首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycoprotein gIII of pseudorabies virus is multifunctional.   总被引:25,自引:24,他引:1       下载免费PDF全文
One of the major glycoproteins of pseudorabies virus, gIII, is nonessential for growth in cell culture. Mutants defective in gIII, however, consistently yield lower titers of infectious virus (3- to 20-fold) than does wild-type virus. The interactions of gIII- mutants with their host cells were compared with those of wild-type virus in an attempt to uncover the functions of gIII. We show that gIII plays a major role in the stable adsorption of the virus to its host cell; in the absence of gIII, the rate of adsorption is reduced and adsorption is easily reversed by washing. Thus, adsorption of pseudorabies virus can be said to occur in at least the following two ways: (i) a gIII-mediated rapid adsorption or (ii) a slower and more labile adsorption that is independent of gIII. After virions have been complexed with monoclonal antibodies against gIII (but not some monoclonal antibodies against other glycoproteins), both modes of adsorption were inhibited. Glycoprotein gIII affects virus stability and virus release, as well as adsorption. The effect on virus release is marked when the virus is defective in additional functions. Thus, although we found no obvious difference in the release of virus from gIII- or wild-type virus-infected rabbit kidney cells, release of a gIII-/gI- double mutant from the cells occurred less readily than did release of a gI- mutant. The gIII-/gI- and gIII- mutants, however, adsorbed to cells at a similar rate, indicating that the effects of gIII on adsorption and virus release constitute separate functions. The Bartha vaccine strain of pseudorabies virus has a defective gIII gene and is released poorly from rabbit kidney cells. After the resident Bartha gIII gene was replaced by the gIII gene of wild-type virus, virus release was enhanced considerably. Since inactivation of gIII in wild-type pseudorabies virus did not significantly affect virus release, the Bartha strain must be defective in another function which, in conjunction with gIII, significantly affects virus release. These results indicate again that gIII affects virus release in conjunction with other functions. Also, although the Bartha strain was functionally defective in virus release, it adsorbed to cells as well as wild-type virus did, showing that the effects of gIII on virus adsorption and release constitute separate functions. We conclude that gIII is a multifunctional glycoprotein.  相似文献   

2.
Role of glycoprotein gIII of pseudorabies virus in virulence.   总被引:14,自引:13,他引:1  
Deletion mutants of pseudorabies virus unable to express glycoprotein gIII, gI, or gp63 or double and triple mutants defective in these glycoproteins were constructed, and their virulence for day-old chickens inoculated intracerebrally was determined. Mutants of wild-type pseudorabies virus defective in glycoprotein gIII, gI, or gp63 were only slightly less virulent (at most, fivefold) for chickens than was the wild-type virus. However, mutants defective in both gIII and gI or gIII and gp63 were avirulent for chickens, despite their ability to grow in cell culture in vitro to about the same extent as mutants defective in gIII alone (which were virulent). These results show that gIII plays a role in virulence and does so in conjunction with gI or gp63. The effect of gIII on virulence was also shown when the resident gIII gene of variants of the Bartha vaccine strain (which codes for gIIIB) was replaced with a gIII gene derived from a virulent wild-type strain (which codes for gIIIKa); gIIIKa significantly enhanced the virulence of a variant of the Bartha strain to which partial virulence had been previously restored by marker rescue. Our results show that viral functions that play a role in the virulence of the virus (as measured by intracerebral inoculation of chickens) may act synergistically to affect the expression of virulence and that the ability of the virus to grow in cell culture is not necessarily correlated with virulence.  相似文献   

3.
Glycoprotein gIII of pseudorabies virus is a member of a conserved gene family found in at least seven diverse herpesviruses. We report here that the putative cytoplasmic domain of gIII is not required for transport to the cell surface and, unlike the prototype domain from herpes simplex virus type 1 glycoprotein C, is not required for stable membrane anchoring. Furthermore, this domain does not appear to be essential for incorporation of the glycoprotein into virions.  相似文献   

4.
L Powers  P Ryan 《Journal of virology》1994,68(5):2787-2794
We have devised an enrichment scheme for the isolation of export-competent derivatives of pseudorabies virus glycoprotein gIII signal peptide mutants. Enrichment is based upon a growth advantage imparted upon gIII-containing virions compared with virions lacking the glycoprotein. Each of identified derivatives suppressed the gIII signal peptide defect by fusing the gIII gene in frame to the prv43 gene that lay immediately upstream; the result was the synthesis of a Prv43-gIII hybrid protein. The deduced Prv43 protein is predicted to span a membrane multiple times, and it appeared that the gIII portion of each hybrid used a hydrophobic domain of Prv43 protein to initiate its export. For at least two of the isolates, the hybrid protein was efficiently translocated across the endoplasmic reticulum membrane but appeared to be poorly exported out of the endoplasmic reticulum. Nonetheless, the prv43-gIII fusions encoded a gIII species that was localized to the virus envelope. Because the gIII portion of each hybrid protein must be exposed on the virion surface to provide a growth advantage, our results also suggest a preliminary membrane topology for wild-type Prv43 protein.  相似文献   

5.
W D Thomas  Jr  S P Wagner    R A Welch 《Journal of bacteriology》1992,174(21):6771-6779
The hydrophobic-rich NH2-terminal 34 amino acids of a tetracycline resistance determinant (TetC) were fused to the COOH-terminal 240 amino acids of the hemolysin transporter, HlyB, which contains a putative ATP-binding domain. This hybrid protein replaced the NH2-terminal 467-amino-acid portion of HlyB and could still export the Escherichia coli hemolysin (HlyA). Export by the hybrid protein was approximately 10% as efficient as transport by HlyB. Extracellular secretion of HlyA by the TetC-HlyB hybrid required HlyD and TolC. The extracellular and periplasmic levels of beta-galactosidase and beta-lactamase in strains that produced the hybrid were similar to the levels in controls. Thus, HlyA transport was specific and did not appear to be due to leakage of cytoplasmic contents alone. Antibodies raised against the COOH terminus of HlyB reacted with the hybrid protein, as well as HlyB. HlyB was associated with membrane fractions, while the hybrid protein was found mainly in soluble extracts. Cellular fractionation studies were performed to determine whether transport by the hybrid occurred simultaneously across both membranes like wild-type HlyA secretion. However, we found that HlyA was present in the periplasm of strains that expressed the TetC-HlyB hybrid. HlyA remained in the periplasm unless the hlyD and tolC gene products were present in addition to the hybrid.  相似文献   

6.
We have constructed a pseudorabies virus mutant that contains virtually a complete deletion of the predicted signal sequence coding region for a nonessential envelope glycoprotein, gIII. No signal sequence mutants have been reported previously for a herpesvirus glycoprotein. Through endoglycosidase treatments and pulse-chase analysis, we have determined that the mutant gIII protein is not posttranslationally modified like the wild-type polypeptide, but rather is present as a single, stable species within the infected cell. The mutant polypeptide cannot be detected in the virus envelope, nor is it aberrantly localized to the tissue culture medium. Immunofluorescence studies have indicated that the mutant protein also is not localized to the surfaces of infected cells. In addition, Northern (RNA) and slot blot analyses, as well as in vitro translation experiments using infected-cell cytoplasmic RNA, have indicated that the mutant gIII allele is expressed at lower levels than the wild-type gene is. This is despite the fact that no alterations have been made upstream of the gIII coding sequence. From these results, it appears that the first 22 amino acids of the wild-type gIII protein define a necessary signal peptide that is responsible for at least the correct initiation of translocation and subsequent glycosylation of the gIII envelope glycoprotein within infected cells.  相似文献   

7.
8.
Escherichia coli penicillin-binding protein 5 (PBP5) anchors to the inner membrane in a pH-dependent manner via a C-terminal amphiphilic alpha-helix. Low pH was found to enhance both levels of PBP5 membrane anchoring and levels of alpha-helicity in an aqueous PBP5 C-terminal homologue, which led to the suggestion that levels of PBP5 membrane anchoring are related to levels of PBP5 C-terminal alpha-helicity. Here we have used Fourier-transformed infrared spectroscopy (FTIR) and a peptide homologue of the PBP5 C-terminal sequence to investigate the effect of pH on the conformational behavior of this sequence at a lipid interface and on its ability to interact with lipid. Our results suggest that the membrane-anchoring mechanism of PBP5 is unlikely to involve conformational change in the protein's C-terminal region and may therefore involve conformational changes in the protein's ectomembranous domain.  相似文献   

9.
The entry of herpesviruses into cells involves two distinct stages: attachment or adsorption to the cell surface followed by internalization. The virus envelope glycoproteins have been implicated in both stages. Pseudorabies virus attaches to cells by an early interaction that involves the viral glycoprotein gIII and a cellular heparinlike substance. We examined the role of gIII in the attachment process by analysis of a set of viruses carrying defined gIII mutations. The initial attachment of gIII mutants with an internal deletion of 134 amino acids (PrV2) to MDBK cells was indistinguishable from that of wild-type virus. The adsorption of these mutants was, however, much more sensitive than that of wild-type virus to competing heparin. Furthermore, while attachment of wild-type virus to MDBK cells led to a rapid loss of sensitivity to heparin, this was not the case with PrV2, which could be displaced from the cell surface by heparin after it had attached to the cells. We conclude that glycoprotein gIII is involved in two distinct steps of virus attachment and that the second of these steps but not the first is defective in PrV2.  相似文献   

10.
Tryptophan (Trp) is abundant in membrane proteins, preferentially residing near the lipid–water interface where it is thought to play a significant anchoring role. Using a total of 3 μs of molecular dynamics simulations for a library of hydrophobic WALP-like peptides, a long poly-Leu α-helix, and the methyl-indole analog, we explore the thermodynamics of the Trp movement in membranes that governs the stability and orientation of transmembrane protein segments. We examine the dominant hydrogen-bonding interactions between the Trp and lipid carbonyl and phosphate moieties, cation–π interactions to lipid choline moieties, and elucidate the contributions to the thermodynamics that serve to localize the Trp, by ~ 4 kcal/mol, near the membrane glycerol backbone region. We show a striking similarity between the free energy to move an isolated Trp side chain to that found from a wide range of WALP peptides, suggesting that the location of this side chain is nearly independent of the host transmembrane segment. Our calculations provide quantitative measures that explain Trp's role as a modulator of responses to hydrophobic mismatch, providing a deeper understanding of how lipid composition may control a range of membrane active peptides and proteins.  相似文献   

11.
Adsorption of mutants of pseudorabies virus (PrV) lacking glycoprotein gIII is slower and less efficient than is that of wild-type virus (C. Schreurs, T. C. Mettenleiter, F. Zuckermann, N. Snugg, and T. Ben-Porat, J. Virol. 62:2251-2257, 1988). To ascertain the functions of gIII in the early interactions of PrV with its host cells, we compared the effect on wild-type virus and gIII- mutants of antibodies specific for various PrV proteins. Although adsorption of wild-type virus was inhibited by polyvalent antisera against PrV as well as by sera against gIII and gp50 (but not sera against gII), adsorption of the gIII- mutants was not inhibited by any of these antisera. These results suggest that, in contrast to adsorption of wild-type PrV, the initial interactions of the gIII- mutants with their host cells are not mediated by specific viral proteins. Furthermore, competition experiments showed that wild-type Prv and the gIII- mutants do not compete for attachment to the same cellular components. These findings show that the initial attachment of PrV to its host cells can occur by a least two different modes--one mediated by glycoprotein gIII and the other unspecific. gIII- mutants not only did not adsorb as readily to cells as did wild-type virus but also did not penetrate cells as rapidly as did wild-type virus after having adsorbed. Antibodies against gIII did not inhibit the penetration of adsorbed virus (wild type or gIII-), whereas antibodies against gII and gp50 did. It is unlikely, therefore, that gIII functions directly in virus penetration. Our results support the premises that efficient adsorption of PrV to host cell components is mediated either directly or indirectly by gIII (or a complex of viral proteins for which the presence of gIII is functionally essential) and that this pathway of adsorption promotes the interactions of other viral membrane proteins with the appropriate cellular proteins, leading to the rapid penetration of the virus into the cells. The slower penetration of the gIII- mutants than of wild-type PrV appears to be related to the slower and less efficient alternative mode of adsorption of PrV that occurs in the absence of glycoprotein gIII.  相似文献   

12.
The latency-regulated transmembrane protein LMP2A interferes with signaling from the B-cell antigen receptor by recruiting the tyrosine kinases Lyn and Syk and by targeting them for degradation by binding the cellular E3 ubiquitin ligase AIP4. It has been hypothesized that this constitutive activity of LMP2A requires clustering in the membrane, but molecular evidence for this has been lacking. In the present study we show that LMP2A coclusters with chimeric rat CD2 transmembrane molecules carrying the 27-amino-acid (aa) intracellular C terminus of LMP2A and that this C-terminal domain fused to the glutathione-S-transferase protein associates with LMP2A in cell lysates. This molecular association requires neither the cysteine-rich region between aa 471 and 480 nor the terminal three aa 495 to 497. We also show that the juxtamembrane cysteine repeats in the LMP2A C terminus are the major targets for palmitoylation but that this acylation is not required for targeting of LMP2A to detergent-insoluble glycolipid-enriched membrane microdomains.  相似文献   

13.
A striking characteristic of mRNA export factors is that they shuttle continuously between the cytoplasm and the nucleus. This shuttling is mediated by specific factors interacting with peptide motifs called nuclear export signals (NES) and nuclear localization signals. We have identified a novel CRM-1-independent transferable NES and two nuclear localization signals in the Epstein-Barr virus mRNA export factor EB2 (also called BMLF1, Mta, or SM) localized at the N terminus of the protein between amino acids 61 and 146. We have also found that a previously described double NES (amino acids 213-236) does not mediate the nuclear shuttling of EB2, but is an interaction domain with the cellular export factor REF in vitro. This newly characterized REF interaction domain is essential for EB2-mediated mRNA export. Accordingly, in vivo, EB2 is found in complexes containing REF as well as the cellular factor TAP. However, these interactions are RNase-sensitive, suggesting that the RNA is an essential component of these complexes.  相似文献   

14.
Qiu Z  Yao J  Cao H  Gillam S 《Journal of virology》2000,74(14):6637-6642
Rubella virus (RV) virions contain three structural proteins, a capsid protein that interacts with viral genomic RNA to form a nucleocapsid and two membrane glycoproteins, E2 and E1. We found that substitution of either an aspartic acid residue at Gly93 (G93D) or a glycine residue at Pro104 (P104G) in the internal hydrophobic domain of E1 affected virus infectivity but not virus assembly. Viruses carrying G93D and P104G mutations had impaired infectivity, reduced 1,000-fold and 10-fold, respectively. A revertant was isolated from the G93D mutant. Sequencing analysis showed that the substituted aspartic acid residue in G93D mutant had reverted to the original glycine residue, suggesting the involvement of Gly93 in membrane fusion during viral entry.  相似文献   

15.
16.
Glycoprotein gIII is one of the major envelope glycoproteins of pseudorabies virus (PrV) (Suid herpesvirus 1). Although it is dispensable for viral growth, it has been shown to play a prominent role in the attachment of the virus to target cells, since gIII- deletion mutants are severely impaired in adsorption (C. Schreurs, T. C. Mettenleiter, F. Zuckermann, N. Sugg, and T. Ben-Porat, J. Virol. 62:2251-2257, 1988). We show here that during the process of adsorption of PrV, the viral glycoprotein gIII interacts with a cellular heparinlike receptor. This conclusion is based on the following findings. (i) Heparin inhibits plaque formation of PrV by preventing the adsorption of wild-type virions to target cells. However, heparin does not interfere with the plaque formation of PrV mutants that lack glycoprotein gIII. (ii) Wild-type virions readily adsorb to matrix-bound heparin, whereas gIII- mutants do not. (iii) Pretreatment of cells with heparinase reduces considerably the ability of wild-type PrV to adsorb to these cells and to form plaques but does not negatively affect gIII- mutants. (iv) Glycoprotein gIII binds to heparin and appears to do so in conjunction with glycoprotein gII. Although heparin significantly reduces the adsorption of wild-type virus to all cell types tested, quantitative differences in the degree of inhibition of virus adsorption by heparin to different cell types were observed. Different cell types also retain their abilities to adsorb wild-type PrV to a different extent after treatment with heparinase and differ somewhat in their relative abilities to adsorb gIII- mutants. Our results show that while the primary pathway of adsorption of wild-type PrV to cells occurs via the interaction of viral glycoprotein gIII with a cellular heparinlike receptor, an alternative mode of adsorption, which is not dependent on either component, exists. Furthermore, the relative abilities of different cell types to adsorb PrV by the gIII-dependent or the alternative mode vary to some extent.  相似文献   

17.
18.
《BBA》2021,1862(12):148492
Thiocapsa bogorovii BBS (former name Thiocapsa roseopersicina) contains HydSL hydrogenase belonging to 1e subgroup of NiFe hydrogenases (isp-type). The operon of these hydrogenases contains gene for small subunit (hydS), gene for large subunit (hupL), and genes isp1 and isp2 between them. It is predicted that last two genes code electron transport careers for electron transfer from/to HydSL hydrogenase. However, the interaction between them is unclear. The aim of this study was to determine structural and functional role of T. bogorovii HydS C-terminal end. For this purpose, we modelled all subunits of the complex HydS-HydL-Isp1-Isp2. Hydrophobicity surface analysis of the Isp1 model revealed highly hydrophobic helices suggesting potential membrane localization, as well as the hydrophilic C-terminus, which is likely localized outside of membrane. Isp1 model was docked with models of full length and C-terminal truncated HydSL hydrogenases and results illustrate the possibility of HydSL membrane anchoring via transmembrane Isp1 with essential participation of C-terminal end of HydS in the interaction. C-terminal end of HydS subunit was deleted and our studies revealed that the truncated HydSL hydrogenase detached from cellular membranes in contrast to native hydrogenase. It is known that HydSL hydrogenase in T. bogorovii performs the reaction of elemental sulfur reduction (S0 + H2 = ≥H2S). Cells with truncated HydS produced much less H2S in the presence of H2 and S0. Thus, our data support the conclusion that C-terminal end of HydS subunit participates in interaction of HydSL hydrogenase with Isp1 protein for membrane anchoring and electron transfer.  相似文献   

19.
R J Owens  C Burke    J K Rose 《Journal of virology》1994,68(1):570-574
A chimeric protein consisting of the human immunodeficiency virus type 1 (HIV-1) envelope protein (Env) ectodomain joined to the transmembrane and cytoplasmic-tail domains of vesicular stomatitis virus G protein lost the ability to fuse CD4+ HeLa cells yet was transported to the cell surface and cleaved normally. These results suggested some critical role of the HIV gp41 transmembrane or cytoplasmic domain in fusion. Subsequent mutagenic analysis of the HIV-1 Env transmembrane domain revealed that the sequence of amino acid residues from positions 696 to 707 of the transmembrane domain was important for fusion function but was not required for anchoring of the Env protein in the lipid bilayer or for transport to the cell surface. Further analysis indicated that the basic residues at positions 696 and 707 were critical for membrane fusion activity, as was the spacing between these residues. These results demonstrate that in addition to providing an anchoring function, the specific amino acid sequence in the transmembrane domain plays a crucial role in the membrane fusion process.  相似文献   

20.
The two transmembrane spike protein subunits of Semliki Forest virus (SFV) form a heterodimeric complex in the rough endoplasmic reticulum. This complex is then transported to the plasma membrane, where spike-nucleocapsid binding and virus budding take place. By using an infectious SFV clone, we have characterized the effects of mutations within the putative fusion peptide of the E1 spike subunit on spike protein dimerization and virus assembly. These mutations were previously demonstrated to block spike protein membrane fusion activity (G91D) or cause an acid shift in the pH threshold of fusion (G91A). During infection of BHK cells at 37 degrees C, virus spike proteins containing either mutation were efficiently produced and transported to the plasma membrane, where they associated with the nucleocapsid. However, the assembly of mutant spike proteins into mature virions was severely impaired and a cleaved soluble fragment of E1 was released into the medium. In contrast, incubation of mutant-infected cells at reduced temperature (28 degrees C) dramatically decreased E1 cleavage and permitted assembly of morphologically normal virus particles. Pulse-labeling studies showed that the critical period for 28 degrees C incubation was during virus assembly, not spike protein synthesis. Thus, mutations in the putative fusion peptide of SFV confer a strong and thermoreversible budding defect. The dimerization of the E1 spike protein subunit with E2 was analyzed by using either cells infected with virus mutants or mutant virus particles assembled at 28 degrees C. The altered-assembly phenotype of the G91D and G91A mutants correlated with decreased stability of the E1-E2 dimer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号