首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Summary Effects of aluminium on theTrifolium repens var Huia-Rhizobium trifolii strain HP3 symbiosis were studied using an axenic solution-culture system. With, 10 μM phosphate, 50 μM aluminium reduced or inhibited root elongation at pH<5.0, root hair formation at pH< 5.0–5.5, and Rhizobium multiplication in the rhizosphere and nodule formation at pH<6.0. In the absence of aluminium, root elongation and root hair formation were reduced at pH<4.3, and Rhizobium multiplication and nodule formation were inhibited at pH<5.0. Root hair formation was more sensitive to aluminium at pH<5 than was root elongation. No effect of aluminium on Rhizobium multiplication and nodule formation at pH<5 was detected because both were sensitive to pH alone. At pH 5.5 most of the aluminium changed immediately to a form which was susceptible to low-speed centrifugation, but which was detected by the aluminon method of analysis, and after 24 h a precipitate formed. the concentration of phosphate was reduced also, to approximately 1μM. Toxicity was overcome by either increasing the phosphate concentration from 10 to 50 μM, or by increasing the pH to 6.0 and the calcium, concentration to 1000μM.  相似文献   

2.
Low pH (5.2) decreased nodule number and acetylene reduction. Aluminium further depressed those parameters in theRhizobium leguminosarum-Pisum sativum associations examined. In the Al-treated plants nodule formation by strains 128C53 and 128C30 was not affected by 3 or 15 and 30 or 60 μM Al, respectively, as compared with the number of nodules on plants grown at pH 5.2 in the absence of Al. However, improved nodulation rates by those strains did not enhance plant dry weight or reduced nitrogen content. No differences in nitrogenase activity were found among strains of nodulating plants grown at the same aluminium level. These results suggest that Al-ions affected specifically nitrogenase activity and that this effect was primarily responsible for the reduction in plant growth.  相似文献   

3.
Measurements of multiplication in liquid culture indicated that fast-growing Lotus rhizobia (Rhizobium loti) were tolerant of acidity and aluminium (at least 50 μM A1 at pH 4.5). Slow-growing Lotus rhizobia (Bradyrhizobium sp. (Lotus)) were less tolerant of acidity but equally tolerant of A1. Both genera were able to nodulateLotus pedunculatus in an acid soil (pH 4.1 in 0.01M CaCl2) and the slow-growing strains were more effective than the fast-growing strains in this soil over 30 days.  相似文献   

4.
Vegetable soybeam germplasm was screened for its tolerance to 0, 50 and 100 μM Al in solution culture. Plants were inoculated with prescreened acid-Al tolerantBradyrhizobium japonicum strain USDA 110 and a localRhizobium isolate SM867. Aluminum concentrations of 0, 50, and 100 μM affected the root lengths of all germplasm lines in the first few weeks of their growth. At 100 μM, the plants had severely stunted roots throughout the growing period of 35 days, but at 50 μM the initial stunting of the roots was overcome after the third week of growth, and there were no significant differences between the root lengths of these plants and of the controls. The appearance of the first nodule was delayed for 2–3 and 4–5 days at 50 μM and 100 μM Al, respectively. There was a significant reduction in nodule numbers and acetylene reduction activity (ARA) at 100 μM Al. At 50 μM Al, even though the number of nodules was decreased significantly, nodules were larger in size, so there was no significant reduction in nodule fresh weight and ARA. No significant differences in nitrogen fixing abilities of the soybean lines were observed between the twoRhizobium strains. Germplasm line Kahala showed the greatest tolerance to 50 μM Al, and Kahala, Kim and Wolverine tolerated 100 μM Al better than other germplasm lines.  相似文献   

5.
Summary Effects of three solution aluminium concentrations (0, 25 and 100 M) on nodulation ofStylosanthes hamata andStylosanthes scabra inoculated with Rhizobium CB 756 were studied using nutrient solution culture. Aluminium strongly affected nodulation by delaying nodule appearance and reducing the number and dry weight of nodules in both species. The effects of aluminium toxicity on nodulation were more pronounced inStylosanthes scabra than inStylosanthes hamata. These effects of aluminium on nodulation occurred before any significant effect of aluminium on top growth, root growth or root elongation. A plant transfer experiment suggested that aluminium interfered with root infection and/or nodule initiation in both species. The detrimental effect of aluminium on nodulation appeared to be associated with a reduction in lateral root density, thus decreasing the potential number of sites for root infection and nodule formation.  相似文献   

6.
Soluble aluminium (Al) is a major factor limiting plant growth in acid mineral soils. Aluminium concentrations in soil solutions are mainly determined by soil pH. However, pH also affects the ratio between activities of protons and cationic Al species and the equilibrium between mono-and polynuclear hydroxy-Al species. The phytotoxicity of these species is not yet clear. The objective of the present study was to clarify the role of minor changes of pH in the rhizosphere on Al phytotoxicity in two Al-tolerant plant species by direct control of the pH in the nutrient solution (4.1, 4.3, 4.5) and in addition by varying the pH in the root apoplast using either nitrate or ammonium as N source. The plants were grown in solution culture at constant external pH. Whereas the Al-sensitive plant species barley and horse bean were damaged at very low Al supplies (1.85 μM and 9.3 μM respectively), 222 μM had to be applied to rye and yellw lupin for a comparable inhibition of root elongation. Yellow lupin was initially severely inhibited in root growth by Al, but then gradually recovered from this ‘Al shock’ within 3 days. In contrast to lupin, rye was hardly affected by Al initially, and it took about 16 h until maximum inhibition of root elongation. In the presence of nitrate, raising the pH from 4.1 to 4.5 aggravated root-growth depression by Al in rye and lupin. Whereas rye roots were severely damaged by ammonium especially at low pH, lupin was rather indifferent to the N source. Aluminium toxicity was less severe in presence of ammonium compared to nitrate N. This effect was less clear with rye at lower pH, because of it's higher proton sensitivity compared to lupin. Less Al injury at lower pH and in presence of ammonium was related to lower Al concentrations in the 1 cm root tips. The results are compatible with data showing high phytotoxicity of mononuclear and polynuclear hydroxy-Al species. However, they could also be interpreted in the light of proton amelioration of Al toxicity owing to competition for Al-sensitive binding sites in the root apoplast.  相似文献   

7.
Summary A micropropagation protocol for Artocarpus altilis (breadfruit, yellow cultivar) using shoot tip explants taken from mature trees is outlined. Cultures were initiated from shoot tip explants (1–2 mm in length) on either N5K or N15K (Margara, 1978) macronutrient formulation, MS (Murashige and Skoog, 1962) micronutrients and vitamins and 6-benzyladenine (BA, 4.4 μM). Single-node explants obtained from shoots formed at the initiation stage were used at the multiplication stage. Multiplication elongation and maintenance were possible on N30NH4 (Margara, 1978) macronutrients, MS micronutrients and vitamins and zeatin 2.2 μM. Shoot elongation was not enhanced by the inclusion of gibberelic acid at 1.4 μM, 2.8 μM or 14.0 μM, along with zeatin at 2.2 μM, when compared with those shoots cultured on zeatin only. N30NH4 was found to be superior (with respect to shoot quality) to MS macronutrient formulations at the multiplication and maintenance stages, because the shoots with development were more vigorous than those formed on the other macronutrient formulations mentioned. Zeatin at 2.2 μM yielded 50% more in vitro-formed shoots when compared with BA at 4.4 μM for the same time period. Shoots rooted on hormone-free medium with a success rate of 60%. Regenerated plantlets were hardened with about a 40% success rate.  相似文献   

8.
We investigated whether low-pH-induced manganese (Mn) deficiency causes low-pH-induced root hair formation in lettuce seedlings. Both the number and length of root hairs increased in 0 μM Mn (Mn-free) at pH 6 and decreased in 3 mM Mn (excess Mn) at pH 4 compared with the values in 10 μM Mn (normal Mn). These results indicate an inhibitory effect of Mn on both root hair initiation and elongation. The time dependency of root hair induction caused by Mn deficiency corresponded to that caused by low pH. Within 1 h after the pH of the culture medium was reduced from pH 6 to pH 4, the Mn uptake by roots decreased to 43% of that at pH 6. These results suggest that low-pH-induced Mn deficiency promotes root hair formation. At low pH, the rate of Mn uptake was reduced in areas >2 mm from the root tip. Roots with low-pH-induced root hairs still showed low Mn uptake during 3 h of incubation at pH 6. Therefore, the additional root hairs induced by low pH did not compensate for the low-pH-induced decrease in Mn uptake  相似文献   

9.
Summary We have developed a highly efficient two-stage protocol for induction of multiple shoots from single node in vitro shoot tip explants of Decalepis hamiltonii. It was found that phenylacetic acid (PAA) had a synergistic effect on shoot multiplication when treated with N6-benzyladenine (BA). This protocol used PAA for both multiple shoot induction from nodal explants, elongation of primary shoots, and initiation of adventitious shoot formation from primary shoots. Murashige and Skoog medium containing BA (2.22–31.08 μM) and α-naphthaleneacetic acid (0.27–10.74 μM) or PAA (7.34–36.71 μM) was used to initiate shoot formation from nodal explants. The maximum number of shoots per culture was produced on a medium containing 31.08 μM BA and 14.68 μM PAA, while the longest shoot length and nodes were obtained on medium containing 22.2 μM BA and 14.68 μM PAA. Shoots subcultured on MS medium containing 22.2 μM BA and 14.68 μM PAA elongated along with secondary shoot formation. The shoots were rooted on medium containing 9.7 μM indole-3-butyric acid. The plantlets were acclimatized in soil with an 80–90% survival rate under field conditions.  相似文献   

10.
Summary Experiments with tomato, rape and spinach in nutrient solutions have shown that the formation of root hairs is strongly influenced by phosphate and nitrate supply. Decreasing the phosphate concentration of the nutrient solution from 100 to 2 M P resulted in an increase of root hair length from 0.1–0.2 to 0.7 mm of the three plant species. Root hair density also increased by a factor of 2–4 when the P concentration was lowered from 1000 to 2 M. The variation of these two root properties raised the root surface area by a factor of 2 or 3 compared to plants well supplied with P. Root hair length was closely related to the phosphate content of the root and shoot material. On the other hand, spinach plants grown in a split-root experiment produced root hairs in solutions of high P concentration (1000M P) if the major part of the total root system was exposed to low P concentration (2 M P). It is therefore concluded that the formation of root hairs does not depend on directly the P concentration at the root surface but on the P content of the plant.Similar experiments with nitrate also resulted in an increase in length and density of root hairs with the decrease of concentration below 1000 M. In this case marked differences between plant species occurred. At 2 M compared to 1000 M NO3 root hair length of tomato increased by a factor of 2, of rape by a factor of 5 and of spinach by a factor of 9. Root hair length was correlated, but not very closely, to the total nitrogen content of the plants. It is concluded, that the influence of nutrient supply on the formation of root hairs is a mechanism for regulating the nutrient uptake of plants.Dedicated to Prof. Dr. E. Welte on the occasion of his 70th anniversary.  相似文献   

11.
Summary The content of endogenous gibberellin (GA)-like substances of roots and root nodules of SOya, and GA production byRhizobium japonicum cultures, were investigated by a combined thin layer chromatographic (TLC)-dwarf pea epicotyl bioassay technique. GAs were more concentrated in root nodules than in the roots, totalling 1.34 and 0.16 nM GA3 equivalents g−1 dry wt. respectively. GA production byR. japonicum cultures was demonstrated (1.00 nM GA3 equivalentsl −1) and comparison of the GA components of plant and bacterial culture medium extracts, suggested that rhizobial GA production may contribute to the nodule GA content. Cis-trans abscisic acid (ABA) was identified in root and nodule extracts by TLC-gas liquid chromatography (GLC), and amounted to 0.18 and 2.21 nM g−1 dry wt. respectively, whereas 0.30 and 4.63 nM ABA equivalents g−1 dry wt. were detected by a TLC-wheat embryo bioassay technique. ABA was not detected in extracts of bacterial cultures.  相似文献   

12.
Summary An efficient system to regenerate shoots on excised sepals (calyx) of greenhouse-grown ‘Bounty’ strawberry (Fragaria x ananassa Duch.) was developed in vitro. Sepal cultures produced multiple buds and shoots without an intermediary callus phase on 2–4 μM 1-phenyl-3-(1,2,3-thiadiazol-5-yl) urea (thidiazuron, TDZ)-containing shoot induction medium within 4–5 wk of culture initiation. Young expanding sepals with the adaxial side touching the culture medium and maintained for 14 d in darkness produced the best results. In a second experiment, sepals proved more effective than the leaf discs and petiole segments for regenerating shoots. A third experiment compared the effects of six concentrations of two cytokinins (TDZ at 0, 0.5, 2, and 4 μM and zeatin at 2 and 4 μM) for elongation of sepal-derived adventitious shoots. The media containing TDZ generally promoted more callus formation and suppressed shoot elongation. TDZ-initiated cultures transferred into the medium containing 2–4 μM zeatin, produced usable shoots after one additional subculture. Shoots were rooted in vitro in the same medium used for shoot regeneration, but without any growth regulators. When transferred to potting medium, 85–90% of in vitro plantlets survived.  相似文献   

13.
Summary A rapid micropropagation system was established forHolostemma annulare (Roxb.) K. Schum., (H. ada-kodien R. Br. ex Schult; Asclepiadaceae), a rare medicinal plant. Shoot tips (0.5–0.8 cm) and terminal and basal nodes (1.0–1.5 cm) harvested from actively growing shoots of conventionally raised plants were cultured on Murashige and Skoog (MS) medium supplemented with various concentrations of 6-benzyladenine (BA) and α-naphthaleneacetic acid (NAA). Multiple shoot formation (3.8) was observed in 68% of basal nodes cultured on medium with optimum concentration of 4.43 μM BA and 0.54 μM NAA after 8 wk. Terminal nodes were not suitable for inducing multiple shoots. Irrespective of the orientation (vertical/horizontal), all shoot tip explants responded with a single shoot in all the combinations of plant growth regulators tried. Effects of other cytokinins (kinetin and 2-isopentenyladenine) and auxins [indole-3-acetic acid and indole-3-butyric acid (IBA)] to enhance the regeneration potential of basal nodes were analyzed. Shoots were multiplied by subculture of basal nodes and stumps (the original explant tissue free of shoots, but with remnant axillary, meristem and two or three protruding buds) in a reduced concentration of BA (2.21 μM) and NAA (0.27 μM). Liquid medium for multiplication was found to be ineffective due to a high degree of hyperhydricity. To make the multiplication process cost effective, culture bottles with polypropylene, caps were used for multiplication. The best root induction (75%) and survival (80%) was achieved on 0.5 strength MS medium supplemented with 1.48 μM IBA. Field-established plants had uniform growth habit traits in terms of height of plants and number, length, and weight of the tuberous roots.  相似文献   

14.
Summary The objective of this study was to evaluate the ability ofHosta Golden Scepter (GS) ovary explants to generate adventitious shootsin vitro. Ovaries were transversely cut into halves and transferred to petri dishes containingHosta initiation medium supplemented with naphthaleneacetic acid (NAA) at 2.5 μM and N6-benzyladenine (BA) at 10 μM. GS produced adventitious shoots from the ovary base via organogenesis. The number of adventitious shoots regenerated from callus increased linearly with repeated subculturing on Murashige and Skoog (MS) medium supplemented with 2.5 μM NAA and 10 μM BA. The number of multiple shoots developing from callus (15.8), shoot tip (8.4), leaf (6.7), and root (4.3) occurred on MS medium supplemented with 2.5 μM NAA and 20–30 μM BA. There were significant differences in the number of shoots regenerated from shoot tips and callus on MS medium with 50 and 100 mgmyo-inositol per l. Similarly, there were significant differences in the number of axillary shoots and adventitious shoots produced with 20 g/l sucrose treatment.  相似文献   

15.
Summary An efficient and rapid micropropagation system was developed for a food and medicinally important endangered shrub, Decalepis hamiltonii (‘swallow root’), through shoot multiplication. The influence of 2.5–7.5 μM isopentenyladenine (2iP), 4.4–17.7 μM 6-benzyladenine, 2.3–4.7 μM kinetin, 2.8–6.8 μM thidiazuron, and 2.3–11.4 μM zeatin alone and in combination with 0.3–0.9 μM indole-3-acetic acid (IAA) on in vitro multiple shoot production was studied. The maximum number of multiple shoots (6.5±0.4) was induced from shoot tips cultured on agar-based Murashige and Skoog (MS) medium containing 4.9 μM 2iP. But, both zeatin (9.1 μM) and kinetin (4.7 μM) in combination with IAA (0.6 μM) were able to produce a maximum of 5.0±0.4 and 5.1±0.4 multiple shoots, respectively. Further elongation of shoots and adventitious shoot formation was obtained on medium containing 2.5 μM 2iP and 0.3 μM gibberellic acid. Elongated shoots were separated and rooted on MS medium supplemented with 9.8μM indole-3-butyric acid (IBA) and various phenolic compounds within 5–6 wk. Phloroglucinol and salicylic acid interaction with IBA stimulated in vitro rooting of shoots. Successful field transfer was achieved in rooted plantlets.  相似文献   

16.
Forty strains ofRhizobium phaseoli, isolated from Kenyan soils, were tested for infectiveness on common bean (Phaseolus vulgaris L.). 28 strains were infective and a cultivar × Rhizobium interaction was observed. 48 strains were screened for tolerance of acidity and Al in liquid culture. Assessment of visible turbidity after 14 days indicated 34 strains tolerant of pH 4.5 but none tolerant of pH 3.5. No strain was tolerant of 50 M Al at pH 5.5. Three strains were tolerant of 20 M Al at pH 5.5 and 10 M Al at pH 4.5. Screening on a solid medium identified strains tolerant of 20 and 50 M Al at pH 5.5 and 4.5 which were sensitive to these treatments in liquid culture. Those strains tolerant to 20 M Al at pH 4.5 and 5.5 in liquid culture were correctly identified on the solid medium.  相似文献   

17.
Summary A method of plant regeneration from hypocotyl segments of Platanus acerifolia Willd, has been developed. Hypocotyl slices were cultured on Murashige and Skoog (MS) basal medium supplemented with a range of combinations of cytokinins [6-benzyladenine (BA) or kinetin] and auxins [indole-3-butyric acid (IBA), indole-3-acetic acid, α-naphthaleneacetic acid or 2,4-dichlorophenoxyacetic acid] for adventitious shoot induetion. The highest regeneration frequency was obtained with MS medium containing 2.0 mg l−1 (8.88 μM) BA and 0.5 mg l−1 (2.46 μM) IBA. Adventitious buds and shoots were differentiated from hypocotyl-derived cellus or directly from the wounded sites within 4–8 wk. The regenerated shoots were elongated and proliferated efficiently on multiplication medium. Complete plantlets were transplanted to the soil and grew normally in the greenhouse after root formation on rooting medium for 4–6 wk.  相似文献   

18.
Summary A rapid shoot multiplication protocol was established for an important medicinal plant, Vitex negundo L., belonging to the family Verbenaceae, using Murashige and Skoog medium, achieved by shoot multiplication as well as callus regeneration. Shoot multiplication was induced by different concentrations of 1-phenyl-3-(1,2,3-thiadiazol-5-yl)-urea (TDZ), Benzyladenine and 6-furfuryl amino purine separately along with 10% (v/v) coconut water. Green organogenetic callus was obtained by the combined effect of 0.5–2.15 μM TDZ and 1.7 μM indole-3-acetic acid (IAA) along with 1% polyvinylpyrrolidone (PVP), and produced the maximum number of shoots when subcultured onto medium containing 2.7 μM TDZ alone. Elongation of in vitro shoots was observed in MS medium containing 2.4 μM gibberellic acid and rooting was induced by the combined effect of 1.71 μM IAA and 1.62 μM α-naphthalene acetic acid.  相似文献   

19.
Summary Nothapodytes foetida (Wight) is a small evergreen tree and the extract from this tree is used to make the antileukaemia and antitumoral compound camptothecin. Due to exploitation of this resource, efficient methods for rapid propagation of N. foetida are highly desirable. Multiple shoots were induced on hypocotyl segments of 20–25-d-old seedlings of N. foetida cultured on Murashige and Skoog (MS) medium supplemented with different concentrations and combinations of cytokinins. The highest shoot multiplication was achieved on MS medium containing thidiazuron (TDZ) at the concentration of 2.2 μM. Inhibition of shoot elongation by TDZ was overcome by transferring shoot cultures to medium containing 2.2 μM benzylaminopurine which produced healthy shoots after three additional subcultures. The production of shoots was further promoted by repeated subculturing of original explants on fresh multiplication medium after each harvesting of the newly formed shoots. In vitro rooting was best induced (87%) in shoots excised from proliferated shoot cultures on one-fourth MS medium augmented with 5.7 μM indole-3-acetic acid and 2.4 μM indolebutryic acid (IBA). In vitro-developed shoots were also rooted ex vitro by dipping in 49 μM IBA for 10 min. In vitro- and ex vitro-rooted plants were successfully acclimatized and established in greenhouse conditions.  相似文献   

20.
Hypaphorine, the major indolic compound isolated from the ectomycorrhizal fungus Pisolithus tinctorius, controls the elongation rate of root hairs. At inhibitory concentrations (100 μM), hypaphorine induced a transitory swelling of root hair tips of Eucalyptus globulus Labill. ssp. bicostata. When the polar tip growth resumed, a characteristic deformation was still visible on elongating hairs. At higher hypaphorine concentrations (500 μM and greater), root hair elongation stopped, only 15 min after application. However, root hair initiation from trichoblasts was not affected by hypaphorine. Hypaphorine activity could not be mimicked by related molecules such as indole-3-acetic acid (IAA) or tryptophan. While IAA had no activity on root hair elongation, IAA was able to restore the tip growth of root hairs following inhibition by hypaphorine. These results suggest that hypaphorine and endogenous IAA counteract in controlling root hair elongation. During ectomycorrhiza development, the absence of root hairs might be due in part to fungal release of molecules, such as hypaphorine, that inhibit the elongation of root hairs. Received: 27 October 1999 / Accepted: 14 March 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号