首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We have previously reported an aberrant accumulation of activated protein kinase B (PKB), glycogen synthase kinase (GSK)-3beta, extracellular signal-regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK), p38 and p70 S6 kinase (p70S6K) in neurons bearing neurofibrillary tangles (NFTs) in Alzheimer's disease (AD). However, the mechanism by which these tau candidate kinases are involved in the regulation of p70S6K and GSK-3beta phosphorylation is unknown. In the current study, 100 microM zinc sulfate was used, and influences of various components of phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways on p70S6K and GSK-3beta phosphorylation have been investigated in serum-deprived SH-SY5Y neuroblastoma cells. We found that zinc could induce an increase of phosphorylated (p) p70S6K, p-PKB, p-GSK-3beta, p-ERK1/2, p-JNK and p-p38, especially in long-term treatment (4-8 h). Treatment with different inhibitors including rapamycin, wortmannin, LY294002, and U0126, and their combinations, indicated that phosphorylation of p70S6K and GSK-3beta is regulated by rapamycin-dependent, PI3K and MAPK pathways. Furthermore, phosphorylation of p70S6K and GSK-3beta affected levels of tau unphosphorylated at the Tau-1 site and phosphorylated at the PHF-1 site, and p70S6K phosphorylation affected the total tau level. Thus, 100 microM zinc might activate PKB, GSK-3beta, ERK1/2, JNK, p38 and p70S6K, that are consequently involved in tau changes in SH-SY5Y cells.  相似文献   

2.
Glycogen synthase kinase GSK-3β has been identified as one of the major candidates mediating tau hyperphosphorylation at the same sites as those present in tau protein in brain from Alzheimer′s disease (AD) patients. However, the signal transduction pathways involved in the abnormal activation of GSK-3β, have not been completely elucidated. GSK-3β activity is repressed by the canonical Wnt signaling pathway, but it is also modulated through the PI3K/Akt route. Recent studies have suggested that Wnt signaling might be involved in the pathophysiology of AD. On the other hand, modulators of the PI3K pathway might be reduced during aging leading to a sustained activation of GSK-3β, which in turn would increase the risk of tau hyperphosphorylation. The role of Wnt and PI3K signaling inhibition on the extent of tau phosphorylation and neuronal morphology has not been completely elucidated. Thus, in the present investigation we analyzed the effects of different negative modulators of the Wnt and the PI3K pathways on GSK-3β activation and phosphorylation of tau at the PHF-1 epitope in cortical cultured neurons and hippocampal slices from adult rat brain. Changes in the microtubule network were also studied. We found that a variety of Wnt and PI3K inhibitors, significantly increased tau phosphorylation at the PHF-1 site, induced the disarrangement of the microtubule network and the accumulation of tau within cell bodies. These changes correlated with alterations in neuronal morphology. Special issue article in honor of Dr. Ricardo Tapia.  相似文献   

3.
Hyperphosphorylated tau is the major component of paired helical filaments in neurofibrillary tangles found in Alzheimer's disease (AD) brain. Starvation of adult mice induces tau hyperphosphorylation at many paired helical filaments sites and with a similar regional selectivity as those in AD, suggesting that a common mechanism may be mobilized. Here we investigated the mechanism of starvation-induced tau hyperphosphorylation in terms of tau kinases and Ser/Thr protein phosphatases (PP), and the results were compared with those reported in AD brain. During starvation, tau hyperphosphorylation at specific epitopes was accompanied by decreases in tau protein kinase I/glycogen synthase kinase 3 beta (TPKI/GSK3 beta), cyclin-dependent kinase 5 (cdk5), and PP2A activities toward tau. These results demonstrate that the activation of TPKI/GSK3 beta and cdk5 is not necessary to obtain hyperphosphorylated tau in vivo, and indicate that inhibition of PP2A is likely the dominant factor in inducing tau hyperphosphorylation in the starved mouse, overriding the inhibition of key tau kinases such as TPKI/GSK3 beta and cdk5. Furthermore, these data give strong support to the hypothesis that PP2A is important for the regulation of tau phosphorylation in the adult brain, and provide in vivo evidence in support of a central role of PP2A in tau hyperphosphorylation in AD.  相似文献   

4.
Tau蛋白过度磷酸化是Alzheimer病 (Alzheimer′s disease, AD) 的一个重要特征.本研究检测了Ⅱ型糖尿病大鼠海马tau蛋白磷酸化水平,对其形成机制进行探讨. 以同龄正常Wistar大鼠作为对照,高脂高蛋白高糖饮食加小剂量链脲佐菌素(streptozotocin,STZ)注射诱导造Ⅱ型糖尿病模型(T2DM组).放免法检测血浆胰岛素;葡萄糖氧化酶法检测血浆葡萄糖;蛋白质印迹技术检测各组大鼠海马内总tau蛋白、tau蛋白上部分位点磷酸化、神经细胞膜上胰岛素受体及葡萄糖转运子3(glucose transport 3,GLUT3)水平;表面等离子共振技术(surface plasmon resonance, SPR)检测细胞膜上胰岛素受体与血浆胰岛素结合力;γ32-P标记的ATP和特异性底物肽检测海马内胰岛素信号传导系统中的关键酶糖原合酶激酶-3β(glycogen synthase kinase-3β, GSK-3β)活性.结果显示,T2DM组血浆血糖、血浆胰岛素及运用HOMA-IR公式计算的胰岛素抵抗指数显著高于对照组.蛋白质印迹结果显示两组大鼠海马回总tau蛋白水平无差异;T2DM组中tau蛋白在Ser199、Thr212、Ser214、Thr217、Ser396及Ser422位点上的磷酸化水平均显著高于对照组;T2DM组海马神经细胞膜上胰岛素受体水平及与胰岛素结合的功能均显著低于对照组;GSK-3β活性检测结果显示,T2DM组大鼠模型海马回中GSK-3β活性明显增高.研究结果表明,Ⅱ型糖尿病中由于胰岛素抵抗导致GSK-3β激活从而出现AD样tau蛋白的过度磷酸化,葡萄糖代谢紊乱也可能在tau蛋白的过度磷酸化起一定作用.  相似文献   

5.
The paired helical filaments of highly phosphorylated tau protein are the main components of neurofibrillary tangles (NFT) in Alzheimer's disease (AD). Protein kinases including glycogen synthase kinase 3 beta (GSK3beta), cyclin-dependent kinase 5 (Cdk5), and c-Jun N-terminal kinase (JNK) have been implicated in NFT formation making the use of selective kinase inhibitors an attractive treatment possibility in AD. When sequentially treated with retinoic acid (RA) and brain-derived neurotrophic factor (BDNF), the human neuroblastoma SH-SY5Y differentiates to neuron-like cells. We found that coincident with morphologically evident neurite outgrowth, both the content and phosphorylation state of tau increased in RA-BDNF differentiated SH-SY5Y cells. Tau phosphorylation increased at all the examined sites ser-199, ser-202, thr-205, ser-396, and ser-404, all of which are hyperphosphorylated in AD brain. We also investigated whether GSK3beta, Cdk5 or JNK was involved in tau phosphorylation in the differentiated SH-SY5Y cells. We found that GSK3beta contributed most and that Cdk5 made a minor contribution. JNK was not involved in tau phosphorylation in this system. The GSK3beta-inhibitor, lithium, inhibited tau phosphorylation in a concentration-dependent manner and with good reproducibility, which enables ranking of substances in this cell model. RA-BDNF differentiated SH-SY5Y cells could serve as a suitable model for studying the mechanisms of tau phosphorylation and for screening potential GSK3beta inhibitors.  相似文献   

6.
Glycogen synthase kinase-3beta (GSK-3beta) is implicated in regulating apoptosis and tau protein hyperphosphorylation in Alzheimer's disease (AD). We investigated the effects of two key AD molecules, namely apoE (E3 and E4 isoforms) and beta-amyloid (Abeta) 1-42 on GSK-3beta and its major upstream regulators, intracellular calcium and protein kinases C and B (PKC and PKB) in human SH-SY5Y neuroblastoma cells. ApoE3 induced a mild, transient, Ca2+-independent and early activation of GSK-3beta. ApoE4 effects were biphasic, with an early strong GSK-3beta activation that was partially dependent on extracellular Ca2+, followed by a GSK-3beta inactivation. ApoE4 also activated PKC-alpha and PKB possibly giving the subsequent GSK-3beta inhibition. Abeta(1-42) effects were also biphasic with a strong activation dependent partially on extracellular Ca2+ followed by an inactivation. Abeta(1-42) induced an early and potent activation of PKC-alpha and a late decrease of PKB activity. ApoE4 and Abeta(1-42) were more toxic than apoE3 as shown by MTT reduction assays and generation of activated caspase-3. ApoE4 and Abeta(1-42)-induced early activation of GSK-3beta could lead to apoptosis and tau hyperphosphorylation. A late inhibition of GSK-3beta through activation of upstream kinases likely compensates the effects of apoE4 and Abeta(1-42) on GSK-3beta, the unbalanced regulation of which may contribute to AD pathology.  相似文献   

7.
Glycogen synthase kinase 3beta (GSK3beta) is an essential protein kinase that regulates numerous functions within the cell. One critically important substrate of GSK3beta is the microtubule-associated protein tau. Phosphorylation of tau by GSK3beta decreases tau-microtubule interactions. In addition to phosphorylating tau, GSK3beta is a downstream regulator of the wnt signaling pathway, which maintains the levels of beta-catenin. Axin plays a central role in regulating beta-catenin levels by bringing together GSK3beta and beta-catenin and facilitating the phosphorylation of beta-catenin, targeting it for ubiquitination and degradation by the proteasome. Although axin clearly facilitates the phosphorylation of beta-catenin, its effects on the phosphorylation of other GSK3beta substrates are unclear. Therefore in this study the effects of axin on GSK3beta-mediated tau phosphorylation were examined. The results clearly demonstrate that axin is a negative regulator of tau phosphorylation by GSK3beta. This negative regulation of GSK3beta-mediated tau phosphorylation is due to the fact that axin efficiently binds GSK3beta but not tau and thus sequesters GSK3beta away from tau, as an axin mutant that does not bind GSK3beta did not inhibit tau phosphorylation by GSK3beta. This is the first demonstration that axin negatively affects the phosphorylation of a GSK3beta substrate, and provides a novel mechanism by which tau phosphorylation and function can be regulated within the cell.  相似文献   

8.
Studies suggest that activation of phosphoinositide 3-kinase-Akt may protect against neuronal cell death in Alzheimer's disease (AD). Here, however, we provide evidence of increased Akt activation, and hyperphosphorylation of critical Akt substrates in AD brain, which link to AD pathogenesis, suggesting that treatments aiming to activate the pathway in AD need to be considered carefully. A different distribution of Akt and phospho-Akt was detected in AD temporal cortex neurons compared with control neurons, with increased levels of active phosphorylated-Akt in particulate fractions, and significant decreases in Akt levels in AD cytosolic fractions, causing increased activation of Akt (phosphorylated-Akt/total Akt ratio) in AD. In concordance, significant increases in the levels of phosphorylation of total Akt substrates, including: GSK3beta(Ser9), tau(Ser214), mTOR(Ser2448), and decreased levels of the Akt target, p27(kip1), were found in AD temporal cortex compared with controls. A significant loss and altered distribution of the major negative regulator of Akt, PTEN (phosphatase and tensin homologue deleted on chromosome 10), was also detected in AD neurons. Loss of phosphorylated-Akt and PTEN-containing neurons were found in hippocampal CA1 at end stages of AD. Taken together, these results support a potential role for aberrant control of Akt and PTEN signalling in AD.  相似文献   

9.
How senile plaques and neurofibrillary tangles are linked represents a major gap in our understanding of the pathophysiology of Alzheimer's disease (AD). We have previously shown that the addition of fibrillar beta-amyloid (Abeta) to mature hippocampal neurons results in progressive neuritic degeneration accompanied by the enhanced phosphorylation of adult tau isoforms. In the present study, we sought to obtain more direct evidence of the signal transduction pathway(s) activated by fibrillar Abeta leading to tau phosphorylation and the generation of dystrophic neurites. Our results indicated that fibrillar Abeta induced the progressive and sustained activation of the mitogen-activated protein kinase (MAPK) in mature hippocampal neurons. On the other hand, the specific inhibition of the MAPK signal transduction pathway by means of PD98059, a MAPK kinase (MEK) specific inhibitor, prevented the phosphorylation of tau (at Ser199/Ser202) induced by fibrillar Abeta. In addition, the inhibition of MAPK activation partially prevented neurite degeneration. Taken collectively, our results suggest that the sustained activation of the MAPK signal transduction pathway induced by fibrillar Abeta may lead to the abnormal phosphorylation of tau and the neuritic degeneration observed in AD.  相似文献   

10.
Wnt ligands bind receptors of the Frizzled (Fz) family to control cell fate, proliferation, and polarity. Canonical Wnt/Fz signaling stabilizes beta-catenin by inactivating GSK3beta, leading to the translocation of beta-catenin to the nucleus and the activation of Wnt target genes. Noncanonical Wnt/Fz signaling activates RhoA and Rac, and the latter triggers the activation of c-Jun N-terminal kinase (JNK). Here, we show that exposure of B-lymphocytes to Wnt3a-conditioned media activates JNK and raises cytosolic beta-catenin levels. Both the Rac guanine nucleotide exchange factor Asef and the mitogen-activated protein kinase kinase kinase kinase germinal center kinase-related enzyme (GCKR) are required for Wnt-mediated JNK activation in B cells. In addition, we show that GCKR positively affects the beta-catenin pathway in B cells. Reduction of GCKR expression inhibits Wnt3a-induced phosphorylation of GSK3beta at serine 9 and decreases the accumulation of cytosolic beta-catenin. Furthermore, Wnt signaling induces an interaction between GCKR and GSK3beta. Our findings demonstrate that GCKR facilitates both canonical and noncanonical Wnt signaling in B lymphocytes.  相似文献   

11.
Zhang YJ  Xu YF  Liu YH  Yin J  Wang JZ 《FEBS letters》2005,579(27):6230-6236
Nitric oxide is associated with neurofibrillary tangle, which is composed mainly of hyperphosphorylated tau in the brain of Alzheimer's disease (AD). However, the role of nitric oxide in tau hyperphosphorylation is unclear. Here we show that nitric oxide produced by sodium nitroprusside (SNP), a recognized donor of nitric oxide, induces tau hyperphosphorylation at Ser396/404 and Ser262 in HEK293/tau441 cells with a simultaneous activation of glycogen synthase kinase-3beta (GSK-3beta). Pretreatment of the cells with 10 mM lithium chloride (LiCl), an inhibitor of GSK-3, 1 h before SNP administration inhibits GSK-3beta activation and prevents tau from hyperphosphorylation. This is the first direct evidence demonstrating that nitric oxide induces AD-like tau hyperphosphorylation in vitro, and GSK-3beta activation is partially responsible for the nitric oxide-induced tau hyperphosphorylation. It is suggested that nitric oxide may be an upstream element of tau abnormal hyperphosphorylation in AD.  相似文献   

12.
Axin negatively regulates the Wnt pathway during axis formation and plays a central role in cell growth control and tumorigenesis. We found that Axin also serves as a scaffold protein for mitogen-activated protein kinase activation and further determined the structural requirement for this activation. Overexpression of Axin in 293T cells leads to differential activation of mitogen-activated protein kinases, with robust induction for c-Jun NH(2)-terminal kinase (JNK)/stress-activated protein kinase, moderate induction for p38, and negligible induction for extracellular signal-regulated kinase. Axin forms a complex with MEKK1 through a novel domain that we term MEKK1-interacting domain. MKK4 and MKK7, which act downstream of MEKK1, are also involved in Axin-mediated JNK activation. Domains essential in Wnt signaling, i. e. binding sites for adenomatous polyposis coli, glycogen synthase kinase-3beta, and beta-catenin, are not required for JNK activation, suggesting distinct domain utilization between the Wnt pathway and JNK signal transduction. Dimerization/oligomerization of Axin through its C terminus is required for JNK activation, although MEKK1 is capable of binding C terminus-deleted monomeric Axin. Furthermore, Axin without the MEKK1-interacting domain has a dominant-negative effect on JNK activation by wild-type Axin. Our results suggest that Axin, in addition to its function in the Wnt pathway, may play a dual role in cells through its activation of JNK/stress-activated protein kinase signaling cascade.  相似文献   

13.
Microtubule-associated protein tau contains a consensus motif for protein kinase B/Akt (Akt), which plays an essential role in anti-apoptotic signaling. The motif encompasses the AT100 double phospho-epitope (Thr212/Ser214), a specific marker for Alzheimer's disease (AD) and other neurodegenerations, raising the possibility that it could be generated by Akt. We studied Akt-dependent phosphorylation of tau protein in vitro. We found that Akt phosphorylated both Thr212 and Ser214 in the longest and shortest tau isoforms as determined using phospho site-specific antibodies against tau. Akt did not phosphorylate other tau epitopes, including Tau-1, AT8, AT180, 12E8 and PHF-1. The Akt-phosphorylated tau retained its initial electrophoretic mobility. Immunoprecipitation studies with phospho-specific Thr212 and Ser214 antibodies revealed that only one of the two sites is phosphorylated per single tau molecule, resulting in tau immunonegative for AT100. Mixed kinase studies showed that prior Ser214 phosphorylation by Akt blocked protein kinase A but not GSK3beta activity. On the other hand, GSK3beta selectively blocked Ser214 phosphorylation, which was prevented by lithium. The results suggest that Akt may be involved in AD-specific phosphorylation of tau at the AT100 epitope in conjunction with other kinases. Our data suggest that phosphorylation of tau by Akt may play specific role(s) in Akt-mediated anti-apoptotic signaling, particularly relevant to AD and other neurodegenerations.  相似文献   

14.
Neuroglobin (Ngb) is a recently identified member of hemoglobin family, distributed mainly in central and peripheral nervous systems. Recent studies suggest that Ngb can protect neural cells from β-amyloid-induced toxicity in Alzheimer disease (AD). Hyperphosphorylation of tau is another characterized pathological hallmark in the AD brains; however, it is not reported whether Ngb also affects tau phosphorylation. In this study, we found that the level of Ngb was significantly reduced in Tg2576 mice (a recognized mouse model of AD) and TgMAPt mice, and the level of Ngb was negatively correlated with tau phosphorylation. Over-expression of Ngb attenuates tau hyperphosphorylation at multiple AD-related sites induced by up-regulation of glycogen synthase kinase-3β (GSK-3β), a crucial tau kinase. While Ngb activates Akt and thus inhibits GSK-3β, simultaneously inhibition of Akt abolishes the effects of Ngb on GSK-3β inhibition and tau hyperphosphorylation. Our data indicate that Ngb may attenuate tau hyperphosphorylation through activating Akt signaling pathway, implying a therapeutic target for AD.  相似文献   

15.
Stress-induced hyperphosphorylation of tau in the mouse brain   总被引:6,自引:0,他引:6  
Okawa Y  Ishiguro K  Fujita SC 《FEBS letters》2003,535(1-3):183-189
We previously showed that starvation causes reversible hyperphosphorylation of tau in the mouse brain. To explore possible involvement of stress in tau hyperphosphorylation quantitative analysis of phosphorylated tau in four brain regions of mice subjected to cold water stress (CWS) was made by immunoblot analyses using phosphorylation-dependent antibodies directed to eight sites on tau known to be hyperphosphorylated in the brain of Alzheimer's disease (AD) patients. Ser199, Ser202/Thr205, Thr231/Ser235 were hyperphosphorylated 20 and 40 min after CWS. The response was pronounced in the hippocampus and cerebral hemisphere, but weak in the cerebellum in parallel with the regional vulnerability in AD. Among the regulatory phosphorylation of protein kinases studied, a transient phosphorylation of tau protein kinase I/glycogen synthase kinase 3beta at Ser9 was most conspicuous.  相似文献   

16.
The presence of tangles composed of phosphorylated tau is one of the neuropathological hallmarks of Alzheimer''s disease (AD). Tau, a microtubule (MT)-associated protein, accumulates in AD potentially as a result of posttranslational modifications, such as hyperphosphorylation and conformational changes. However, it has not been fully understood how tau accumulation and phosphorylation are deregulated. In the present study, we identified a novel role of death-associated protein kinase 1 (DAPK1) in the regulation of the tau protein. We found that hippocampal DAPK1 expression is markedly increased in the brains of AD patients compared with age-matched normal subjects. DAPK1 overexpression increased tau protein stability and phosphorylation at multiple AD-related sites. In contrast, inhibition of DAPK1 by overexpression of a DAPK1 kinase-deficient mutant or by genetic knockout significantly decreased tau protein stability and abolished its phosphorylation in cell cultures and in mice. Mechanistically, DAPK1-enhanced tau protein stability was mediated by Ser71 phosphorylation of Pin1, a prolyl isomerase known to regulate tau protein stability, phosphorylation, and tau-related pathologies. In addition, inhibition of DAPK1 kinase activity significantly increased the assembly of MTs and accelerated nerve growth factor-mediated neurite outgrowth. Given that DAPK1 has been genetically linked to late onset AD, these results suggest that DAPK1 is a novel regulator of tau protein abundance, and that DAPK1 upregulation might contribute to tau-related pathologies in AD. Therefore, we offer that DAPK1 might be a novel therapeutic target for treating human AD and other tau-related pathologies.  相似文献   

17.
The role of the phosphatidylinositol 3-kinase (PI3K) pathway in the hyperphosphorylation of tau was investigated in SY5Y human neuroblastoma cells. Wortmannin, an inhibitor of PI3K, induced transient (after 1 h) activation of glycogen synthase kinase-3 (GSK-3), hyperphosphorylation of tau and dose-dependent cytotoxicity. However, continuous inactivation of protein kinase (PK) B was observed from 1 to 24 h, suggesting the involvement of protein kinase(s) other than PKB in the phosphorylation and inactivation of GSK-3 after 3 h. In cells treated with wortmannin, PKC delta fragments were observed, and the PKC activity increased after 3 h, whereas treatment of cells with z-DEVD-fmk, an inhibitor of caspase 3, also inhibited fragmentation of PKC delta and induced continuous activation of GSK-3. It is suggested that fragmentation of PKC delta during the process of apoptosis results in the phosphorylation and inactivation of GSK-3 and consequently inhibition of the phosphorylation of tau.  相似文献   

18.
Site-specific phosphorylation of tau negatively regulates its ability to bind and stabilize microtubule structure. Although tau is a substrate of glycogen synthase kinase 3beta (GSK3beta), the exact sites on tau that are phosphorylated by this kinase in situ have not yet been established, and the effect of these phosphorylation events on tau-microtubule interactions have not been fully elucidated. GSK3beta phosphorylates both primed and unprimed sites on tau, but only primed phosphorylation events significantly decrease the ability of tau to bind microtubules. The focus of the present study is on determining the importance of the GSK3beta-mediated phosphorylation of a specific primed site, Thr231, in regulating tau's function. Pre-phosphorylation of Ser235 primes tau for phosphorylation by GSK3beta at Thr231. Phosphorylation by GSK3beta of wild-type tau or tau with Ser235 mutated to Ala decreases tau-microtubule interactions. However, when Thr231 alone or Thr231 and Ser235 in tau were mutated to Ala, phosphorylation by GSK3beta did not decrease the association of tau with the cytoskeleton. Further, T231A tau was still able to efficiently bind microtubules after phosphorylation by GSK3beta. Expression of each tau construct alone increased tubulin acetylation, a marker of microtubule stability. However, when cells were cotransfected with wild-type tau and GSK3beta, the level of tubulin acetylation was decreased to vector-transfected levels. In contrast, coexpression of GSK3beta with mutated tau (T231A/S235A) did not significantly decrease the levels of acetylated tubulin. These results strongly indicate that phosphorylation of Thr231 in tau by GSK3beta plays a critical role in regulating tau's ability to bind and stabilize microtubules.  相似文献   

19.
In Alzheimer disease (AD), the microtubule-associated protein tau is found hyperphosphorylated in paired helical filaments. Among many phosphorylated sites in tau, Ser-262 is the major site for abnormal phosphorylation of tau in AD brain. The kinase known to phosphorylate this particular site is MARK2, whose activation mechanism is yet to be studied. Our first finding that treatment of cells with LiCl, a selective inhibitor of another major tau kinase, glycogen synthase kinase-3beta (GSK-3beta), inhibits phosphorylation of Ser-262 of tau led us to investigate the possible involvement of GSK-3beta in MARK2 activation. In vitro kinase reaction revealed that recombinant GSK-3beta indeed phosphorylates MARK2, whereas it failed to phosphorylate Ser-262 of tau. Our further findings led us to conclude that GSK-3beta phosphorylates MARK2 on Ser-212, one of the two reported phosphorylation sites (Thr-208 and Ser-212) found in the activation loop of MARK2. Down-regulation of either GSK-3beta or MARK2 by small interfering RNAs suppressed the level of phosphorylation on Ser-262. These results, respectively, indicated that GSK-3beta is responsible for phosphorylating Ser-262 of tau through phosphorylation and activation of MARK2 and that the phosphorylation of tau at this particular site is predominantly mediated by a GSK-3beta-MARK2 pathway. These findings are of interest in the context of the pathogenesis of AD.  相似文献   

20.
The two estrogen receptors (ERs), ERα and ERβ, mediate the diverse biological functions of estradiol. Opposite effects of ERα and ERβ have been found in estrogen‐induced cancer cell proliferation and differentiation as well as in memory‐related tasks. However, whether these opposite effects are implicated in the pathogenesis of Alzheimer's disease (AD) remains unclear. Here, we find that ERα and ERβ play contrasting roles in regulating tau phosphorylation, which is a pathological hallmark of AD. ERα increases the expression of miR‐218 to suppress the protein levels of its specific target, protein tyrosine phosphatase α (PTPα). The downregulation of PTPα results in the abnormal tyrosine hyperphosphorylation of glycogen synthase kinase‐3β (resulting in activation) and protein phosphatase 2A (resulting in inactivation), the major tau kinase and phosphatase. Suppressing the increased expression of miR‐218 inhibits the ERα‐induced tau hyperphosphorylation as well as the PTPα decline. In contrast, ERβ inhibits tau phosphorylation by limiting miR‐218 levels and restoring the miR‐218 levels antagonized the attenuation of tau phosphorylation by ERβ. These data reveal for the first time opposing roles for ERα and ERβ in AD pathogenesis and suggest potential therapeutic targets for AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号