首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Pathways database system: an integrated system for biological pathways   总被引:1,自引:0,他引:1  
MOTIVATION: During the next phase of the Human Genome Project, research will focus on functional studies of attributing functions to genes, their regulatory elements, and other DNA sequences. To facilitate the use of genomic information in such studies, a new modeling perspective is needed to examine and study genome sequences in the context of many kinds of biological information. Pathways are the logical format for modeling and presenting such information in a manner that is familiar to biological researchers. RESULTS: In this paper we present an integrated system, called Pathways Database System, with a set of software tools for modeling, storing, analyzing, visualizing, and querying biological pathways data at different levels of genetic, molecular, biochemical and organismal detail. The novel features of the system include: (a) genomic information integrated with other biological data and presented from a pathway, rather than from the DNA sequence, perspective; (b) design for biologists who are possibly unfamiliar with genomics, but whose research is essential for annotating gene and genome sequences with biological functions; (c) database design, implementation and graphical tools which enable users to visualize pathways data in multiple abstraction levels, and to pose predetermined queries; and (d) an implementation that allows for web(XML)-based dissemination of query outputs (i.e. pathways data) to researchers in the community, giving them control on the use of pathways data. AVAILABILITY: Available on request from the authors.  相似文献   

2.

Background

Semantic Web has established itself as a framework for using and sharing data across applications and database boundaries. Here, we present a web-based platform for querying biological Semantic Web databases in a graphical way.

Results

SPARQLGraph offers an intuitive drag & drop query builder, which converts the visual graph into a query and executes it on a public endpoint. The tool integrates several publicly available Semantic Web databases, including the databases of the just recently released EBI RDF platform. Furthermore, it provides several predefined template queries for answering biological questions. Users can easily create and save new query graphs, which can also be shared with other researchers.

Conclusions

This new graphical way of creating queries for biological Semantic Web databases considerably facilitates usability as it removes the requirement of knowing specific query languages and database structures. The system is freely available at http://sparqlgraph.i-med.ac.at.  相似文献   

3.
Over the years, we have seen a significant number of integration techniques for data warehouses to support web integrated data. However, the existing works focus extensively on the design concept. In this paper, we focus on the performance of a web database application such as an integrated web data warehousing using a well-defined and uniform structure to deal with web information sources including semi-structured data such as XML data, and documents such as HTML in a web data warehouse system. By using a case study, our implementation of the prototype is a web manipulation concept for both incoming sources and result outputs. Thus, the system not only can be operated through the web, it can also handle the integration of web data sources and structured data sources. Our main contribution is the performance evaluation of an integrated web data warehouse application which includes two tasks. Task one is to perform a verification of the correctness of integrated data based on the result set that is retrieved from the web integrated data warehouse system using complex and OLAP queries. The result set is checked against the result set that is retrieved from the existing independent data source systems. Task two is to measure the performance of OLAP or complex query by investigating source operation functions used by these queries to retrieve the data. The information of source operation functions used by each query is obtained using the TKPROF utility.
David TaniarEmail:
  相似文献   

4.
5.
MOTIVATION: Protein sequence and family data is accumulating at such a rapid rate that state-of-the-art databases and interface tools are required to aid curators with their classifications. We have designed such a system, MetaFam, to facilitate the comparison and integration of public protein sequence and family data. This paper presents the global schema, integration issues, and query capabilities of MetaFam. RESULTS: MetaFam is an integrated data warehouse of information about protein families and their sequences. This data has been collected into a consistent global schema, and stored in an Oracle relational database. The warehouse implementation allows for quick removal of outdated data sets. In addition to the relational implementation of the primary schema, we have developed several derived tables that enable efficient access from data visualization and exploration tools. Through a series of straightforward SQL queries, we demonstrate the usefulness of this data warehouse for comparing protein family classifications and for functional assignment of new sequences.  相似文献   

6.
EpoDB is a database of genes expressed in vertebrate red blood cells. It is also a prototype for the creation of cell and tissue-specific databases from multiple external sources. The information in EpoDB obtained from GenBank, SWISS-PROT, Transfac, TRRD and GERD is curated to provide high quality data for sequence analysis aimed at understanding gene regulation during erythropoiesis. New protocols have been developed for data integration and updating entries. Using a BLAST-based algorithm, we have grouped GenBank entries representing the same gene together. This sequence similarity protocol was also used to identify new entries to be included in EpoDB. We have recently implemented our database in Sybase (relational tables) in addition to SICStus Prolog to provide us with greater flexibility in asking complex queries that utilize information from multiple sources. New additions to the public web site (http://www.cbil.upenn.edu/epodb) for accessing EpoDB are the ability to retrieve groups of entries representing different variants of the same gene and to retrieve gene expression data. The BLAST query has been enhanced by incorporating BLASTView, an interactive and graphical display of BLAST results. We have also enhanced the queries for retrieving sequence from specified genes by the addition of MEME, a motif discovery tool, to the integrated analysis tools which include CLUSTALW and TESS.  相似文献   

7.
8.
9.
10.
11.
MOTIVATION: The information model chosen to store biological data affects the types of queries possible, database performance, and difficulty in updating that information model. Genetic sequence data for pharmacogenetics studies can be complex, and the best information model to use may change over time. As experimental and analytical methods change, and as biological knowledge advances, the data storage requirements and types of queries needed may also change. RESULTS: We developed a model for genetic sequence and polymorphism data, and used XML Schema to specify the elements and attributes required for this model. We implemented this model as an ontology in a frame-based representation and as a relational model in a database system. We collected genetic data from two pharmacogenetics resequencing studies, and formulated queries useful for analysing these data. We compared the ontology and relational models in terms of query complexity, performance, and difficulty in changing the information model. Our results demonstrate benefits of evolving the schema for storing pharmacogenetics data: ontologies perform well in early design stages as the information model changes rapidly and simplify query formulation, while relational models offer improved query speed once the information model and types of queries needed stabilize.  相似文献   

12.
The state-of-the-art indexing mechanisms for distributed cloud data management systems can not support complex queries, such as multi-dimensional query and range query. To solve this problem, we propose a multi-dimensional indexing mechanism named PR-Chord to support complex queries. PR-Chord is composed of the global index named PR-Index and the Chord network. The multi-dimensional space formed by the range of the multi-dimensional data is divided into hyper-rectangle spaces equally. The PR-Index is a hierarchical index structure based on the improved PR quadtree to index these spaces. The complex query is transformed into the query of leaf nodes of PR-Index. We design the algorithms of query, insertion and deletion to support complex queries. Since PR-Index does not store the multi-dimensional data, its maintenance cost is zero. PR-Chord has the advantages of load balancing and simple algorithm. The experiment results demonstrate that PR-Chord has good query efficiency.  相似文献   

13.
14.
The diversity of online resources storing biological data in different formats provides a challenge for bioinformaticians to integrate and analyse their biological data. The semantic web provides a standard to facilitate knowledge integration using statements built as triples describing a relation between two objects. WikiPathways, an online collaborative pathway resource, is now available in the semantic web through a SPARQL endpoint at http://sparql.wikipathways.org. Having biological pathways in the semantic web allows rapid integration with data from other resources that contain information about elements present in pathways using SPARQL queries. In order to convert WikiPathways content into meaningful triples we developed two new vocabularies that capture the graphical representation and the pathway logic, respectively. Each gene, protein, and metabolite in a given pathway is defined with a standard set of identifiers to support linking to several other biological resources in the semantic web. WikiPathways triples were loaded into the Open PHACTS discovery platform and are available through its Web API (https://dev.openphacts.org/docs) to be used in various tools for drug development. We combined various semantic web resources with the newly converted WikiPathways content using a variety of SPARQL query types and third-party resources, such as the Open PHACTS API. The ability to use pathway information to form new links across diverse biological data highlights the utility of integrating WikiPathways in the semantic web.  相似文献   

15.
《Epigenetics》2013,8(11):1236-1244
Many human diseases are multifactorial, involving multiple genetic and environmental factors impacting on one or more biological pathways. Much of the environmental effect is believed to be mediated through epigenetic changes. Although many genome-wide genetic and epigenetic association studies have been conducted for different diseases and traits, it is still far from clear to what extent the genomic loci and biological pathways identified in the genetic and epigenetic studies are shared. There is also a lack of statistical tools to assess these important aspects of disease mechanisms. In the present study, we describe a protocol for the integrated analysis of genome-wide genetic and epigenetic data based on permutation of a sum statistic for the combined effects in a locus or pathway. The method was then applied to published type 1 diabetes (T1D) genome-wide- and epigenome-wide-association studies data to identify genomic loci and biological pathways that are associated with T1D genetically and epigenetically. Through combined analysis, novel loci and pathways were also identified, which could add to our understanding of disease mechanisms of T1D as well as complex diseases in general.  相似文献   

16.
17.

Background  

Many commonly used genome browsers display sequence annotations and related attributes as horizontal data tracks that can be toggled on and off according to user preferences. Most genome browsers use only simple keyword searches and limit the display of detailed annotations to one chromosomal region of the genome at a time. We have employed concepts, methodologies, and tools that were developed for the display of geographic data to develop a Genome Spatial Information System (GenoSIS) for displaying genomes spatially, and interacting with genome annotations and related attribute data. In contrast to the paradigm of horizontally stacked data tracks used by most genome browsers, GenoSIS uses the concept of registered spatial layers composed of spatial objects for integrated display of diverse data. In addition to basic keyword searches, GenoSIS supports complex queries, including spatial queries, and dynamically generates genome maps. Our adaptation of the geographic information system (GIS) model in a genome context supports spatial representation of genome features at multiple scales with a versatile and expressive query capability beyond that supported by existing genome browsers.  相似文献   

18.
As the discipline of biomedical science continues to apply new technologies capable of producing unprecedented volumes of noisy and complex biological data, it has become evident that available methods for deriving meaningful information from such data are simply not keeping pace. In order to achieve useful results, researchers require methods that consolidate, store and query combinations of structured and unstructured data sets efficiently and effectively. As we move towards personalized medicine, the need to combine unstructured data, such as medical literature, with large amounts of highly structured and high-throughput data such as human variation or expression data from very large cohorts, is especially urgent. For our study, we investigated a likely biomedical query using the Hadoop framework. We ran queries using native MapReduce tools we developed as well as other open source and proprietary tools. Our results suggest that the available technologies within the Big Data domain can reduce the time and effort needed to utilize and apply distributed queries over large datasets in practical clinical applications in the life sciences domain. The methodologies and technologies discussed in this paper set the stage for a more detailed evaluation that investigates how various data structures and data models are best mapped to the proper computational framework.  相似文献   

19.
This article provides general information and original data on the period of first introduction in Europe (1823–1825) and in Italy (first half of the 19th century), and on the current distribution and impacts in Italy of the invasive macrophyte Eichhornia crassipes. Two main pathways are responsible for the presence of this species in Italy: (i) introduction as an ornamental and (ii) research and use for phytoremediation. After a time lag of more than 100 years, E. crassipes has recently started invading the Italian freshwaters. A specific action plan for this species is required, including local eradication and awareness campaigns. Furthermore, regulations in the trade sector of invasive aquatic plant species need to be introduced and the possibilities for biological or integrated control evaluated.  相似文献   

20.
SUMMARY: The visualization-aided exploration of complex datasets will allow the research community to formulate novel functional hypotheses leading to a better understanding of biological processes at all levels. Therefore, we have developed a web resource termed VIS-O-BAC designed for the functional investigation of expression data for model systems, such as bacterial pathogens based on a graphical display. Genome-scale datasets derived from typical 'omic' approaches can directly be explored with respect to three biologically relevant aspects, the genome structure (operon organization), the organization of genes in pathways (KEGG) and the gene function with Gene Ontology (GO) terms. The integrated viewers can be used in parallel and combine expression data and functional annotations from different external data repositories. The graphical visualizations evidently accelerate both the validation of regulatory information and the detection of affected biological processes. AVAILABILITY: http://leger2.gbf.de/cgi-bin/vis-o-bac.pl. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号