首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Allometric analyses of hair densities in 23 anthropoid primate taxa reveal that increasingly massive primates have systematically fewer hairs per equal unit of body surface. Considering the absence of effective sweating in monkeys and apes, the negative allometry of relative hair density may represent an architectural adaptation to thermal constraints imposed by the decreasing ratios of surface area to volume in progressively massive primates. Judging by estimates of body volume, denudation of the earliest hominids should have progressed to a considerable extent prior to their shift from a forest to a grassland habitat during the Pliocene. We propose that, lacking a reflective coat of hair, the exploitation of eccrine sweating emerged as the primary mechanism for adaptation to the increased heat loads of man's new environment and permitted further reduction of the remnant coat to its present vestigial condition.  相似文献   

2.
Five measurements were taken on the ossa coxae of 454 adult primates representing Ceboidea, Cercopithecoidea and Hominoidea. Sex differences in these variables and their relationships to overall body size and sexual dimorphism were tested by means of Student's t-test and regression analysis. The study attempts to clarify the nature of primate pelvic sexual dimorphism, including allometric effects, and more specifically, test the assertion made by Mobb and Wood (1977) that sexual dimorphism in body size in not an important determinant in pelvic sex differences. Variables that contribute to the size of the birth canal tend to be larger in females than males in all taxa studied except two. In these, Hylobates and Alouatta, there were no significant differences between the sexes for any of the five variables. In general, sexual dimorphism in variables contributing to the size of the birth canal was correlated (r ? 0.8) with sexual dimorphism in body size. Furthermore, the coefficients of allometry underlying pelvic sex differences were shown to be moderately correlated (r ? 0.5) with sexual dimorphism in size. The influence of other adaptive factors on primate pelvic sexual dimorphism are also briefly discussed.  相似文献   

3.
In many species of monkeys and apes, sexual solicitations of males by females are more facultative and opportunistic than generally realized. Although female sexual solicitations peak at midcyle, solicitations and copulations are not necessarily confined to the days just around ovulation. Human female sexuality, and the physiological underpinnings of this sexuality evolved in prehominid contexts in which female primates solicited and copulated with multiple males on a situation-dependent basis. Such sexual behavior became increasingly costly to females in the course of hominid evolution, and women's sexuality today must be viewed as an imperfect compromise between formerly adaptive organs (such as the female clitoris) and the chronic challenges mothers face in eliciting and insuring male protection and investment in offspring.  相似文献   

4.
Jungers and German (1981) found differences when they compared 1) coefficients of allometry from bivariate plots of log measurements versus log body weight with 2) those coefficients from the first principal component of the log measurements excluding body weight. It is argued here that an arbitrary choice of unit for “internal size” is all that separates these coefficients. When the unit is chosen to make internal size isometric with body weight the coefficients agree rather well.  相似文献   

5.
Cranial and dental measurements are taken on 253 adult female primates from 32 species. Regression equations are calculated to determine allometric relationships between anterior tooth size, posterior tooth size, and body size. When cranial length or skull length is used as the measure of general size, the results of the equations differ from when body weight is the reference dimension. Similarly, using different definitions of posterior tooth size (such as mandibular second molar length and maxillary postcanine area) alters results substantially. The same occurs with different definitions of anterior tooth size. It has been common in studies of primate dental allometry to generalize from the specific variables measured to broad functional interpretations. However, highly correlated variables cannot be substituted one for another in allometric analyses without important changes in the results of the equation. Interpretation of allometric data is more highly restricted to the precise variables measured in a particular study than has been generally recognized.  相似文献   

6.
Static adult craniometric allometry was evaluated in a sample of 66Otolemur crassicaudatus skulls (34 males, 32 females). Although cranial measures were equally well correlated to skull length in males and females, there were noteworthy differences in the exponential values between the sexes. These results underlined the need for caution when allometric analyses are based on pooled data. From the cranial allometric analyses it is concluded that the longer the skull, the shorter and the narrower the maxilla, and the broader the bizygomatic distance. Although cranial length increased proportionately to the increase in skull length, the cranial width in females was positively allometric whilst in males it was negatively allometric. Allometric analyses of mandibular dimensions suggest that larger animals will have proportionately longer mandibulae, which will, in turn, be relatively wider across the gonia, yet shallower behind the first molars. It is postulated that the disproportionate widening of the zygomata might be related to the widening across the gonia.  相似文献   

7.
Allometric equations relating the lengths and widths of the mandible and dental arch, and of molar area, were obtained in a wide range of anthropoid primates grouped into four subsets, pongids, cercopithecids, nonmarmoset platyrrhines, and marmosets. Mandibular width is negatively allometric against length across anthropoids but cercopithecids had relatively wider mandibles than nonmarmosets of the same size class. Mandibular length relative to dental arch length was isometric within and between the four groups but dental arch width scaled negatively against all the other dimensions examined in this study, indicating a functional dissociation between the dental arcade and the bony mandible. Molar area showed various scaling patterns relative to mandibular length (isometry) and width (positive). There were no parameters that scaled positively against body weight across groups, except for molar area in cercopithecids (strongly) and nonmarmoset (moderately). Notable functional specializations include relatively long dental arches in cercopithecoids, related to large, elongate bilophodont molars, and the tendency to increase relative jaw length across the range of anthropoid sizes, reflecting negative allometry of the brain (cranial bicondylar width). We caution that various allometry and functional patterns may be masked by generalizing from broad taxonomic comparison involving a large sweep of adaptative patterns.  相似文献   

8.
This paper presents the results of a general review of predation on nonhuman primates as a selective force in primate evolution. Testable hypotheses derived from the literature on predation on primates, concerning sexual dimorphism, male defense, group size, solitaries, transfer, subgrouping, and sex ratio, were applied to the available data on populations with varying predation rates in search of significant correlations. All seven hypotheses were supported, indicating that predation is and has been an important determinant of primate evolutionary history. Suggestions for accumulating a larger and more accurate body of information on predation rates on primates are offered.  相似文献   

9.
10.
Multivariate analysis as a technique for investigating locomotor differentiation among primates has proven its power and usefulness in many studies on various skeletal dimensions. In these analyses primate genera were distributed and sometimes clustered in a manner that was interpretable based on current knowledge of gross locomotor differences. In an effort to advance our understanding of arboreality and terrestriality in primates, the present research involves a careful look for the most subtle morphological differences in locomotor behavior. It is believed that by looking at such subtle shape differences an understanding of what it means morphologically for a primate to be either more or less arboreal may be achieved. The species within the primate genus Cercopithecus were analyzed. This genus includes species which may be placed along a habitat (ground-living to tree-dwelling) or activity spectrum. The different habitats or activity patterns clearly require slight variations in patterns of movement, which in turn may require subtle structural adaptations. Multivariate analyses of 67 postcranial variables on seven species within the genus allowed detection of slight degrees of morphological variation. However, when morphological differences are small, size variance among specimens may take on an inflated importance. A substantial amount of work was devoted to finding the least biased method of removing size variance from the variables while incorporating a discrete size variable into the study. Using these transformed skeletal variables, interspecific groupings were discovered. Much of this infrastructure is then related to differing locomotor behavior and provides an insight into the fine structure of primate locomotor adaptation in an arboreal habitat.  相似文献   

11.
Flight initiation distance describes the distance at which an animal flees during the approach of a predator. This distance presumably reflects the tradeoff between the benefits of fleeing versus the benefits of remaining stationary. Throughout ontogeny, the costs and benefits of flight may change substantially due to growth-related changes in sprint speed; thus ontogenetic variation in flight initiation distance may be substantial. If escape velocity is essential for surviving predator encounters, then juveniles should either tolerate short flight initiation distances and rely on crypsis, or should have high flight initiation distances to remain far away from their predators. We examined this hypothesis in a small, short-lived lizard (Sceloporus woodi). Flight initiation distance and escape velocity were recorded on an ontogenetic series of lizards in the field. Maximal running velocity was also quantified in a laboratory raceway to establish if escape velocities in the field compared with maximal velocities as measured in the lab. Finally a subset of individuals was used to quantify how muscle and limb size scale with body size throughout ontogeny. Flight initiation distance increased with body size; larger animals had higher flight initiation distances. Small lizards had short flight initiation distances and remained immobile longer, thus relying on crypsis for concealment. Escape velocity in the field did not vary with body size, yet maximum velocity in the lab did increase with size. Hind limb morphology scaled isometrically with body size. Isometric scaling of the hind limb elements and its musculature, coupled with similarities in sprint and escape velocity across ontogeny, demonstrate that smaller S. woodi must rely on crypsis to avoid predator encounters, whereas adults alter their behavior via larger flight initiation distance and lower (presumably less expensive) escape velocities.  相似文献   

12.
Developmental constraints can affect evolution. McMahon's (1973, 1975a) hypothesis of elastic similarity is tested as an epigenetic rule. This is an ontogenetic hypothesis that previously has not been tested with ontogenetic data. Cross-sectional data from the human femur are analyzed. Length-diameter relationships for phases of growth and aging are calculated with bivariate allometry. McMahon's hypothesis cannot be rejected, although most of the calculations are not consistent with it. Ontogenetic skeletal allometry is complex because both material and geometric properties change during development.  相似文献   

13.
Brain size is strongly associated with body size in all vertebrates. This relationship has been hypothesized to be an important constraint on adaptive brain size evolution. The essential assumption behind this idea is that static (i.e., within species) brain–body allometry has low ability to evolve. However, recent studies have reported mixed support for this view. Here, we examine brain–body static allometry in Lake Tanganyika cichlids using a phylogenetic comparative framework. We found considerable variation in the static allometric intercept, which explained the majority of variation in absolute and relative brain size. In contrast, the slope of the brain–body static allometry had relatively low variation, which explained less variation in absolute and relative brain size compared to the intercept and body size. Further examination of the tempo and mode of evolution of static allometric parameters confirmed these observations. Moreover, the estimated evolutionary parameters indicate that the limited observed variation in the static allometric slope could be a result of strong stabilizing selection. Overall, our findings suggest that the brain–body static allometric slope may represent an evolutionary constraint in Lake Tanganyika cichlids.  相似文献   

14.
The form of the talus in some higher primates: a multivariate study   总被引:2,自引:0,他引:2  
Sixteen measurements of the talus have been taken on 334 tali of a total of eleven primate groups and several additional single individual specimens. Multivariate morphometric (canonical and generalized distance) analyses of these data in extant higher primates are presented and used to define the relative morphological positions of fossils of the genera Proconsul and Limnopithecus, of individual specimens from Kromdraai, Olduvai and Kiik-Koba (Homo neanderthalensis), and a group of specimens of Bronze Age man from Jericho. Following preliminary studies the ultimate analysis suggests that the various extant arboreal primates examined fall within an envelope that is defined by Macaca together with various other Old World monkeys and extending in different directions to the extreme genera (a) Pongo, (b) Hylobates and (c) Ateles. This separation is thus one which defines generally quadrupedal monkeys and separates the various extreme arboreal locomotor modes of (a) acrobatic climbing and hanging, (b) richochetal brachiation and (c) prehensile-tailed arm-swinging and hanging, respectively. Man and the African apes are well separated both from each other and from this spectrum of arboreally adapted genera. Bronze Age man from Jericho and Neandertal man from Kiik-Koba lie relatively close to the position for modern man although significantly separated from him. Limnopithecus, Proconsul, and the specimens from Kromdraai and Olduvai all lie within the envelope of arboreal species and specifically rather close to, although significantly different from, the orang-utan; they differ markedly from both man and the African apes. The possibility exists that the resemblances of Proconsul and Limnopithecus relate to arboreal habitus in these species. The findings for the specimens from Kromdraai and Olduvai suggest either that the morphological resemblances to arboreal forms relate to a previous arboreal history for these species, or that bipedality is much less advanced or uniquely different from that displayed by Homo. It is not inconceivable that both conditions might apply.  相似文献   

15.
The evolution of static allometry in sexually selected traits   总被引:3,自引:0,他引:3  
Although it has been the subject of verbal theory since Darwin, the evolution of morphological trait allometries remains poorly understood, especially in the context of sexual selection. Here we present an allocation trade-off model that predicts the optimal pattern of allometry under different selective regimes. We derive a general solution that has a simple and intuitive interpretation and use it to investigate several examples of fitness functions. Verbal arguments have suggested cost or benefit scenarios under which sexual selection on signal or weapon traits may favor larger individuals with disproportionately larger traits (i.e., positive allometry). However, our results suggest that this is necessarily true only under a precisely specified set of conditions: positive allometry will evolve when the marginal fitness gains from an increase in relative trait size are greater for large individuals than for small ones. Thus, the optimal allometric pattern depends on the precise nature of net selection, and simple examples readily yield isometry, positive or negative allometry, or polymorphisms corresponding to sigmoidal scaling. The variety of allometric patterns predicted by our model is consistent with the diversity of patterns observed in empirical studies on the allometries of sexually selected traits. More generally, our findings highlight the difficulty of inferring complex underlying processes from simple emergent patterns.  相似文献   

16.
Scaling predictions pioneered by A.V. Hill state that isometric changes in kinematics result from isometric changes in size. These predictions have been difficult to support because few animals display truly isometric growth. An exception to this rule is said to be the toads in the genus Bufo, which can grow over three orders of magnitude. To determine whether skull shape increases isometrically, I used linear measurements and geometric morphometrics to quantify shape variation in a size series of 69 skulls from the marine toad, B. marinus. Toads ranged in body mass from 1.8 gm to a calculated 1,558.9 gm. Of all linear measurements (S/V length, skull width, skull length, levator mass, depressor mass, adductor foramen area), only the area of the adductor foramen increased faster than body mass; the remaining variables increased more slowly. In addition, modeling the lower jaw as a lever‐arm system showed that the lengths of the closing in‐ and out‐levers scaled isometrically with body mass despite the fact that the skull itself is changing allometrically. Geometric morphometrics discerned areas of greatest variability with increasing body mass at the rear of the skull in the area of the squamosal bone and the adductor foramen. This increase in area of the adductor foramen may allow more muscle to move the relatively greater mass of the lower jaw in larger toads, although adductor mass scales with body mass. If B. marinus feeds in a similar manner to other Bufo, these results imply that morphological allometry may still result in kinematic isometry. J. Morphol. 241:115–126, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

17.
The innate immune system constitutes the front line of host defense against pathogens. Toll-like receptors (TLRs) recognize molecules derived from pathogens and play crucial roles in the innate immune system. Here, we provide evidence that the TLR-related genes have come under natural selection pressure in the course of primate evolution. We compared the nucleotide sequences of 16 TLR-related genes, including TLRs (TLR1–10), MYD88, TILAP, TICAM1, TICAM2, MD2, and CD14, among seven primate species. Analysis of the non-synonymous/synonymous substitution ratio revealed the presence of both strictly conserved and rapidly evolving regions in the TLR-related genes. The genomic segments encoding the intracellular Toll/interleukin 1 receptor domains, which exhibited lower rates of non-synonymous substitution, have undergone purifying selection. In contrast, TLR4, which carried a high proportion of non-synonymous substitutions in the part of extracellular domain spanning 200 amino acids, was found to have been the suggestive target of positive Darwinian selection in primate evolution. However, sequence analyses from 25 primate species, including eight hominoids, six Old World monkeys, eight New World monkeys, and three prosimians, showed no evidence that the pressure of positive Darwinian selection has shaped the pattern of sequence variations in TLR4 among New World monkeys and prosimians. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Chronic myeloid leukemia (CML) is an acquired neoplastic hematopoietic stem cell (HSC) disorder characterized by the expression of the BCR-ABL oncoprotein. This gene product is necessary and sufficient to explain the chronic phase of CML. The only known cause of CML is radiation exposure leading to a mutation of at least one HSC, although the vast majority of patients with CML do not have a history of radiation exposure. Nonetheless, in humans, significant radiation exposure (after exposure to atomic bomb fallout) leads to disease diagnosis in 3-5 years. In murine models, disease dynamics are much faster and CML is fatal over the span of a few months. Our objective is to develop a model that accounts for CML across all mammals. In the following, we combine a model of CML dynamics in humans with allometric scaling of hematopoiesis across mammals to illustrate the natural history of chronic phase CML in various mammals. We show how a single cell can lead to a fatal illness in mice and humans but a higher burden of CML stem cells is necessary to induce disease in larger mammals such as elephants. The different dynamics of the disease is rationalized in terms of mammalian mass. Our work illustrates the relevance of animal models to understand human disease and highlights the importance of considering the re-scaling of the dynamics that accrues to the same biological process when planning experiments involving different species.  相似文献   

19.
Adult static intraspecific allometry of tooth size was evaluated in a sample of 66 Otolemur crassicaudatus (34 male, 32 female). Tooth areas were calculated from mesiodistal and buccolingual measurements of canines and postcanine teeth of both arcades and were scaled to four viscerocranial measurements: bimaxillary width; maxillo-alveolar length; mandibular length and bigonial width. Individual tooth crown areas were also scaled to total skull length, body length and body weight. From the log-transformed analyses it is concluded that postcanine tooth size was unrelated to body length or weight, and poorly correlated to skull length or jaw size. Although viscerocranial size appears to be independent of body size, these measures are well correlated to skull length. It is shown that the longer the skull, the shorter and narrower the maxilla, and the longer and broader the mandible. Canines are shown to scale negatively allometric to skull length, hence, large animals will have relatively small canines.  相似文献   

20.
Teilhardina belgica is one of the most primitive fossil primates known to date and the earliest haplorhine with associated postcranials, making it relevant to a reconstruction of the ancestral primate morphotype. Here we describe newly discovered postcranial elements of T. belgica. It is a small primate with an estimated body mass between 30 and 60 g, similar to the size of a mouse lemur. Its hindlimb anatomy suggests frequent and forceful leaping with excellent foot mobility and grasping capabilities. It can now be established that this taxon exhibits critical primate postcranial synapomorphies such as a grasping hallux, a tall knee, and nailed digits. This anatomical pattern and behavioral profile is similar to what has been inferred before for other omomyids and adapiforms. The most unusual feature of T. belgica is its elongated middle phalanges (most likely manual phalanges), suggesting that this early primate had very long fingers similar to those of living tarsiers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号