首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Biochemical properties of DNA preparations obtained from light-anaerobicallygrowth R. spheroides cells and from dark-aerobically grown cellswere examined comparatively using methylated albumin kieselguhrcolumn chromatography. The DNA preparation from light-growncells, which formed chromatophores, exhibited considerable heterogeneityin its size or conformation. 1 Present address: The Third Department of Medicine, TohokuUniversity School of Medicine, Sendai, Japan. (Received August 2, 1974; )  相似文献   

5.
6.
The instability of T4 messenger RNA   总被引:1,自引:0,他引:1  
  相似文献   

7.
8.
Translational regulation of T4 messenger RNA metabolism   总被引:2,自引:0,他引:2  
  相似文献   

9.
Ribosome-bound messenger RNA in T4-infected bacteria   总被引:2,自引:0,他引:2  
  相似文献   

10.
11.
12.
In an Escherichia coli cell-free protein synthesis assay, mRNA isolated from cells late after infection by phage T4 out-competes bacteriophage f2 RNA. Addition of a saturating or subsaturating amount of T4 mRNA inhibits translation of f2 RNA, while even an excess of f2 RNA has no effect on translation of T4 mRNA. Peptide mapping of reaction products labeled with formyl-[35S]-methionyl-tRNA was used to quantitate f2 and T4 protein products synthesized in the same reaction. We suggest that messenger RNA competition might be one mechanism by which T4 superinfection of cells infected with phage f2 blocks translation of f2 RNA and possibly host mRNA.  相似文献   

13.
We have developed a simple and rapid method for the purification of poly(A) tail-messenger RNA (mRNA) from total RNA by using a solid phase extraction column filled with a small amount of octadecylsilyl silica. The method is based on a hydrophobic interaction between the poly(A) tail and the octadecyl unit on the silica particle in a water/dimethyl sulfoxide mixed solution. By using this column, mRNA can be separated from 100 μg of total RNA in less than 10 min with high yields (>80%).  相似文献   

14.
A variety of methylated oligonucleotides were derived from mouse L cell messenger RNA and heterogeneous nuclear RNA by digestion with specific ribonucleases, and the cap-containing oligonucleotides separated from those containing internal m6A by chromatography on diborylaminoethyl-cellulose. Cap-containing sequences of the type m7GpppXmpG, m7GpppXmpY(m)pG, m7GpppXmpY(m) pNpG and m7GpppXmpY(m)p(Np)> 1G have distinctive non-random compositions of the 2′-O-methylated constituent Xm; yet sequences of a particular type and composition occur with a remarkably similar frequency in mRNA and hnRNA2. For example, approximately 20% of the cap sequences in both hnRNA and mRNA are m7Gppp(m6)AmG, whereas less than 1% are m7GpppUmpG. The high degree of similarity in cap sequences is consistent with the previously postulated precursor-product relationship between hnRNA caps and mRNA caps.The composition of the Y position in capped hnRNA molecules was determined to be (29% G, 20% A, 51% Py), which differs considerably from the composition of Ym in the cap II forms of mRNA (8% Gm, 11% Am, 81% Py). Given the precursor-product relationship between hnRNA caps and mRNA caps, this result provides strong evidence that only a restricted subclass of mRNA molecules receive the secondary methylation at position Y.In both hnRNA and mRNA the internal m6A occurs in well-defined sequences of the type: -N1-(GA)-m6A-C-N2-, the 5′ nearest-neighbor of m6A being G in about three-quarters of the molecules and A in about one-quarter of the molecules. The nucleotide N1 is a purine about 90% of the time and the nucleotide N2 is rarely a G. These same sequences are present in large (> 50 S), as well as small (14 S to 50 S) hnRNA. These results raise the possibility that the internal m6A, like caps, may be conserved during the processing of large hnRNA into mRNA. Two models based on this idea are discussed.  相似文献   

15.
16.
17.
18.
Physical mapping of T7 messenger RNA   总被引:16,自引:0,他引:16  
  相似文献   

19.
Size heterogeneity of T2 messenger RNA   总被引:7,自引:0,他引:7  
  相似文献   

20.
Autogenous regulatory site on the bacteriophage T4 gene 32 messenger RNA   总被引:24,自引:0,他引:24  
We have identified the binding site on the bacteriophage T4 gene 32 mRNA responsible for autogenous translational regulation. We demonstrate that this site is largely unstructured and overlaps the initiation codon of gene 32 as previously predicted. Co-operative binding of gene 32 protein to this site specifically blocks the formation of 30 S-tRNA(fMet)-gene 32 mRNA ternary complexes and initiation of translation. The translational operator is bound co-operatively by gene 32 protein and this binding is facilitated by a nucleation site far upstream from the initiation codon. A similar unstructured mRNA lacking this nucleation site is also bound co-operatively, but only at concentrations of gene 32 protein higher than those needed to repress binding of ribosomes to the gene 32 mRNA. Some sequence-specific interactions may also influence this binding. Comparison of the bacteriophage T2, T4 and T6 gene 32 operator sequences leads us to propose that the nucleation site is a pseudoknot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号