the production of protein isolates from chickpea flour was carried out in a laboratory-scale, mesophilic (35 °C) fluidised-bed reactor with saponite as bacterial support. Soluble chemical oxygen demand (SCOD) removal efficiencies in the range of 96.8–85.2% were achieved in the reactor at organic loading rates (OLR) of between 0.58 and 2.10 g chemical oxygen demand (COD)/l per day, hydraulic retention times (HRT) of between 14.9 and 4.5 days and average feed COD concentration of 9.1 g/l. Eighty-five percent of feed COD could be removed up to OLR of 2.1 g COD/l per day. The yield coefficient of methane production was 0.34 l of methane (at STP) per gram COD removed and was virtually independent of the OLR applied. Because the buffering capacity of the experimental system was maintained at favourable levels with excess total alkalinity present at all loadings, the rate of methanogenesis was not affected by loading. Experimental data indicated that a total alkalinity in the range of 1090–2130 mg/l as CaCO3 was sufficient to prevent the pH from decreasing to below 7.2 for OLR of up to 2.7 g COD/l per day. The volatile fatty acid (VFA) levels and the VFA/alkalinity ratio were lower than the suggested limits for digester failure (0.3–0.4) for OLR and HRT up to 2.7 g COD/l per day and 3.5 days, respectively. For a HRT of 2.8 days (OLR of 3.00 g COD/l per day) the start of acidification was observed in the reactor.  相似文献   

9.
10.
Phosphorus release and uptake by pure cultures of Acinetobacter strains were investigated under anaerobic and aerobic conditions respectively. Tests were performed to study the relationship between phosphorus release-storage reaction and behavior of extracellular organic substrates: acetic, propionic, and butyric acids have been used at four concentrations (50, 100, 500, and 1000 mg · L−1) in the anaerobic step of biological phosphorus removal. The results obtained depend on the strain and the volatile fatty acid (VFA) used. Phosphorus released under anaerobic condition was not always related to the amount of VFA or phosphorus consumed. Phosphorus uptake (P-uptake) in the aerobic step was found to be independent of phosphorus release rates. The best phosphorus uptake rates were obtained by Acinetobacter lwoffi ATCC21130 and Acinetobacter calcoaceticus Genoespecie SUCT-5 with butyric acid as carbon source. Received: 20 May 1996 / Accepted: 8 July 1996  相似文献   

11.
During cassava starch production, large amounts of cyanoglycosides were released and hydrolysed by plant-borne enzymes, leading to cyanide concentrations in the wastewater as high as 200 mg/l. For anaerobic degradation of the cyanide during pre-acidification or single-step methane fermentation, anaerobic cultures were enriched from soil residues of cassava roots and sewage sludge. In a pre-acidification reactor this culture was able to remove up to 4 g potassium cyanide/l of wastewater at a hydraulic retention time (t HR) of 4 days, equivalent to a maximal cyanide space loading of 400 mg CN l−1 day−1. The residual cyanide concentration was 0.2–0.5 mg/l. Concentrated cell suspensions of the mixed culture formed ammonia and formate in almost equimolar amounts from cyanide. Little formamide was generated by chemical decay. A concentration of up to 100 mmol ammonia/l had no inhibitory effect on cyanide degradation. The optimal pH for cyanide degradation was 6–7.5, the optimal temperature 25–37 °C. At a pH of 5 or lower, cyanide accumulated in the reactor and pre-acidification failed. The minimal t HR for continuous cyanide removal was 1.5 days. The enriched mixed culture was also able to degrade cyanide in purely mineralic wastewater from metal deburring, either in a pre-acidification reactor with a two-step process or in a one-step methanogenic reactor. It was necessary to supplement the wastewater with a carbon source (e.g. starch) to keep the population active enough to cope with any possible inhibiting effect of cyanide. Received: 29 April 1998 / Received revision: 8 June 1998 / Accepted: 14 June 1998  相似文献   

12.
In the development of a system for the removal of chlorophenols from aqueous effluents, a range of solid substrates for the growth of Coriolus versicolor were investigated. Substrates included wood chips, cereal grain, wheat husk and wheat bran. Suitability for transformation of chlorophenols depended on laccase production by the fungus. The greatest amount of laccase (<25 Units g−1 substrate) was produced on wheat husk and wheat bran over 30 days colonisation. Aqueous extracts of laccase from wheat husk and wheat bran cultures removed 100% of 2,4-dichlorophenol (50 ppm) from solution within 5 h and 75–80% of pentachlorophenol (50 ppm) within 24 h. Wheat bran was formulated into pellets with biscuit flour to provide a compact substrate for fungal immobilisation. Addition of 8–12% yeast extract to the pellets increased laccase production five-fold. Colonised pellets were added to chlorophenol solutions in 200–4000-ml bioreactors, resulting in >90% removal of chlorophenols within 100 min. Received: 10 April 2000 / Received revision: 4 July 2000 / Accepted: 10 July 2000  相似文献   

13.
This work focused on determining the effects of ammonia-nitrogen supplementation on the mesophilic solid-substrate anaerobic digestion of municipal wastes and waste activated sludge (biosolids). Bench-scale, semi-continuous, mesophilic reactors were operated with a 21-day mass-retention time and dosed with NH4Cl, such that the corresponding chemical O2 demand (COD)/N ratios in their feeds were 90, 80, 65 and 50 (reactors R1 or control, R2, R3 and R4 respectively). Reactor performance was evaluated in terms of the efficiency of volatile solid removal (efficiency for short), biogas productivity, methane content in the biogas, pH and volatile organic acid contents, among other monitoring and analytical parameters. The feedstock was a mixture of urban wastes with biosolids. It was found that the process performance deteriorated at increasing dosages of ammonia N, the process practically ceasing at COD/N = 50 (R4). Inhibition was characterized by efficiency and biogas productivity decreases and a more sudden drop of methane content in biogas and pH. A significant rise of propionic, butyric and valeric acid was found in reactors receiving the highest doses of ammonia N (R3 and R4). This suggested that inhibition of the syntrophic bacteria present in the anaerobic consortia also occurred. Luong and Pearson inhibition models were fitted to the data. Both models represented very well the acute effects of N supplementation on solid-substrate anaerobic digestion. However, the Luong model could also represent the process ceasing at a critical ammonia N concentration of 2800 mg/kg mixed solids. Received: 12 April 1996 / Received revision: 23 July 1996 / Accepted: 5 August 1996  相似文献   

14.
After opening the stomata in CO2-free air, darkened leaves of several plant species were titrated with CO2 at concentrations between 1 and 16%, in air in order to reversibly decrease cellular pH values and to calculate buffer capacities from pH changes and bicarbonate accumulation using both gas-exchange and fluorescence methods for analysis. After equilibration with CO2 for times ranging between 4.4 and 300 s, fast CO2 release from bicarbonate indicated catalysis by highly active carbonic anhydrase. Its time constant was below 2.5 s. Additional CO2 was released with time constants of about 5, 15 and approximately 300 s. With CO2 as the acidifying agent, calculated buffer capacities depend on assumptions regarding initial pH in the absence of an acid load. At an initial stroma pH of 7.7, the stromal buffer capacity was about 20 mM pH-unit−1 in darkened spinach leaves. At an initial pH of 7.5 it would be only 12 mM pH-unit−1, i.e. not higher than expected solely on the basis of known stromal concentrations of phosphate and phosphate esters, disregarding the contribution of other solutes. At a concentration of 16%, CO2 reduced the stromal pH by about 1 pH unit. Buffering of the cytosol was measured by the CO2-dependent quenching of the fluorescence of pyranine which was fed to spinach leaves via the petiole. Brief exposures to high CO2 minimized interference by effective cytosolic pH regulation. Cytosolic buffering appeared to be similar to or only somewhat higher than chloroplast buffering if the initial cytosolic pH was assumed to be 7.25, which is in accord with published cytosolic pH values. The difference from chloroplast pH values indicates the existence of a pH gradient across the chloroplast envelope even in darkened leaves. Apoplastic buffering was weak as measured by the CO2-dependent quenching of dextran-conjugated fluorescein isothiocyanate which was infiltrated together with sodium vanadate into potato leaves. In the absence of vanadate, the kinetics of apoplastic fluorescence quenching were more complex than in its presence, indicating fast apoplastic pH regulation which strongly interfered with the determination of apoplastic buffering capacities. At an apoplastic pH of 6.1 in potato leaves, apoplastic buffering as determined by CO2 titration with and without added buffer was somewhat below 4 mM pH-unit−1. Thus the apoplastic and cytosolic pH responses to additions of CO2 indicated that the observed cytoplasmic pH regulation under acid stress involves pumping of protons from the cytosol into the vacuole of leaf cells, but not into the apoplast. Received: 27 November 1998 / Accepted: 22 March 1999  相似文献   

15.
Two coals of different rank, mined in Russia, were treated by an anaerobic methanogenic enrichment culture. The addition of alkaline enclosing rock to the lower-rank coal increased the pH of the incubation medium and methane production above that of the higher-rank coal with addition of its enclosing rock. This effect was accompanied by the leaching of cations from the incubation medium. The coal was processed without a preliminary chemical treatment in a two-stage aerobic/anaerobic bioreactor containing an anaerobic methanogenic granulated enrichment culture. Received: 15 January 1998 / Received revision: 2 October 1998 / Accepted: 2 October 1998  相似文献   

16.
A pilot-scale (1,000 L) continuous flow microbial electrolysis cell was constructed and tested for current generation and COD removal with winery wastewater. The reactor contained 144 electrode pairs in 24 modules. Enrichment of an exoelectrogenic biofilm required ~60 days, which is longer than typically needed for laboratory reactors. Current generation was enhanced by ensuring adequate organic volatile fatty acid content (VFA/SCOD ≥ 0.5) and by raising the wastewater temperature (31 ± 1°C). Once enriched, SCOD removal (62 ± 20%) was consistent at a hydraulic retention time of 1 day (applied voltage of 0.9 V). Current generation reached a maximum of 7.4 A/m3 by the planned end of the test (after 100 days). Gas production reached a maximum of 0.19 ± 0.04 L/L/day, although most of the product gas was converted to methane (86 ± 6%). In order to increase hydrogen recovery in future tests, better methods will be needed to isolate hydrogen gas produced at the cathode. These results show that inoculation and enrichment procedures are critical to the initial success of larger-scale systems. Acetate amendments, warmer temperatures, and pH control during startup were found to be critical for proper enrichment of exoelectrogenic biofilms and improved reactor performance.  相似文献   

17.
Two upflow anaerobic hybrid reactors treated lactose and a mixture of ethanol, propionate and butyrate, respectively, at a volumetric loading rate of 3.7 kg chemical oxygen demand (COD) m−3day−1, a hydraulic retention time of 5 days and a liquid upflow velocity of 0.01 m/h. Under steady-state conditions, the lactose-fed sludge had much higher (20%–100%) specific methanogenic conversion rates than the volatile-fatty acid␣(VFA)/ethanol-fed sludge for all substrates tested, including VFA. In both reactors, a flocculant sludge developed, although a much higher content of extracellular polysaccharide was measured in the lactose-fed sludge [1900 μg compared to 305 μg uronic acid/g volatile suspended solids (VSS)]. When the liquid upflow velocity of a third, VFA/ethanol-fed reactor was increased to 0.5 m/h, granulation of the sludge occurred, accompanied by a large increase (200%–500%) in the specific methanogenic conversion rates for the syntrophic and methanogenic substrates studied. Granulation reduced the susceptibility of the sludge to flotation. Glucose was degraded at a high rate (100 mg glucose gVSS−1h−1) by the sludge from the third reactor, despite not having been exposed to a sugar-containing influent for 563␣days. Received: 7 June 1996 / Received revision: 23 September 1996 / Accepted: 29 September 1996  相似文献   

18.
Biotreatment experiments with solutions of autoxidized phenolic compounds as well as coal-conversion wastewater stored for 30 years and rich in humic matter were performed under nitrate-reducing, sulphate-reducing and methanogenic conditions. The removal of total organic carbon in fractions of different molecular mass and of monomeric phenolic compounds in the wastewater was determined. A comparison of biotransformation potentials and rates indicated a relationship between these aspects and the availability of electron acceptors in the system. The capacities of the microbial consortia increased significantly with the energy microorganisms could gain from their respective respiration process and can be expressed by the order: aerobic process – nitrate reduction – sulphate reduction – methanogenesis. Received: 25 April 1996 / Received revision: 23 July 1996 / Accepted: 5 August 1996.  相似文献   

19.
Volatile fatty acids (VFA) represent short‐chain fatty acids consisting of six or fewer carbon atoms that can be distilled at atmospheric pressure. In anaerobic digestion processes VFAs are of central importance for maintaining stable reactor performance and biogas production, are used as indicators for arising problems and are important process monitoring parameters. In the present study, sludge derived form a full‐scale anaerobic digester of a wastewater treatment plant was spiked with formate, acetate, propionate, and butyrate in order to evaluate various commonly used techniques for VFA extraction, preservation, and storage. It was shown that VFA extraction after centrifugation warranted the highest recovery rates for spiked VFAs. Moreover, experiments clearly indicated the importance of a fast sample handling, including the necessity of immediate cooling of the samples. Chemical sample preservation within a narrow time frame or deep freezing emerged as an alternative to instant VFA extraction. Short‐time storage of extracted VFA samples at + 4°C is an option for up to 7 days, for longer periods storage at –20°C was found to be applicable.  相似文献   

20.
The aim of the study was to investigate the long‐term fermentation of an extremely sour substrate without any addition of manure. In the future, the limitation of manure and therefore the anaerobic digestion of silage with a very low buffering capacity will be an increasing general bottleneck for energy production from renewable biomass. During the mesophilic anaerobic digestion of sugar beet silage (without top and leaves) as the sole substrate (without any addition of manure), which had an extreme low pH of around 3.3, the highest specific gas production rate (spec. GPR) of 0.72 L/g volatile solids (VS) d was achieved at a hydraulic retention time (HRT) of 25 days compared to an organic loading rate (OLR) of 3.97 g VS/L d at a pH of around 6.80. The methane (CH4) content of the digester ranged between 58 and 67 %, with an average of 63 %. The use of a new charge of substrate (a new harvest of the same substrate) with higher phosphate content improved the performance of the biogas digester significantly. The change of the substrate charge also seemed to affect the methanogenic population dynamics positively, thus improving the reactor performance. Using a new substrate charge, a further decrease in the HRT from 25 to 15 days did not influence the digester performance and did not seem to affect the structure of the methanogenic population significantly. However, a decrease in the HRT affected the size of the methanogenic population adversely. The lower spec. GPR of 0.54 L/g VS d attained on day 15 of the HRT could be attributed to a lower size of methanogenic population present in the anaerobic digester during this stage of the process. Furthermore, since sugar beet silage is a relatively poor substrate, in terms of the buffering capacity and the availability of nutrients, an external supply of buffering agents and nutrients is a prerequisite for a safe and stable digester operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号