首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of heat shock protein 90 (Hsp90) inhibitors is an attractive antineoplastic therapy. We wanted to compare the effects of the benzoquinone 17-allylamino-17-demethoxygeldanamycin (17-AAG, tanespimycin) and the novel isoxazole resorcinol–based Hsp90 inhibitor NVP-AUY922 in a panel of pancreatic and colorectal carcinoma cell lines and in colorectal primary cultures derived from tumors excised to patients. PANC-1, CFPAC-1, and Caco-2 cells were intrinsically resistant to 17-AAG but sensitive to NVP-AUY922. Other cellular models were sensitive to both inhibitors. Human epidermal growth factor receptor receptors and their downstream signaling pathways were downregulated in susceptible cellular models, and concurrently, Hsp70 was induced. Intrinsic resistance to 17-AAG did not correlate with expression of ATP-binding cassette transporters involved in multidrug resistance. Some 17-AAG-resistant, NVP-AUY922–sensitive cell lines lacked NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme and activity. However, colorectal LoVo cells still responded to both drugs in spite of having undetectable levels and activity of NQO1. Pharmacological and biologic inhibition of NQO1 did not confer resistance to 17-AAG in sensitive cell lines. Therefore, even though 17-AAG sensitivity is related to NQO1 protein levels and enzymatic activity, the absence of NQO1 does not necessarily convey resistance to 17-AAG in these cellular models. Moreover, NVP-AUY922 does not require NQO1 for its action and is a more potent inhibitor than 17-AAG in these cells. More importantly, we show in this report that NVP-AUY922 potentiates the inhibitory effects of chemotherapeutic agents, such as gemcitabine or oxaliplatin, and other drugs that are currently being evaluated in clinical trials as antitumor agents.  相似文献   

2.
Selenite is frequently used in combination with cancer chemotherapeutic agents to reduce side effects. However, the cytoprotective activity of selenite may also reduce the efficacy of chemotherapeutic drugs on tumor cells. This study was designed to examine the effects of selenite combined with cytotoxic agents used in clinical protocols [e.g., doxorubicine, docetaxel, 5-fluorouracil (5-FU), methotrexate (MTX), mafosphamide, mitomycin C, gemcitabine, etoposide, cisplatin, irinotecan, and oxaliplatin] on the proliferation of various carcinoma cell types. The data demonstrated that selenite had no marked effects on the antiproliferative activity of docetaxel, doxorubicine, 5-FU, MTX, and mafosphamide in MDA-MB-231 breast cancer cells. Likewise, no consistent changes were observed in A549 lung cancer cell proliferation when selenite was combined with cisplatin, etoposide, gemcitabine, or mitomycin C. On the other hand, selenite potentiated the cytotoxicity of 5-FU, oxaliplatin, and irinotecan in HCT116 colon cancer cells by approx 1.1-fold, 2.7-fold, and 2.6-fold, respectively. In SW620 colon cancer cells, selenite induced a 1.5-fold and 4.3-fold increase of the antiproliferative activity of 5-FU and oxaliplatin, respectively. Whereas irinotecan showed no effects on SW620 cell growth, a combination with selenite resulted in 23% inhibition. Our results indicate that selenite did not reduce the antiproliferative activity of chemotherapeutic agents in vitro. In addition, selenite was able to increase the inhibitory activity of docetaxel in A549 lung cancer cells, and of 5-FU, oxaliplatin, and irinotecan in HCT116 and SW620 colon cancer cells implying selenite is potentially useful as an adjuvant chemotherapeutic agent.  相似文献   

3.
4.
5.
To identify the proteins involved in 5-fluorouracil (5-FU) resistance, a comparison of the total and phosphorylated proteins between the human colorectal cancer (CRC) cell line DLD-1 and its 5-FU-resistant subclone DLD-1/5-FU was performed. Using 2-DE and MALDI-TOF/TOF-based proteomics, 17 up-regulated and 19 down-regulated protein spots were identified in the 5-FU-resistant DLD-1/5-FU cells compared with the parent cell lines. In DLD-1/5-FU cells, 7 anti-apoptotic proteins (HSPB1, proteasome subunit α-5, transitional endoplasmic reticulum ATPase, 14-3-3 β, 14-3-3 γ, 14-3-3 σ, and phosphoglycerate kinase 1) were up-regulated and 4 proapoptotic proteins (cofilin-1, pyruvate kinase M2, glyceraldehyde-3-phosphate dehydrogenase, and nucleophosmin) were down-regulated. The results show that the acquired drug resistance of DLD-1/5-FU cells is caused by the prevention of drug-induced apoptosis, in particular through the enhanced constitutive expression of HSPB1 and its phosphorylated form. Short interfering RNA knockdown of endogenous HSPB1 in DLD-1/5-FU cells restored the sensitivity to 5-FU. Furthermore, MALDI-TOF/TOF and 2-DE Western blot analysis identified the phosphorylated residues of HSPB1 as Ser-15 and Ser-82 in the main (diphosphorylated) form and Ser-15, Ser-78, and Ser-82 in the minor (triphosphorylated) form. The current findings indicate that phosphorylated HSPB1 may play an important role in 5-FU resistance.  相似文献   

6.
Láng I  Hitre E 《Magyar onkologia》2004,48(4):281-288
New results presented at ASCO Conference in 2003 added further important data to our knowledge on successful use of irinotecan in colorectal cancer (CRC). Irinotecan - just like oxaliplatin - given as neoadjuvant therapy with 5-FU - folinic acid (FUFA) can render originally unresectable liver or lung metastases of CRC resectable, giving the hope of long-term survival for a proportion of patients. Irinotecan combined with 5-FU is an essential part of the most successful palliative sequential chemotherapy of stage IV CRC. Sequential FOLFIRI before or after FOLFOX combination ensures the longest possible progression-free and overall survival for metastatic CRC patients in the palliative setting. In order to achieve the longest survival time, sequential use of both 5-FU, irinotecan and oxaliplatin is necessary. The French GERCOR Group achieved 26 months median overall survival with the sequential use of continuous infusional FUFA, oxaliplatin and irinotecan combinations in stage IV CRC. The analysis of large phase III trials using 5-FU, irinotecan and oxaliplatin revealed that the higher proportion of patients was treated with all three drugs, the longer overall survival was achieved. If applied with caution, toxicity and efficacy of irinotecan in elderly patients is not significantly different from that seen in younger population. The anti-VEGF bevacizumab increases the efficacy of first-line irinotecan therapy, while the addition of cetuximab restores irinotecan sensitivity in second line treatment of stage IV CRC. The combination of irinotecan with oral capecitabine is safe and effective in advanced CRC.  相似文献   

7.

Background

Heat shock protein 90 (HSP90) is a molecular chaperone responsible for the conformational maintenance of a number of client proteins that play key roles in cell cycle arrest, DNA damage repair and apoptosis following radiation. HSP90 inhibitors exhibit antitumor activity by modulating the stabilisation and activation of HSP90 client proteins. We sought to evaluate NVP-AUY922, the most potent HSP90 inhibitor yet reported, in preclinical radiosensitization studies.

Principal Findings

NVP-AUY922 potently radiosensitized cells in vitro at low nanomolar concentrations with a concurrent depletion of radioresistance-linked client proteins. Radiosensitization by NVP-AUY922 was verified for the first time in vivo in a human head and neck squamous cell carcinoma xenograft model in athymic mice, as measured by delayed tumor growth and increased surrogate end-point survival (p = <0.0001). NVP-AUY922 was shown to ubiquitously inhibit resolution of dsDNA damage repair correlating to delayed Rad51 foci formation in all cell lines tested. Additionally, NVP-AUY922 induced a stalled mitotic phenotype, in a cell line-dependent manner, in HeLa and HN5 cell lines irrespective of radiation exposure. Cell cycle analysis indicated that NVP-AUY922 induced aberrant mitotic entry in all cell lines tested in the presence of radiation-induced DNA damage due to ubiquitous CHK1 depletion, but resultant downstream cell cycle effects were cell line dependent.

Conclusions

These results identify NVP-AUY922 as the most potent HSP90-mediated radiosensitizer yet reported in vitro, and for the first time validate it in a clinically relevant in vivo model. Mechanistic analysis at clinically achievable concentrations demonstrated that radiosensitization is mediated by the combinatorial inhibition of cell growth and survival pathways, ubiquitous delay in Rad51-mediated homologous recombination and CHK1-mediated G2/M arrest, but that the contribution of cell cycle perturbation to radiosensitization may be cell line specific.  相似文献   

8.
Mechanisms to reduce the cellular levels of mutant huntingtin (mHtt) provide promising strategies for treating Huntington disease (HD). To identify compounds enhancing the degradation of mHtt, we performed a high throughput screen using a hippocampal HN10 cell line expressing a 573-amino acid mHtt fragment. Several hit structures were identified as heat shock protein 90 (Hsp90) inhibitors. Cell treatment with these compounds reduced levels of mHtt without overt toxic effects as measured by time-resolved Förster resonance energy transfer assays and Western blots. To characterize the mechanism of mHtt degradation, we used the potent and selective Hsp90 inhibitor NVP-AUY922. In HdhQ150 embryonic stem (ES) cells and in ES cell-derived neurons, NVP-AUY922 treatment substantially reduced soluble full-length mHtt levels. In HN10 cells, Hsp90 inhibition by NVP-AUY922 enhanced mHtt clearance in the absence of any detectable Hsp70 induction. Furthermore, inhibition of protein synthesis with cycloheximide or overexpression of dominant negative heat shock factor 1 (Hsf1) in HdhQ150 ES cells attenuated Hsp70 induction but did not affect NVP-AUY922-mediated mHtt clearance. Together, these data provided evidence that direct inhibition of Hsp90 chaperone function was crucial for mHtt degradation rather than heat shock response induction and Hsp70 up-regulation. Co-immunoprecipitation experiments revealed a physical interaction of mutant and wild-type Htt with the Hsp90 chaperone. Hsp90 inhibition disrupted the interaction and induced clearance of Htt through the ubiquitin-proteasome system. Our data suggest that Htt is an Hsp90 client protein and that Hsp90 inhibition may provide a means to reduce mHtt in HD.  相似文献   

9.
Novel drugs are required for the elimination of infections caused by filarial worms, as most commonly used drugs largely target the microfilariae or first stage larvae of these infections. Previous studies, conducted in vitro, have shown that inhibition of Hsp90 kills adult Brugia pahangi. As numerous small molecule inhibitors of Hsp90 have been developed for use in cancer chemotherapy, we tested the activity of several novel Hsp90 inhibitors in a fluorescence polarization assay and against microfilariae and adult worms of Brugia in vitro. The results from all three assays correlated reasonably well and one particular compound, NVP-AUY922, was shown to be particularly active, inhibiting Mf output from female worms at concentrations as low as 5.0 nanomolar after 6 days exposure to drug. NVP-AUY922 was also active on adult worms after a short 24 h exposure to drug. Based on these in vitro data, NVP-AUY922 was tested in vivo in a mouse model and was shown to significantly reduce the recovery of both adult worms and microfilariae. These studies provide proof of principle that the repurposing of currently available Hsp90 inhibitors may have potential for the development of novel agents with macrofilaricidal properties.  相似文献   

10.
We previously reported the association of HSPA1A and HSPB1 with high-grade astrocytomas, suggesting that these proteins might be involved in disease outcome and response to treatment. With the aim to better understand the resistance/susceptibility processes associated to temozolomide (TMZ) treatment, the current study was performed in three human malignant glioma cell lines by focusing on several levels: (a) apoptotic index and senescence, (b) DNA damage, and (c) interaction of HSPB1 with players of the DNA damage response. Three human glioma cell lines, Gli36, U87, and DBTRG, were treated with TMZ evaluating cell viability and survival, apoptosis, senescence, and comets (comet assay). The expression of HSPA (HSPA1A and HSPA8), HSPB1, O6-methylguanine-DNA methyltransferase (MGMT), MLH1, and MSH2 was determined by immunocytochemistry, immunofluorescence, and Western blot. Immunoprecipitation was used to analyze protein interaction. The cell lines exhibited differences in viability, apoptosis, and senescence after TMZ administration. We then focused on Gli36 cells (relatively unstudied) which showed very low recovery capacity following TMZ treatment, and this was related to high DNA damage levels; however, the cells maintained their viability. In these cells, MGMT, MSH2, HSPA, and HSPB1 levels increased significantly after TMZ administration. In addition, MSH2 and HSPB1 proteins appeared co-localized by confocal microscopy. This co-localization increased after TMZ treatment, and in immunoprecipitation analysis, MSH2 and HSPB1 appeared interacting. In contrast, HSPB1 did not interact with MGMT. We show in glioma cells the biological effects of TMZ and how this drug affects the expression levels of heat shock proteins (HSPs), MGMT, MSH2, and MLH1. In Gli36 cells, the results suggest that interactions between HSPB1 and MSH2, including co-nuclear localization, may be important in determining cell sensitivity to TMZ.  相似文献   

11.
12.
《Cytokine》2010,49(3):231-238
Interleukin-21 (IL-21) is a class I cytokine with antitumor properties due to enhanced proliferation and effector function of CD8+ T cells and natural killer (NK) cells. Here we have explored the magnitude and time-course of cytostatics-induced lymphopenia in mice and investigated whether treatment with cytostatics influences the antitumor effect of IL-21 in mouse tumor models. We show that pegylated liposomal doxorubicin (PLD), irinotecan and oxaliplatin induced transient lymphopenia, whereas 5-fluorouracil (5-FU) transiently increased lymphocyte counts. B cells were more sensitive than T cells towards irinotecan and oxaliplatin. Additive antitumor effects were observed after combining IL-21 with PLD, oxaliplatin and to less extent 5-FU but not irinotecan, and larger effect was observed when IL-21 administration was postponed relative to chemotherapy, suggesting that these agents may transiently impair immune function. However, the chemotherapies did not significantly alter the levels of circulating regulatory T cells and only marginally affected the ability of CD8+ T cells to respond to IL-21 measured as increased granzyme B mRNA. Our results show that IL-21 therapy can be successfully combined with agents from different chemotherapeutic drug classes, i.e. topoisomerase II inhibitors (PLD), anti-metabolites (5-FU) and platinum analogs (oxaliplatin) provided that IL-21 therapy is delayed relative to chemotherapy.  相似文献   

13.
Interleukin-21 (IL-21) is a class I cytokine with antitumor properties due to enhanced proliferation and effector function of CD8+ T cells and natural killer (NK) cells. Here we have explored the magnitude and time-course of cytostatics-induced lymphopenia in mice and investigated whether treatment with cytostatics influences the antitumor effect of IL-21 in mouse tumor models. We show that pegylated liposomal doxorubicin (PLD), irinotecan and oxaliplatin induced transient lymphopenia, whereas 5-fluorouracil (5-FU) transiently increased lymphocyte counts. B cells were more sensitive than T cells towards irinotecan and oxaliplatin. Additive antitumor effects were observed after combining IL-21 with PLD, oxaliplatin and to less extent 5-FU but not irinotecan, and larger effect was observed when IL-21 administration was postponed relative to chemotherapy, suggesting that these agents may transiently impair immune function. However, the chemotherapies did not significantly alter the levels of circulating regulatory T cells and only marginally affected the ability of CD8+ T cells to respond to IL-21 measured as increased granzyme B mRNA. Our results show that IL-21 therapy can be successfully combined with agents from different chemotherapeutic drug classes, i.e. topoisomerase II inhibitors (PLD), anti-metabolites (5-FU) and platinum analogs (oxaliplatin) provided that IL-21 therapy is delayed relative to chemotherapy.  相似文献   

14.
15.
A potential therapeutic strategy for targeting cancer that has gained much interest is the inhibition of the ATP binding and ATPase activity of the molecular chaperone Hsp90. We have determined the structure of the human Hsp90α N-terminal domain in complex with a series of 5-aryl-4-(5-substituted-2-4-dihydroxyphenyl)-1,2,3-thiadiazoles. The structures provide the molecular details for the activity of these inhibitors. One of these inhibitors, ICPD 34, causes a structural change that affects a mobile loop, which adopts a conformation similar to that seen in complexes with ADP, rather than the conformation generally seen with the pyrazole/isoxazole-resorcinol class of inhibitors. Competitive binding to the Hsp90 N-terminal domain was observed in a biochemical assay, and these compounds showed antiproliferative activity and induced apoptosis in the HCT116 human colon cancer cell line. These inhibitors also caused induction of the heat shock response with the upregulation of Hsp72 and Hsp27 protein expression and the depletion of Hsp90 clients, CRAF, ERBB2 and CDK4, thus confirming that antiproliferative activity was through the inhibition of Hsp90. The presence of increased levels of the cleavage product of PARP indicated apoptosis in response to Hsp90 inhibitors. This work provides a framework for the further optimization of thiadiazole inhibitors of Hsp90. Importantly, we demonstrate that the thiadiazole inhibitors display a more limited core set of interactions relative to the clinical trial candidate NVP-AUY922, and consequently may be less susceptible to resistance derived through mutations in Hsp90.  相似文献   

16.
17.

Background

Ionizing irradiation is a commonly accepted treatment modality for lung cancer patients. However, the clinical outcome is hampered by normal tissue toxicity and tumor hypoxia. Since tumors often have higher levels of active heat shock protein 90 (Hsp90) than normal tissues, targeting of Hsp90 might provide a promising strategy to sensitize tumors towards irradiation. Hsp90 client proteins include oncogenic signaling proteins, cell cycle activators, growth factor receptors and hypoxia inducible factor-1α (HIF-1α). Overexpression of HIF-1α is assumed to promote malignant transformation and tumor progression and thus might reduce the accessibility to radiotherapy.

Methodology/Principal Findings

Herein, we describe the effects of the novel Hsp90 inhibitor NVP-AUY922 and 17-allylamino-17-demethoxygeldanamycin (17-AAG), as a control, on HIF-1α levels and radiosensitivity of lung carcinoma cells under normoxic and hypoxic conditions. NVP-AUY922 exhibited a similar biological activity to that of 17-AAG, but at only 1/10 of the dose. As expected, both inhibitors reduced basal and hypoxia-induced HIF-1α levels in EPLC-272H lung carcinoma cells. However, despite a down-regulation of HIF-1α upon Hsp90 inhibition, sensitivity towards irradiation remained unaltered in EPLC-272H cells under normoxic and hypoxic conditions. In contrast, treatment of H1339 lung carcinoma cells with NVP-AUY922 and 17-AAG resulted in a significant up-regulation of their initially high HIF-1α levels and a concomitant increase in radiosensitivity.

Conclusions/Significance

In summary, our data show a HIF-1α-independent radiosensitization of normoxic and hypoxic H1339 lung cancer cells by Hsp90 inhibition.  相似文献   

18.
Many epithelial cancers, particularly gastrointestinal tract cancers, remain poor prognosis diseases, due to resistance to cytotoxic therapy and local or metastatic recurrence. We have previously shown that apoptosis incompetent esophageal cancer cells induce autophagy in response to chemotherapeutic agents and this can facilitate their recovery. However, known pharmacological inhibitors of autophagy could not enhance cytotoxicity. In this study, we have examined two well known, clinically approved autophagy inducers, rapamycin and lithium, for their effects on chemosensitivity in apoptosis incompetent cancer cells. Both lithium and rapamycin were shown to induce autophagosomes in esophageal and colorectal cancer cells by western blot analysis of LC3 isoforms, morphology and FACS quantitation of Cyto-ID or mCherry-GFP-LC3. Analysis of autophagic flux indicates inefficient autophagosome processing in lithium treated cells, whereas rapamycin treated cells showed efficient flux. Viability and recovery was assessed by clonogenic assays. When combined with the chemotherapeutic agent 5-fluorouracil, rapamycin was protective. In contrast, lithium showed strong enhancement of non-apoptotic cell death. The combination of lithium with 5-fluorouracil or oxaliplatin was then tested in the syngenic mouse (balb/c) colorectal cancer model—CT26. When either chemotherapeutic agent was combined with lithium a significant reduction in tumor volume was achieved. In addition, survival was dramatically increased in the combination group (p < 0.0001), with > 50% of animals achieving long term cure without re-occurrence (> 1 year tumor free). Thus, combination treatment with lithium can substantially improve the efficacy of chemotherapeutic agents in apoptosis deficient cancer cells. Induction of compromised autophagy may contribute to this cytotoxicity.  相似文献   

19.

Background  

DNA methylation is an epigenetic phenomenon known to play an important role in the development of cancers, including colorectal cancer (CRC). Aberrant methylation of promoter regions of genes is potentially reversible, and if methylation is important for cancer survival, demethylation should do the opposite. To test this we have addressed the hypothesis that DNA methyltransferase inhibitors (DNMTi), decytabine and zebularine, potentiate inhibitory effects of classical anti-CRC cytostatics, oxaliplatin and 5-fluorouracil (5-FU), on survival of CRC cells in vitro.  相似文献   

20.
Colorectal cancer (CRC) is one of the most common and deadliest forms of cancer. Myeloid Cell Leukemia 1 (MCL1), a pro-survival member of the Bcl-2 protein family is associated with chemo-resistance in CRC. The ability of MCL1 to inhibit apoptosis by binding to the BH3 domains of pro-apoptotic Bcl-2 family members is a well-studied means by which this protein confers resistance to multiple anti-cancer therapies. We found that specific DNA damaging chemotherapies promote nuclear MCL1 translocation in CRC models. In p53null CRC, this process is associated with resistance to chemotherapeutic agents, the mechanism of which is distinct from the classical mitochondrial protection. We previously reported that MCL1 has a noncanonical chemoresistance capability, which requires a novel loop domain that is distinct from the BH3-binding domain associated with anti-apoptotic function. Herein we disclose that upon treatment with specific DNA-damaging chemotherapy, this loop domain binds directly to alpha-enolase which in turn binds to calmodulin; we further show these protein−protein interactions are critical in MCL1’s nuclear import and chemoresistance. We additionally observed that in chemotherapy-treated p53−/− CRC models, MCL1 nuclear translocation confers sensitivity to Bcl-xL inhibitors, which has significant translational relevance given the co-expression of these proteins in CRC patient samples. Together these findings indicate that chemotherapy-induced MCL1 translocation represents a novel resistance mechanism in CRC, while also exposing an inherent and targetable Bcl-xL co-dependency in these cancers. The combination of chemotherapy and Bcl-xL inhibitors may thus represent a rational means of treating p53−/− CRC via exploitation of this unique MCL1-based chemoresistance mechanism.Subject terms: Targeted therapies, Senescence  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号