首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The movement patterns of species may affect their susceptibility to modified habitat structure. It is likely that sedentary species perceive habitat features at smaller spatial extents compared to mobile species, but there is a lack of experimental research on the effects of fine-scale habitat characteristics on organisms of differing mobility. Spiders display two basic mobility levels based on foraging behavior: web-building species are restricted to specific sites whereas active hunters are mobile. We collected spiders inhabiting sagebrush shrubs with a structurally enhanced, unmodified, or removed understory, to examine (1) whether habitat structure in the immediate vicinity of shrubs affected cursorial and web spiders differently in terms of abundance and species richness and (2) which genera most contributed to changes in community composition. Shrubs without understory had reduced cursorial spider densities and species richness compared to shrubs with added and unmodified understories, whereas web spiders lacked significant responses to treatments. Community-level differences based on relative abundance of genera were detected in cursorial spiders but not in web spiders, despite a strong contribution of the web-building genus Theridion to community dissimilarities. Our results support the hypothesis that sedentary organisms may be sensitive to contiguous habitat at finer spatial scales than cursorial organisms, and highlight the risks associated with only collecting local habitat information when studying mobile species.  相似文献   

2.
In fragmented landscapes, mobility is an important trait for population persistence but the predictions on the relationship between habitat fragmentation and extinction risk are contradictory. Here, we test the effects of the two main aspects of fragmentation, patch area and isolation, on the species richness of groups of butterflies associated with semi-natural grasslands, differing in mobility. Total species richness increased with increasing patch area and with decreasing isolation, but the strength of these effects differed between mobility classes. The effect of patch area was strongest for the sedentary species, while the effect of isolation was only statistically significant for the mobile species. We interpret these results as evidence for a predominant influence of local processes on sedentary species, and an increasing influence of regional compared to local processes with increasing mobility. When groups of species respond differently to habitat loss and fragmentation this affects community composition, with potential implications for ecosystem processes. Similar effects can be expected for other traits than mobility, and this should be an important question for future studies.  相似文献   

3.
Ockinger E  Smith HG 《Oecologia》2006,149(3):526-534
During the last 50 years, the distribution and abundance of many European butterfly species associated with semi-natural grasslands have declined. This may be the result of deteriorating habitat quality, but habitat loss, resulting in decreasing area and increasing isolation of remaining habitat, is also predicted to result in reduced species richness. To investigate the effects of habitat loss on species richness, we surveyed butterflies in semi-natural grasslands of similar quality and structure, but situated in landscapes of different habitat composition. Using spatially explicit habitat data, we selected one large (6–10 ha) and one small (0.5–2 ha) grassland site (pasture) in each of 24 non-overlapping 28.2 km2 landscapes belonging to three categories differing in the proportion of the area that consisted of semi-natural grasslands. After controlling for local habitat quality, species richness was higher in grassland sites situated in landscapes consisting of a high proportion of grasslands. Species richness was also higher in larger grassland sites, and this effect was more pronounced for sedentary than for mobile species. However, the number of species for a given area did not differ between large and small grasslands. There was also a significant relationship between butterfly species richness and habitat quality in the form of vegetation height and abundance of flowers. In contrast, butterfly density was not related to landscape composition or grassland size. When species respond differently to habitat area or landscape composition this leads to effects on community structure, and nestedness analysis showed that depauperate communities were subsets of richer ones. Both grassland area and landscape composition may have contributed to this pattern, implying that small habitat fragments and landscapes with low proportions of habitat are both likely to mainly contain common generalist species. Based on these results, conservation efforts should aim at preserving landscapes with high proportions of the focal habitat.  相似文献   

4.
Upland salt marsh vegetation is particularly prone to habitat fragmentation and nutrient run-off due to coastal development and nearby agriculture. By examining how communities of sap-feeding insects respond to natural variation in plant-patch size and an experimental nutrient addition we explored how species with particular life history traits (e.g. dispersal ability and over-wintering style) might be used to indicate the effects of habitat fragmentation (patch area) and nitrogen subsidies on food webs. Sap-feeders that were superior dispersers or over-wintered in concealed microhabitats persisted well in small patch sizes. In contrast, species that were both immobile and over-wintered in exposed stages were more sensitive to decreasing patch size. Furthermore, mobile sap-feeders colonized and established populations on nitrogen-subsidized patches more rapidly than less mobile taxa. Thus, patterns in community composition (mobile vs. sedentary sap-feeders) can be used as key indicators of both habitat fragmentation and allochthanous nitrogen subsidies. Both patch size and nutrient subsidy altered trophic structure with a higher predator to herbivore ratio occurring in small compared to large patches and in control compared to nitrogen-subsidized habitats where herbivore outbreaks occurred. Our data suggest that conserving large habitat patches and minimizing nitrogen input is critical for maintaining sap-feeder diversity and preserving food-web structure.  相似文献   

5.
Human land use is known to homogenize biotic communities, increasing similarity in their genetic, taxonomic and functional diversity. Explanations have focused almost exclusively on human‐mediated extinction and range expansion. However, homogenization could also be produced by land use driving selection for similar traits across species. We propose a novel hypothesis to explain how human land use homogenizes dispersal ability across species. With habitat loss and increasing human land use intensities there should be larger increases in the costs of dispersal for dispersive than sedentary species, because dispersive species interact with non‐habitat more frequently. In contrast, the benefits of dispersal should increase more for sedentary than dispersive species, because sedentary species are at greater risk from inbreeding depression, predation and competition associated with habitat loss. Therefore we predict that sedentary species become more dispersive in a human‐altered landscape, and dispersive species more sedentary. We tested this prediction using wing pointedness to estimate the initial dispersal ability and change in dispersal ability for 21 North American passerines over the 20th century. More pointed wings are associated with stronger dispersal ability. Thus our prediction would be supported by a negative cross‐species relationship between these two measurements. We found a strong, negative relationship, as predicted. This resulted in declines in the variability in wing pointedness among species over time. Although other things can cause wing shape to change, including changes in habitat availability, none of these explained the observed relationship. Our result provides the first evidence that human landscape alteration is homogenizing bird communities, driving selection for intermediate dispersal ability across species. It also implies that more dispersive species are more at‐risk from human landscape use because, when rates of landscape alteration are faster than a species’ ability to adapt to that change, the costs of dispersal increase more for dispersive than sedentary species.  相似文献   

6.
  • 1 The physical characteristics of two contrasting streams, and habitat types within these streams, are described in terms of a two-dimensional physical habitat templet in which disturbance frequency and the availability of spatial refugia are the temporal and spatial axes.
  • 2 It is predicted that habitats experiencing a high disturbance frequency and low refuge availability will be characterized by a low invertebrate species diversity, a low biomass of epilithic algae and particulate organic matter and a community made up of mobile, weedy species. Habitats having a low disturbance frequency and high refuge availability will be characterized by a diverse community containing sedentary and specialist species, with high algal and particulate organic matter levels.
  • 3 A lower median substrate particle size and higher shear stress regime in Timber Creek were indicative of a higher disturbance frequency than in the Kyeburn. Substrate diversity was lower in Timber Creek than in the Kyeburn and indicated that the availability of refugia was lower in Timber Creek. In both streams, pools were found to have a higher disturbance frequency and lower availability of refugia than riffles.
  • 4 Invertebrate species diversity, the biomass of epilithic algae and particulate organic matter and the representation of sedentary species, filter feeders and shredders were higher in the more temporally stable and spatially heterogeneous Kyeburn. The community of Timber Creek, frequently disturbed and having low refuge availability, had a high proportion of mobile and weedy species, with the highly mobile, generalist-feeding Deleatidium spp. (Ephemeroptera; Leptophlebiidae) being the most dominant organisms.
  • 5 The predictions made about stream community structure and species characteristics in relation to disturbance frequency and the availability of spatial refugia are generally supported. Now a larger scale investigation is required to test the generality of the predictions. We conclude that the habitat templet approach offers a sound framework within which to pose questions in stream ecology.
  相似文献   

7.
Prey-predator interaction is one of the most commonly observed relationships in ecosystem. In the study of prey-predator models, it is frequently assumed that the changes in population densities are only time-dependent and the dynamics is generally represented by coupled nonlinear ordinary differential equations. In natural system, however, either prey or predator or both move from one place to another for various reasons. In such a case, their dynamic interaction depends both on time and space and requires coupled nonlinear partial differential equations for its dynamic representation. It is also well documented that prey refuges affect the interaction between prey and predator significantly. In this paper, we studied the dynamics of a diffusive prey-predator interaction with prey refuge and type III response function. We have considered both one and two dimensional diffusivity in the model system and presented different stability results under the assumptions that one or both species may be mobile or sedentary. Our results showed that the system may exhibit different spatiotemporal (non-Turing) patterns, like spiral waves, patchy structures, spot pattern, or even spatiotemporal chaos depending on the refuge availability and diffusion rate of species. Another interesting finding was that the dynamic complexity in a prey-predator model increases in case of mobile predator and sedentary prey compare to mobile prey and sedentary predator while refuge availability is varied.  相似文献   

8.
Many species are aggregated at some spatial scale but for some species, due to habitat or behaviour, aggregation can be difficult to assess quantitatively. Here, aggregation of chiton species (Polyplacophora; Neoloricata; Ischnochitonina; Ischnochitonidae; Ischnochitoninae; Ischnochiton) living under boulders in intertidal boulder fields was investigated at several relatively small spatial scales. Closely related species were found to be aggregated at the level of individual boulders, but evidence for grouping at the larger scale of patches of boulders varied. When organisms are mobile, dispersal can have an important influence on spatial patterns. Some organisms, such as marine invertebrates, have a highly dispersive larval phase that can influence spatial patterns of adults, particularly where the adult is sessile or relatively sedentary. Aggregation was compared in two species to test whether different modes of larval development influence spatial pattern. There was some evidence that species with a planktonic larva were even more aggregated than expected, in contrast to predictions based on this mode of development. Both types of larval development (planktonic and non‐planktonic) produce larvae with short development times in these species, so one possible explanation for the grouping habit of these chitons is that they do not disperse, at all, from their natal boulder. The complexity of the boulder field habitat and the cryptic behaviour of these chitons may also contribute to a lack of dispersal. A simple application of a genetic method indicated, however, that philopatry at this scale is unlikely.  相似文献   

9.
ABSTRACT In many vertebrates size is one of the most influential and variable individual characteristics and a strong determinant of reproductive success. Body size is generally density dependent and decreases when intraspecific competition increases. Frequent and long-distance movements increase energy expenditures and, therefore, may also influence body size, particularly in highly mobile species. Caribou (Rangifer tarandus, also known as reindeer) exhibit tremendous variation in size and movements and thus represent an excellent candidate species to test the relationships between body size, population size, and movements. We analyzed body measurements of adult female caribou from 7 herds of the Québec-Labrador Peninsula, Canada, and we related their morphology to population size, movements, and annual ranges. The herds represented 3 ecotypes (migratory, montane, and sedentary). Ecotypes and herds differed in size (length), shape (roundness), and movements. The sedentary ecotype was larger and moved 4 to 7 times less than the migratory ecotype in the 1990s. At the start of a demographic growth period in the early 1960s, migratory caribou from the Rivière-George (hereafter George) herd had longer mandibles than caribou of the sedentary ecotype. Mandible length in the George herd declined in the 1980s after rapid population growth, while individuals performed extensive movements and the herd's annual range increased. Migratory caribou then became shorter than sedentary caribou. After the George herd decline in the 1990s, mandible length increased again near levels of the 1980s. Caribou from the migratory Rivière-aux-Feuilles herd later showed a similar decline in mandible length during a period of population growth, associated with longer movements and increasing annual range. We hypothesize that the density-dependent effect observed on body size might have been exerted through summer habitat degradation and movement variations during herd growth. Our study has 2 important implications for caribou management: the distinctiveness of different populations and ecotypes, and the correlations between population trajectories and changes in body condition and habitat.  相似文献   

10.
Abstract.  1. The codling moth Cydia pomonella , one of the most important pest insects of apple fruit orchards worldwide, is regarded as a 'sedentary' insect, but the natural populations consist of both mobile and sedentary genotypes that display different dispersal capacity in the field. The current study investigated whether there is a fitness consequence of being mobile in this species by comparing two strains with contrasting levels of mobility obtained through bi-directional selection.
2. Female moths of the sedentary strain were significantly larger, laid more eggs during their lifespan, and both male and female moths of this strain lived longer, when compared with the mobile strain.
3. The age-specific fecundity of female moths from the sedentary strain was significantly greater, in particular between 3 and 5 days after emergence when the peaks of both oviposition and flight capacity occur, relative to the mobile moths, thereby leading to a greater reproductive function.
4. These differences resulted in different demographic parameters between the two strains. The sedentary strain had a significantly greater net reproductive rate ( R o ) and a higher intrinsic rate of natural increase ( r m ), although the generation time ( T ) was similar, hence requiring a shorter time to double the population size, in comparison to the mobile strain.
5. This study provides empirical evidence for the cost of being mobile in C. pomonella . Trade-offs between mobility and fitness might have contributed to the existence of genetic variance for dispersal behaviour in the natural populations and the maintenance of relative sedentariness in the species.  相似文献   

11.
Under habitat selection, mobile foragers may not only possess behavioral flexibility that allows them to utilize habitats selectively or opportunistically, but they may also possess heritable traits that influence their performance within each habitat. A game theoretic model is developed that investigates this evolutionary dimension of habitat selection. The model follows that of Rosenzweig (1987b) and considers a patchy environment containing two distinct habitat types. Behaviorally, foragers may be selective or opportunistic; morphologically, foragers possess traits that represent a trade-off between performance in the two habitat types. Depending on the environment's structure, one of three types of communities emerges as the ESS: (1) a single generalist species that behaves opportunistically, (2) two species that are extreme specialists on habitat 1 and 2, respectively; behaviorally, these species are selective on their respective habitat types, and (3) one generalist species that behaves opportunistically and one specialist species that behaves selectively on its preferred habitat. Community (1) emerges when habitat selection is costly, community (2) emerges when habitat selection is cost-free, and community (3) emerges when the relative abundances or productivities of the two habitat types are lopsided.  相似文献   

12.
Abstract In a ‘restinga’ habitat of southeastern Brazil, we studied the food habits and the microhabitat use of two lizards with distinct foraging modes: the tropidurid Tropidurus torquatus, a sit-and-wait predator, and the teiid Cnemidophorus ocellifer, a wide forager. The diet of the two species differed strongly, indicating a low level of similarity in their trophic niche. The sit-and-wait predator fed mainly on mobile prey, whereas the wide forager fed mainly on sedentary prey (larvae). The spatial niche breadth of T. torquatus was larger than that of C. ocellifer. Despite interspecific differences, the two species overlapped greatly in micro-habitat use. The data indicate that at Linhares the two lizard species differed more in food resources than in microhabitat, and that most of the food differences reflect the foraging patterns of the species.  相似文献   

13.
Tropical forest disturbance is a key driver of global biodiversity decline. On continents, the effects of logging are greatest on endemic species, presumably because disturbance is more likely to cover narrower distributions (the “cookie cutter” model). Islands hold disproportionate biodiversity, and are subject to accelerating biotic homogenization, where specialist endemics are lost while generalists persist. We tested responses of tropical island mammals to logging at multiple spatial scales, using a long‐term experimental test in a Pacific archipelago. The most widely distributed ecological generalists did not decline after logging, and we detected no overall changes in relative abundance or species diversity. However, endemics with small ranges did decline in response to logging. The least mobile and most range‐restricted species declined even at the smallest spatial scale, supporting the cookie cutter model for sedentary species, and suggesting that habitat change due to selective logging is contributing to biotic homogenization on islands.  相似文献   

14.
  1. When species can access all parts of the landscape, species-sorting metacommunity theory predicts that community composition depends on habitat choice and interactions with other species and the environment. These filtering processes can also depend on species' traits.
  2. The authors investigated how traits mediate a species-sorting process in determining butterfly community composition in a naturally patchy landscape in the tropical Western Ghats, India. The authors asked, do traits mediate access to certain habitats and does seasonality affect these patterns? The authors surveyed 56 habitat patches in three habitat types: laterite plateau grasslands, ridge grassland, and moist-deciduous forest, in a 65-km2 landscape.
  3. Non-palatable butterflies showed similar occurrences across seasons and habitats, but palatable butterflies were less commonly encountered in open habitats in the dry season. Polyphagous butterflies occurred infrequently in the dry season in laterite habitats, potentially indicating emigration or diapause patterns are linked to diet breadth.
  4. All species were present in all habitats, implying dispersal does not limit access to different habitat patches, consistent with the species-sorting metacommunity concept. Nevertheless, butterfly occurrence was strongly influenced by the interaction of mobility and habitat type with sedentary species occurring less often in low-resource open laterite patches than mobile species.
  5. Species sorting is typically regarded as occurring directly through environmental filters, but here the authors suggest that the environmental filter acts through movement limitations. Studies integrating landscape heterogeneity and species characteristics will help us better understand metacommunities and species distributions in nature.
  相似文献   

15.
Migratory bird species have smaller brains than non-migratory species. The behavioural flexibility/migratory precursor hypothesis suggests that sedentary birds have larger brains to allow the behavioural flexibility required in a seasonally variable habitat. The energy trade-off hypothesis proposes that brains are heavy, energetically expensive and therefore, incompatible with migration. Here, we compared relative brain, neocortex and hippocampus volume between migratory and sedentary bats at the species-level and using phylogenetically independent contrasts. We found that migratory bats had relatively smaller brains and neocortices than sedentary species. Our results support the energy trade-off hypothesis because bats do not exhibit the same degree of flexibility in diet selection as sedentary birds. Our results also suggest that bat brain size differences are subtler than those found in birds, perhaps owing to bats'' shorter migration distances. Conversely, we found no difference in relative hippocampus volume between migratory and sedentary species, underscoring our limited understanding of the role of the hippocampus in bats.  相似文献   

16.
While there is agreement that both habitat quality and habitat network characteristics (such as patch size and isolation) contribute to the occupancy of patches by any given species, the relative importance of these factors is under debate. This issue is of fundamental ecological importance, and moreover of special concern for conservation biologists aiming at preserving endangered species. Against this background we investigated patch occupancy in the violet copper Lycaena helle, one of the rarest butterfly species in Central Europe, in the Westerwald area (Rhineland-Palatinate, Western Germany). Occupied (n = 102) differed from vacant (n = 128) patches in altitude, size, connectivity, availability of wind shelter, in the abundance of the larval host-plant, in the abundance of a grass species indicating favorable habitat conditions and in the abundance of nitrophilous plants. Overall, patch occupancy was primarily determined by patch size, connectivity and the abundance of the larval host plant, while all other parameters of habitat quality were of subordinate importance. Therefore, our findings suggest that even for extremely sedentary species such as L. helle habitat networks are decisive and—next to the preservation of habitat quality—need to be an integral part of any conservation management for this species.  相似文献   

17.
Unlike other migratory hummingbirds in North America, the broad‐tailed hummingbird (Selasphorus platycercus) exhibits both long‐distance migratory behaviour in the USA and sedentary behaviour in Mexico and Guatemala. We examined the evolution of migration linked to its northward expansion using a multiperspective approach. We analysed variation in morphology, mitochondrial and nuclear DNA, estimated migration rates between migratory and sedentary populations, compared divergence times with the occurrence of Quaternary climate events and constructed species distribution models to predict where migratory and sedentary populations resided during the Last Glacial Maximum (LGM) and Last Interglacial (LIG) events. Our results are consistent with a recent northward population expansion driven by migration from southern sedentary populations. Phylogeographical analyses and population genetics methods revealed that migratory populations in the USA and sedentary populations in Mexico of the platycercus subspecies form one admixed population, and that sedentary populations from southern Mexico and Guatemala (guatemalae) undertook independent evolutionary trajectories. Species distribution modelling revealed that the species is a niche tracker and that the climate conditions associated with modern obligate migrants in the USA were not present during the LIG, which provides indirect evidence for recent migratory behaviour in broad‐tailed hummingbirds on the temporal scale of glacial cycles. The finding that platycercus hummingbirds form one genetic population and that suitable habitat for migratory populations was observed in eastern Mexico during the LIG also suggests that the conservation of overwintering sites is crucial for obligate migratory populations currently facing climate change effects.  相似文献   

18.
Understanding spatial physical habitat selection driven by competition and/or predator–prey interactions of mobile marine species is a fundamental goal of spatial ecology. However, spatial counts or density data for highly mobile animals often (1) include excess zeros, (2) have spatial correlation, and (3) have highly nonlinear relationships with physical habitat variables, which results in the need for complex joint spatial models. In this paper, we test the use of Bayesian hierarchical hurdle and zero‐inflated joint models with integrated nested Laplace approximation (INLA), to fit complex joint models to spatial patterns of eight mobile marine species (grey seal, harbor seal, harbor porpoise, common guillemot, black‐legged kittiwake, northern gannet, herring, and sandeels). For each joint model, we specified nonlinear smoothed effect of physical habitat covariates and selected either competing species or predator–prey interactions. Out of a range of six ecologically important physical and biologic variables that are predicted to change with climate change and large‐scale energy extraction, we identified the most important habitat variables for each species and present the relationships between these bio/physical variables and species distributions. In particular, we found that net primary production played a significant role in determining habitat preferences of all the selected mobile marine species. We have shown that the INLA method is well‐suited for modeling spatially correlated data with excessive zeros and is an efficient approach to fit complex joint spatial models with nonlinear effects of covariates. Our approach has demonstrated its ability to define joint habitat selection for both competing and prey–predator species that can be relevant to numerous issues in the management and conservation of mobile marine species.  相似文献   

19.
Questions: To what extent does species‐specific variation in gut passage time (GPT), habitat use and mobility of three key avian frugivores synergistically affect the distribution of Xymalos monospora seeds within and among isolated forest fragments? Location: Three fragments of a severely fragmented cloud forest, Taita Hills, southeast Kenya. Methods: We experimentally determined GPTs of X. monospora seeds and recorded movements and habitat use by Turdus helleri, Andropadus milanjensis and Tauraco hartlaubi through radiotelemetry, and combined these data to generate species‐specific seed dispersal patterns. Results: Differences in mobility and habitat use among the three frugivores caused significant complementarity in seed dispersal, despite the fact that gut transit times were highly comparable. While the most sedentary and forest‐dependent species mainly led to short‐distance dispersal away from parent trees, two more mobile species dispersed seeds further away from the source trees, both within indigenous forest patches and towards exotic plantations and isolated fruiting trees in the landscape matrix. A. milanjensis inhabiting a very small forest fragment spent significantly more time in the landscape matrix than conspecifics residing in the two larger fragments. Conclusions: By varying distances over which seeds are carried away from parent trees and the habitat types in which they are ultimately deposited, avian frugivores affect the spatial distribution of seeds and early plant recruits in a distinct and complementary manner. Because landscape properties are expected to lead to different constraints on avian mobility for habitat specialists and for generalists, ecosystem processes such as avian seed dispersal are shaped by complex interactions between disperser behaviour and the environment.  相似文献   

20.
Anthropogenic habitat fragmentation — ubiquitous in modern ecosystems — has strong impacts on gene flow and genetic population structure. Reptiles may be particularly susceptible to the effects of fragmentation because of their extreme sensitivity to environmental conditions and limited dispersal. We investigate fine-scale spatial genetic structure, individual relatedness, and sex-biased dispersal in a large population of a long-lived reptile (tuatara, Sphenodon punctatus) on a recently fragmented island. We genotyped individuals from remnant forest, regenerating forest, and grassland pasture sites at seven microsatellite loci and found significant genetic structuring (RST = 0.012) across small distances (< 500 m). Isolation by distance was not evident, but rather, genetic distance was weakly correlated with habitat similarity. Only individuals in forest fragments were correctly assignable to their site of origin, and individual pairwise relatedness in one fragment was significantly higher than expected. We did not detect sex-biased dispersal, but natural dispersal patterns may be confounded by fragmentation. Assignment tests showed that reforestation appears to have provided refuges for tuatara from disturbed areas. Our results suggest that fine-scale genetic structuring is driven by recent habitat modification and compounded by the sedentary lifestyle of these long-lived reptiles. Extreme longevity, large population size, simple social structure and random dispersal are not strong enough to counteract the genetic structure caused by a sedentary lifestyle. We suspect that fine-scale spatial genetic structuring could occur in any sedentary species with limited dispersal, making them more susceptible to the effects of fragmentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号