首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Invasions of nonindigenous organisms have long been linked to trade, but the contribution of individual trade pathways remains poorly understood, because species are not observed immediately upon arrival and the number of species arriving annually is unknown. Species interception records may count both new arrivals and species long introduced. Furthermore, the stock of invasive insect species already present is unknown. In this study, a state-space model is used to infer the stock of detected as well as undetected invasive insect species established in the United States. A system of equations is estimated jointly to distinguish the patterns of introduction, identification, and eradication. Introductions of invasive species are modeled as dependent on the volume of trade and arrival of people. Identifications depend on the public efforts at invasive species research, as well as on the established stock of invasive species that remain undetected. Eradications of both detected and undetected invasive species depend on containment and quarantine efforts, as well as on the stock of all established invasive species. These patterns are estimated by fitting the predicted number of invasive species detections to the observed record in the North American Non-Indigenous Arthropod Database. The results indicate that agricultural imports are the most important pathway of introduction, followed by immigration of people. Expenditures by the U.S. Department of Agriculture and the Agricultural Research Service are found to explain the species identification record well. Between three and 38 invasive insect species are estimated to be established in the United States undetected.  相似文献   

2.
Alien insects are increasingly being dispersed around the world through international trade, causing a multitude of negative environmental impacts and billions of dollars in economic losses annually. Border controls form the last line of defense against invasions, whereby inspectors aim to intercept and stop consignments that are contaminated with harmful alien insects. In Europe, member states depend on one another to prevent insect introductions by operating a first point of entry rule – controlling goods only when they initially enter the continent. However, ensuring consistency between border control points is difficult because there exists no optimal inspection strategy. For the first time, we developed a method to quantify the volume of agricultural trade that should be inspected for quarantine insects at border control points in Europe, based on global agricultural trade of over 100 million distinct origin-commodity-species-destination pathways. This metric was then used to evaluate the performance of existing border controls, as measured by border interception results in Europe between 2003 and 2007. Alarmingly, we found significant gaps between the trade pathways that should be inspected and actual number of interceptions. Moreover, many of the most likely introduction pathways yielded none or very few insect interceptions, because regular interceptions are only made on only a narrow range of pathways. European countries with gaps in border controls have been invaded by higher numbers of quarantine alien insect species, indicating the importance of proper inspections to prevent insect invasions. Equipped with an optimal inspection strategy based on the underlying risks of trade, authorities globally will be able to implement more effective and consistent border controls.  相似文献   

3.
Despite the substantial impacts of nonindigenous plant pests and weeds, relatively little is known about the pathways by which these organisms arrive in the U.S. One source of such information is the Port Information Network (PIN) database, maintained by the U.S. Department of Agriculture, Animal and Plant Health Inspection Service (APHIS) since 1984. The PIN database is comprised of records of pests intercepted by APHIS personnel during inspections of travelers’ baggage, cargo, conveyances and related items arriving at U.S. ports of entry and border crossings. Each record typically includes the taxonomic identify of the pest, its country of origin, and information related to the commodity and interception site. We summarized more than 725,000 pest interceptions recorded in PIN from 1984 to 2000 to examine origins, interception sites and modes of transport for nonindigenous insects, mites, mollusks, nematodes, plant pathogens and weeds. Roughly 62% of intercepted pests were associated with baggage, 30% were associated with cargo and 7% were associated with plant propagative material. Pest interceptions occurred most commonly at airports (73%), U.S.-Mexico land border crossings (13%) and marine ports (9%). Insects dominated the database, comprising 73 to 84% of the records annually, with the orders Homoptera, Lepidoptera and Diptera collectively accounting for over 75% of the insect records. Plant pathogens, weeds and mollusks accounted for 13, 7 and 1.5% of all pest records, respectively, while mites and nematodes comprised less than 1% of the records. Pests were intercepted from at least 259 different locations. Common origins included Mexico, Central and South American countries, the Caribbean and Asia. Within specific commodity pathways, richness of the pest taxa generally increased linearly with the number of interceptions. Application of PIN data for statistically robust predictions is limited by nonrandom sampling protocols, but the data provide a valuable historical record of the array of nonindigenous organisms transported to the U.S. through international trade and travel.  相似文献   

4.
Increasing rates of global trade and travel have the invariable consequence of an increase in the likelihood of nonindigenous species arrival, and some new arrivals are successful in establishing themselves. Quantifying the pattern of establishment of nonindigenous species across both spatial and temporal scales is paramount in early detection efforts, yet very difficult to accomplish. Previous work in epidemiology has proposed methods for assessing the space–time properties of emerging infectious diseases by quantifying the degree of space–time clustering between individual cases. I tested the applicability of one such method commonly used in epidemiology, the Knox test for space–time interaction, to analyze rare abundance data from an isolated, newly-establishing gypsy moth, Lymantria dispar, population in Minnesota, USA, and incorporated a bootstrap approach to quantify the space–time pattern in a random process that can be used to compare with results from empirical data. The use of the Knox test in assessing the establishment phase of biological invasions could potentially serve as an early warning system against new invaders, particularly for those with a known history of a repeated number of arrivals.  相似文献   

5.
The number of alien species transported as stowaways is steadily increasing and new approaches are urgently needed to tackle this emerging invasion pathway. We introduce a general framework for identifying high‐risk transport pathways and receiving sites for alien species that are unintentionally transported via goods and services. This approach combines the probability of species arrival at transport hubs with the likelihood that the environment in the new region can sustain populations of that species. We illustrate our approach using a case study of the Asian black‐spined toad Duttaphrynus melanostictus in Australia, a species that is of significant biosecurity concern in Australasia, Indonesia, and Madagascar. A correlative model fitted to occurrence data from the native geographic range of D. melanostictus predicted high environmental suitability at locations where the species has established alien populations globally. Applying the model to Australia revealed that transport hubs with the highest numbers of border interceptions and on‐shore detections of D. melanostictus were environmentally similar to locations within the species’ native range. Numbers of D. melanostictus interceptions and detections in Australia increased over time, but were unrelated to indices of air and maritime trade volume. Instead, numbers of interceptions and detections were determined by the country of origin of airplanes (Thailand) and ships (Indonesia). Thus, the common assumption that transport pressure is correlated with invasion risk does not hold in all cases. Our work builds on previous efforts to integrate transport pressure data and species distribution models, by jointly modelling the number of intercepted and detected stowaways, while incorporating imperfect detection and the environmental suitability of receiving hubs. The approach presented here can be applied to any system for which historical biosecurity data are available, and provides an efficient means to allocate quarantine and surveillance efforts to reduce the probability of alien species establishment.  相似文献   

6.
River restoration projects are increasingly common, but assessments of ecological responses and overall success of the vast majority of efforts are lacking. Information on potential positive ecological effects of restoration efforts can be used to justify further projects and refine methods. We examined responses of multiple trophic levels, aquatic insects and riparian birds, to a series of rock weirs installed in an Illinois river to stabilize the channel. We quantified adult insect emergence and performed weekly point counts of birds in spring at four weir and four non‐weir (control) sites. Emerging insect abundance was higher at control sites, but species richness and diversity were higher at weir sites. Total insect emergence production did not differ between site types, but emergence production of larger‐bodied taxa was higher at weir sites. Ordinations and analysis of similarity indicated differences in insect and bird assemblages between site types. Birds showed a positive numerical response to large‐bodied emerging insects, and total bird abundance was higher at weir sites. Clutch size and feeding rates of a focal bird species, Prothonotaria citrea (Prothonotary Warbler), did not differ between sites, but the number of hatchlings and fledglings was higher at control sites. Molothrus ater (cowbird) parasitism was higher at weir sites, likely because of increased edge habitat associated with weir construction activities. Results show positive ecological impacts of in‐stream restoration and provide justification for further efforts. However, forest disturbance associated with construction could offset some benefits to some species, and thus refinements to procedures may be necessary.  相似文献   

7.
Synopsis Population and exploitation estimates were made from angler recaptures of Chautauqua Lake muskellunge,Esox masquinongy Mitchill. Fish were tagged during Conservation Department studies in 1941–1946, 1961–1965 and 1976–1978. Population estimates of adult fish ranged from one to seven fish per hectare and angler exploitation rates of tagged fish fluctuated from 3.8% to 14.1%. Relative catch indicators suggest a major decline in the lake's muskellunge population during the last decade. Overexploitation, habitat alteration and interspecific competition with recently introduced fish species were cited as probable causes of the decline.  相似文献   

8.
A survey on trade in live wild animals was conducted along the Guangxi border between China and Vietnam during 1993–1996. The results showed that there were 55 species, which were underestimated, involved in the trade, including 15 species of mammals, 10 species of birds, 29 species of reptiles and 1 species of amphibian. Many of them were species listed on Appendices I and II of CITES and on China's protection list (known as ASSP). During the investigation, about 2.29–29.325 tons of wildlife per day were imported to China form Vietnam. Some species with a large volume of trade may be over-exploited. Sixty-three percent of middle–high quality restaurants in three border cities and Nanning in Guangxi sold wildlife foods. Twenty kinds of wild animals were eaten at the restaurants. Although numbers of species involved in the trade remained fairly stable over the survey period, numbers of species listed in Appendices I and II of CITES and the state protection list had declined. The scale of wildlife markets in border cities of Guangxi and consumption levels of wildlife in the restaurants had been reduced because border control measures were enforced on the trade by local governments of China. However, the prices of the 5 main species in wildlife markets were still going up. This suggested that demand for wildlife in Guangxi was strong and will facilitate the illegal trade. The key steps to control the illegal wildlife trade between the two countries should focus on (i)suppression of illegal wildlife markets and prohibition of the sale of wildlife food in restaurants consisting of species listed in the ASSP inventory; (ii) international cooperation in the control of the trade; (iii) tighter enforcement of CITES for both countries; (iv) control of invasion of exotic species and epidemics of disease in the trade in China; and (v) education for wildlife conservation in China.  相似文献   

9.
Annual inputs of symbiotic N2-fixation associated with 3 species of alpine Trifolium were estimated in four alpine communities differing in resource supplies. We hypothesized that fixation rates would vary according to the degree of N, P, and water limitation of production, with the higher rates of fixation in N limited communities (dry meadow, moist meadow) and lower rates in P and water limited communities (wet meadow, fellfield). To estimate N2-fixation rates, natural abundance of N isotopes (15N) were measured in field collected Trifolium and reference plants and in Trifolium plants grown in N-free medium in a growth chamber. All three Trifolium species relied on a large proportion of atmospherically-fixed N2 to meet their N requirements, ranging from 70 to 100%. There were no apparent differences in the proportion of plant N derived from fixation among the communities, but differences in the contribution of the Trifolium species to community cover resulted in a wide range of annual N inputs from fixation, from 127 mg m–2 year–1 in wet meadows to 810 mg m–2 year–1 in fellfields. Annual spatially integrated input of symbiotic N2-fixation to Niwot Ridge, Colorado was estimated at 490 mg m–2 year–1 (5 kg ha–1 year–1), which is relatively high in the context of estimates of net N mineralization and N deposition.  相似文献   

10.
Summary The mating system of Hydrophyllum appendiculatum (Hydrophyllaceae), a protandrous, self-compatible, monocarpic plant was examined using progeny arrays assayed at three polymorphic allozyme loci. We were particularly interested in the effect of ecological factors on spatial and temporal variation in outcrossing rates. Multilocus estimates of outcrossing rates in three populations ranged from 0.62–0.81 indicating that the majority of seeds are produced via outcrossing. The population estimates did not differ significantly from each other indicating that there is little or no spatial variation in the mating system of this species. The estimates were, however, significantly less than unity, which demonstrates that although mainly outcrossing, a significant fraction of seeds are produced by selfing. Estimates suggested that biparental inbreeding occurred, although it was statistically significant in only one population. Individuals of H. appendiculatum may remain in anthesis 3–4 weeks and produce up to 30 inflorescences. As a result, the possibility exists for the mating system to vary through the flowering season. Although the mean outcrossing rate was highest in the middle of the flowering phenology than at the beginning or end, there was no evidence for statistically significant temporal heterogeneity. We were also interested in determining if the size of the floral display (number of inflorescences produced by a plant) influenced the outcrossing rate. The results obtained by two different statistical analyses were contradictory; there was a significant positive correlation between size of floral display and outcrossing rate, but the outcrossing rates of large plants (\s> 8 inflorescences) did not differ significantly from small plants (> 8 inflorescences).  相似文献   

11.
Ecological Restoration and NonIndigenous Plant Species: A Review   总被引:5,自引:0,他引:5  
In ecological restoration, nonindigenous species can pose a major problem because they are often aggressive and can overwhelm native species, thus altering ecosystem structure. This article identifies the circumstances in which prospects for use of restoration technology in controlling invaders are favorable or unfavorable, the factors that make certain species good colonizers, and the characteristics that make ecosystems susceptible to invasion. It discusses prospects for using restoration technology in controlling nonindigenous species by influencing hydroperiod, photo-period, thermoperiod, edaphic conditions, and availability of biological control agents so as to produce ecological conditions that are inhospitable to invaders. The limitations of restoration are discussed, as well as specific ecological situations in which it is likely to be the method of choice for control of nonindigenous species. Use of fire, flooding, manual removal, shading, substrate removal, and herbicide application as control techniques in conjunction with restoration efforts are considered. Specific examples, including the techniques employed, indicate the potential for controlling nonindigenous species in the process of ecosystem restoration.  相似文献   

12.
Mesocosms (4.5 m3) situated in a closed bay area were used to investigate the effect of protozoan predation on nonindigenous bacteria. Pseudomonas fluorescens strain Agl was released into mesocosms as a single inoculum of 1 × 105 cells ml–1 (final concentration) or as four inocula (same concentration each) at intervals of 3 days. Mesocosms that had received growth media corresponding to the inoculum served as controls. Numbers of P. fluorescens Ag1 decreased rapidly whether released as single or multiple inocula. Direct estimation of protozoan predation using fluorescently labeled P. fluorescens from log phase and starved cultures, respectively, revealed that natural populations of heterotrophic nanoflagellates consumed substantial amounts of the nonindigenous bacterial strain. The volume of fluorescently labeled cells prepared from starved cells was 68% of log phase cell volume, but the individual clearance of the small cells was five to seven times higher than that of the log phase bacteria. The natural populations of nanoflagellates consumed 34–62% of P. fluorescens Ag1 daily if starved bacteria were offered as food, and 3–13% if the cells were in the logarithmic growth phase. This suggests that the effect of protozoan predation on nonindigenous bacterial strains is substantial because cultured bacteria are likely to starve in natural environments. The addition of P. fluorescens Ag1 and the growth medium enhanced the abundance of natural bacteria, chlorophyll a, heterotrophic nanoflagellates, and ciliates, but it did not improve the growth conditions for the released strain. The effects on the indigenous populations were more pronounced after addition of fresh medium than following inoculation with cells, which possibly was due to the lower nutrient content of spent medium. However, these results, based on direct estimation of protozoan predation on log phase and starved nonindigenous bacteria, point to the conclusion that mortality induced by bacterivorous predators is the key factor determining removal of nonindigenous bacteria introduced in natural aquatic systems. Correspondence to: K. Christoffersen.  相似文献   

13.
Average size frequency distributions of Tridacna squamosa, T. gigas, Hippopus hippopus and H. porcellanus harvested from the Sulu Archipelago and Southern Palawan areas from 1978–1985 were derived from export records and a warehouse inventory of giant clam shells. Average species mortality rates (Z) were estimated and were used to approximate average fishing mortality rates (F) over the period 1978–1985. Crude estimates of exploitation rates (F/Z) indicate that populations of these species are already overexploited. These findings have serious implications in view of the fact that the Sulu Archipelago and Southern Palawan are thought to be the last strongholds of giant clams in Philippine waters.  相似文献   

14.
A mass balance procedure was used to determine rates of nitrate depletion in the riparian zone and stream channel of a small New Zealand headwater stream. In all 12 surveys the majority of nitrate loss (56–100%) occurred in riparian organic soils, despite these soils occupying only 12% of the stream's border. This disproportionate role of the organic soils in depleting nitrate was due to two factors. Firstly, they were located at the base of hollows and consequently a disproportionately high percentage (37–81%) of the groundwater flowed through them in its passage to the stream. Secondly, they were anoxic and high in both denitrifying enzyme concentration and available carbon. Direct estimates ofin situ denitrification rate for organic soils near the upslope edge (338 mg N m–2 h–1) were much higher than average values estimated for the organic soils as a whole (0.3–2.1 mg N m–2 h–1) and suggested that areas of these soils were limited in their denitrification activity by the supply of nitrate. The capacity of these soils to regulate nitrate flux was therefore under-utilized. The majority of stream channel nitrate depletion was apparently due to plant uptake, with estimates of thein situ denitrification rate of stream sediments being less than 15% of the stream channel nitrate depletion rate estimated by mass balance.This study has shown that catchment hydrology can interact in a variety of ways with the biological processes responsible for nitrate depletion in riparian and stream ecosystems thereby having a strong influence on nitrate flux. This reinforces the view that those seeking to understand the functioning of these ecosystems need to consider hydrological phenomena.  相似文献   

15.
International trade is widely acknowledged as a conduit for movement of invasive species, but few studies have directly quantified the invasion risk confronting individual locations of interest. This study presents estimates of the likelihood of successful entry for alien forest insect species at more than 3,000 urban areas in the contiguous United States (US). To develop these location-specific estimates, we first utilized historical merchandise imports and insect incursions data to estimate an annual US rate of alien insect species establishment. Next, we used historical pest interception data to calculate the proportion of all insects arriving at US ports of entry that are associated with forest hosts. We then combined these results to estimate a nationwide establishment rate specifically for alien forest insects. Finally, we employed international and domestic commodity flow networks to allocate this nationwide rate to individual US urban areas. For 2010, we estimated the nationwide rate as 1.89 new alien forest insect species per year. While the establishment rates observed at most urban areas were low (<0.005 new species/year), for a few select areas the rates predict new alien forest insect species establishments every 5–15 years. This national-scale assessment provides a realistic depiction of human-assisted establishment potential in the US as well as functional inputs for quantitative models of invasion. Overall, these analyses support broad-scale biosecurity and management strategies.  相似文献   

16.
L. Schreiber  M. Riederer 《Oecologia》1996,107(4):426-432
Water permeabilities of astomatous, isolated cuticular membranes (CM) of 24 different plants species were measured. Permeances varied from 1.7×10–11 m·s–1 (Vanilla planifolia leaf) up to 2.1×10–9 m·s–1 (Malus cf. domestica fruit) among different plant species, thus covering a range of over 2 orders of magnitude. Ranking of species according to permeances resulted in four distinct groups. The first group, of species with the lowest cuticular transpiration rates, included evergreen species growing in warm dry tropical climates (e.g. Vanilla planifolia and Monstera deliciosa leaves). The second class, with slightly higher water permeabilities, included evergreen species with typical scleromorphic leaf properties, adapted to a typical mediterranean type of climate with a dry period during the year (e.g. Citrus limon and Olea europaea leaves). The third group of species, where the highest leaf cuticular transpiration rates were observed, included deciduous species normally growing in a tempeate climate (e.g. Juglans regia and Forsythia suspensa leaves). Fruit cuticular membranes (CM) made up the fourth group (e.g. Capsicum annuum and Malus cf. domestica fruits), with even higher permeances than leaves of species from group 3. Thus, it appears that the plant species investigated show ecophysiological adaptations to the climatic demands of their natural habitats in cuticular water permeability.  相似文献   

17.
The suspension feeding of Bithynia tentaculata was tested in laboratory experiments. The animals were fed in 1-1 aerated glass beakers, and filtration rates were calculated from changes in cell concentrations during the 6-h experiment. Temperature influenced the filtering rate, with minimum values of 5ml · ind–1 · h–1 at 5° C and maxima of 17.2 ml · ind–1 · h–1 at 18° C. Three food species of different size, motility and cell surface characteristics (Chlamydomonas reinhardii, Chlorella vulgaris and Chlorogonium elongatum) did not affect filtration rates. Suspension feeding increased with increasing food concentrations up to 12 nl · ml–1, above which feeding rate was kept constant by lowering the filtering rates. Even the smallest animals tested (<4 mm body length) were found to be feeding on suspended food at a rate of 2.7 ml · ind–1 · h–1, and increasing rates up to 8.4 ml were found in the 6–7 mm size class. All size classes of Bithynia showed a circannual fluctuation of their filtration rates. The ecological consequences of Bithynia's ability to switch between two feeding modes, grazing and suspension feeding, are discussed.  相似文献   

18.
Synopsis Buoyancy was measured on eight species of estuarine fishes that were caught in 1 m depth or less. Mean buoyancies of the physoclists Fundulus heteroclitus, F. majalis, Cyprinodon variegatus and Leiostomus xanthurus were similar and ranged from –6.5 to –18.0 kiloPascals below atmospheric pressure at sea level. Menidia menidia and Pomatomus saltatrix measured –36.6 and –46.1 kPa, respectively. Two physostomes, Brevoortia tyrannus and Anchoa mitchilli, measured + 2.9 and –23.5 kPa, respectively, but the latter probably releases air when handled.The four most buoyant physoclist species live near the bottom in areas that receive daily tide induced currents. Negative buoyancy probably functions in them as in stream dwelling minnows and salmonids, which respond to currents by decreasing their buoyancy. The pronounced negative buoyancy of M. menidia may be a response to a preference for habitat where the currents are stronger, P. saltatrix, which can secrete gas into the swim bladder at the fastest rate known for any fish, combines high secretion (and resorption) rates with marked negative buoyancy. This enables it to quickly change depths over a wide vertical range, without overexpanding the swim bladder to cause positive buoyancy.  相似文献   

19.
Management of nonindigenous species includes prevention, early detection and rapid response and control. Early detection and rapid response depend on prioritizing and monitoring sites at risk for arrival or secondary spread of nonindigenous species. Such monitoring efforts require sufficient biosecurity budgets to be effective and meet management or policy directives for reduced risk of introduction. Such consideration of risk reduction is rarely considered, however. Here, we review the concepts of acceptable level of risk (ALOR) and associated costs with respect to nonindigenous species and present a framework for aligning risk reduction priorities with available biosecurity resources. We conclude that available biosecurity resources may be insufficient to attain stated and desired risk reduction. This outcome highlights the need to consider policy and management directives when beginning a biosecurity program to determine the feasibility of risk reduction goals, given available resources.  相似文献   

20.
The invasion of an established community by new species can trigger changes in community structure. Invasions often occur in phytophagous insect communities, the dynamics of which are driven by the structure of the host assemblage and the presence of competitors. In this study, we investigated how a community established through successive invasions changed over time, taking the last invasion as the reference. The community included four generalist and four specialist species of Tephritidae fruit flies. We analyzed a long‐term database recording observed numbers of flies per fruit for each species on 36 host plants, over 18 years, from 1991 to 2009. Community structure before the last invasion by Bactrocera zonata in 2000 was described in relation to host plant phylogeny and resource availability. Changes in the host range of each species after the arrival of Bzonata were then documented by calculating diversity indices. The flies in the community occupied three types of niches defined on the basis of plant phylogeny (generalists, Solanaceae specialist, and Cucurbitaceae specialists). After the arrival of Bzonata, no change in the host range of specialist species was observed. However, the host ranges of two generalist species, Ceratitis quilicii and Ceratitis capitata, tended to shrink, as shown by the decreases in species richness and host plant α‐diversity. Our study shows increased host specialization by generalist phytophagous insects in the field following the arrival of an invasive species sharing part of their resources. These findings could be used to improve predictions of new interactions between invaders and recipient communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号