首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Superparasitism refers to the oviposition behavior of parasitoid females who lay their eggs in an already parasitized host. Recent studies have shown that allocation of additional eggs to an already parasitized host may be beneficial under certain conditions. In the present work, mortality of Microplitis rufiventris wasps was significantly influenced by both host instar of Spodoptera littoralis larvae at parasitism and level of parasitism. In single parasitization, all host instars (first through sixth) were not equally suitable. Percentage of emergence success of wasp larvae was very high in parasitized first through third (highly suitable hosts), fell to 60% in the fourth instar (moderate suitable) and sharply decreased in the penultimate (5th) instars (marginally suitable). Singly parasitized sixth (last) instar hosts produced no wasp larvae (entirely unsuitable), pupated and eclosed to apparently normal adult moths. The scenario was different under superparasitism, whereas supernumerary individuals in the highly suitable hosts were almost always killed as first instars, superparasitization in unsuitable hosts (4th through 6th) had significant increase in number of emergence success of wasp larvae. Also, significantly greater number of parasitoid larvae successfully developed in unsuitable hosts containing three wasp eggs than counterparts containing two wasp eggs. Moreover, the development of surplus wasp larvae was siblicidal in earlier instars and nonsiblicidal gregarious one in the penultimate and last “sixth” instars. It is suggested that the optimal way for M. rufiventris to deal with high quality hosts (early instars) is to lay a single egg, while the optimal way to deal with low quality hosts (late instars) might be to superparasitize these hosts.  相似文献   

2.
ABSTRACT. Previously we have shown that the number of Apanteles congregatus Say (Hymenoptera, Braconidae) larvae developing in Manduca sexta (L.) (Lepidoptera, Sphingidae) larvae that are parasitized in the first instar determines the timing of emergence of the parasites from the host. Here we show that the first larval ecdysis of the wasps occurs after the host ecdyses to the terminal stage, regardless of whether that stage is the host's fourth, fifth or supernumerary sixth instar. Starvation of newly ecdysed terminal stage host larvae prevents emergence of the parasites. When starvation is begun at progressively later times, then an increasing proportion of the hosts have parasites that emerge, suggesting a period of indispensable host nutrition exists during which the host must feed to satisfy the developmental requirements of the parasites. In hosts fed ad libitum , the weight of the host plus its parasites at the time of emergence is positively correlated with the number of parasites developing in the host. When the weight of the parasites alone is subtracted from the weight of the host—parasite complex, the data show that heavily parasitized hosts have a larger host mass than lightly parasitized larvae. In contrast, the wasp larvae, and the adult males and females that develop from them, have lower individual weights after development in heavily parasitized hosts.  相似文献   

3.
Apophua simplicipes (Cresson) (Hymenoptera: Ichneumonidae) is a common parasitoid of the oblique banded leafroller, Choristoneura rosaceana (Harris) (Lepidoptera: Tortricidae) in organically managed apple orchards in the southern interior of British Columbia, Canada. The biological characteristics of a laboratory colony of A. simplicipes were studied. When held at 15 and 25°C and provided with honey water, individual females survived an average of 60.6±6.1 and 29.8±4.7 days, oviposited 196.7±50.7 and 326.6±51.3 eggs and parasitized a total of 163.4±40.4 and 229.4±35.8 hosts, respectively. Females oviposited into first through fourth instar oblique banded leafrollers, with significantly more parasitism occurring in the first two instars compared to the third and fourth instars. No parasitoid larvae survived past the first larval stage in parasitized fourth instar hosts. Apophua simplicipes did not parasitize larvae of three-lined leafroller, Pandemis limitata (Robinson) (Lepidoptera: Tortricidae) which is sympatric with oblique banded leafrollers in orchards in the southern interior of British Columbia. Female predation and host feeding from wounds on early instars of both leafroller species was observed under laboratory conditions. In addition, early instar hosts exited diet feeding sites in response to the probing activity of the ovipositing wasps. A similar escape reaction in the orchard may cause a leafroller larva to move away from its feeding site, making it more vulnerable to predation or movement off the tree. Apophua simplicipes larvae emerged from fifth and sixth instar hosts. Parasitized oblique banded leafroller hosts consumed significantly less meridic diet than unparasitized female larvae from fifth instar through to parasitoid emergence or leafroller pupation. Our laboratory results suggest that A. simplicipes may reduce field populations of oblique banded leafroller and decrease pest feeding damage.  相似文献   

4.
A. Schopf 《BioControl》1991,36(4):593-604
The endoparasitic development ofG. liparidis was examined in 3 different host stages of gypsy moth larvae. Hatching ofG. liparidis-larvae occurred 3 to 5 days after oviposition in hosts parasitized during their premoulting period, and after 5 to 7 days in those parasitized in the 3rd midinstar state. The parasites generally moulted to the 2nd larval instar between the 11th and 13th day in the first group, and between the 13th and 15th day in the latter, when they had reached a volume of 0.04–0.05 mm3. The positive correlation between host ecdysis and the ecdysis of 1st stadium larvae to L2 suggested that host moulting influenced the development of the parasitoid larvae. Emergence from the host larvae occurred at 20°C after 27 days on average, and coincided with the parasites moulting to the 3rd instar. Five to 7 days after spinning their cocoons near the developmentally arrested host larva, the male, and 1 to 2 days later the female wasps eclosed. Due to the variation in the number of parasites per host, no difference was observed between the hosts parasitized at various stages; however, a tendency for later parasitized hosts to contain more parasite larvae was evident. The nutritional conditions of the moth parental generation influenced both host and parasite development. On the other hand no influence of host age was observed on emergence dates of larvae and wasps.   相似文献   

5.
The host instar preferences of Encarsia bimaculata and Eretmocerus sp. nr. furuhashii parasitizing Bemisia tabaci and their development on four host plants, collard, eggplant, cucumber and tomato, were studied in the laboratory. Both of the parasitoids accepted all nymphal stages of B. tabaci, but E. bimaculata preferred third and fourth instars while Er. sp. nr. furuhashii preferred second and third instars under both choice and no choice conditions. Regardless of host stage parasitized, adults of parasitoids emerged only from fourth instars. When given the simultaneous choice of all instars, E. bimaculata reduced parasitization of first and second instars (3.73 and 4.76%, respectively) while increasing parasitization of third and fourth instars (5.44 and 6.93%, respectively), in contrast Er. sp. nr. furuhashii increased its parasitization of second and third instar nymphs (1.27 and 3.17%, respectively) and decreased that of first and fourth instars (7.0 and 3.06%, respectively). Host plants did not significantly influence instar preference for either parasitoid. Developmental periods of both the parasitoids from egg to adult emergence were longest when first instars were parasitized and shortest when fourth instars were selected. Parasitoid developmental time was generally shorter on glabrous plants than on hirsute plants.  相似文献   

6.
"选择-表现"假说认为,成虫应该选择有利于子代发育的高品质寄主,但在寄主选择中,除了寄主品质外,其他因素也可能影响寄主选择决策。寄主选择研究通常以成虫为对象,而对那些初龄幼虫选择寄主的寄生性昆虫很少关注。以1龄幼虫积极搜寻寄主的寄生性花绒寄甲为模式生物,采用双选试验设计,观察了花绒寄甲初孵幼虫在不同体重青杨天牛幼虫之间、在已被寄生与健康的黄粉虫蛹之间的寄生选择性;然后采用回归设计,观察了花绒寄甲寄生若干不同体重的青杨天牛幼虫后的发育表现。研究结果表明,花绒寄甲1龄幼虫对体型较大的青杨天牛幼虫的选择偏好显著大于对体型较小的寄主幼虫的选择,选择大体型幼虫的比值比是选择小体型幼虫的4.55倍;对已被寄生的寄主黄粉虫蛹的选择偏好显著大于对健康寄主蛹的选择,选择已被寄生寄主的比值比是选择健康寄主的12.57倍。寄生青杨天牛幼虫的花绒寄甲幼虫发育历期平均为11.49 d、蛹历期为26.67 d、幼虫发育至成虫的羽化率50%,这些发育表现与寄生时青杨天牛幼虫的体重没有显著关系。但刚羽化寄甲成虫体重与寄生时寄主的体重存在显著的正直线关系:寄生时的寄主体重每增大0.01 g,羽化出的寄甲成虫体重增大近0.08%;方差分析寄甲成虫体重在不同寄主体重水平之间的差异表明,从体型较大寄主中羽化的寄甲成虫体重显著大于从体型较小寄主中羽化的成虫。研究结果说明,花绒寄甲初孵幼虫在寄主选择决策时,在寄主体型大小与被寄生状态之间可能采取折衷对策,而且对体型大小不同的寄主选择与子代发育适合度表现存在一致性,从而支持"选择-表现"假说。  相似文献   

7.
Relative effects of parasitism by Microplitis rufiventris on the development of the third instar Spodoptera littoralis (preferable, optimal host) with the development of penultimate (5th) and last (6th) instars (suboptimal hosts) were investigated. Newly molted 6th instar hosts were more acceptable for parasitization by the wasp female than older hosts. In singly parasitized 3rd instar hosts, 82.0 +/- 3.9% of the parasitoid eggs developed to full-grown instar wasp larvae. However, parasitoid eggs deposited singly in 73.9 +/- 3.3% of 5th and 100% of 6th instar hosts failed to develop. Superparasitization in the 3rd instar hosts reduced the production of pseudoparasitized larvae and, conversely, all parasitized hosts yielded viable parasitoid offspring. In suboptimal hosts, the development interaction between the parasitoid and its host larvae was highly influenced by the age of hosts at parasitism, load of deposited eggs, and other parasitoid factors. The latter factors, e.g., mainly calyx fluid particles, might be involved in establishing parasitoid eggs in the suboptimal hosts. In the last two host instars, superparasitization significantly increased the number of parasitoid larvae successfully reaching their final instar. Variation in host quality, e.g., physiological status, might be attributed, in part, to the partial breakdown of the solitary habit observed in the earlier instars. More parasitoid eggs developed to mature parasitoid larvae in hosts superparasitized as 6th instar than parasitoid eggs laid in 5th instar hosts. Superparasitization significantly lengthened the developmental period of 5th and 6th host instars and inhibited their development to the pupal stage. Studying parasitoid development in suboptimal instars of its habitual host provided physiological insight, as shown here. The results may have implication for biological control and in vitro mass rearing programs with solitary parasitoids.  相似文献   

8.
The tiny parasitoid wasp, Encarsia formosa, has been used successfully to control greenhouse whiteflies (GHWFs) in greenhouses in many countries throughout the world. Therefore, there has been considerable interest in developing methods for artificially rearing this wasp. However, little information is available concerning the regulation of its development including the host-parasitoid interactions that are required for the parasitoid to complete its life cycle. Here we confirm that parasitoid developmental rates differ significantly based upon the host instar parasitized. Development was faster when 3rd and 4th instar GHWFs were offered for parasitization than when 1st or 2nd instars were used. Our results show that it is primarily the embryo and the first two parasitoid instars that exhibit prolonged developmental times when 1st and 2nd instar whiteflies are parasitized. Although percent emergence was not affected by host age at the time of parasitization, adult longevity as well as adult emergence pattern varied greatly depending upon the instar parasitized. When 3rd and 4th instar GHWFs were selected for oviposition, adult wasps lived significantly longer than when 1st or 2nd instars were used; also, there was a sharp emergence peak on the 2nd day after emergence was first observed (reduced or absent when 1st or 2nd instar GHWFs were parasitized) and the emergence period was reduced from between 8 and 11 days to 5 days. In general, the younger the host instar parasitized, the less synchronous was parasitoid development. Previous reports that E. formosa will not molt to the 2nd instar until the host has reached its 4th instar were not confirmed. When 1st instar host nymphs were parasitized, 2nd instar parasitoids were detected in 3rd instar hosts. Importantly, however, no matter which instar was parasitized, the parasitoid never molted to its last instar until the host had reached Stage 5 of its last instar, a stage in which host pharate adult formation has been initiated. It appears, then, that a condition(s) associated with host pharate adult formation is required for the parasitoid's final larval molt. Results reported here should facilitate the development of in vitro rearing systems for E. formosa.  相似文献   

9.
The solitary parasitoid Microplitis tuberculifer (Wesmael) is an important biological control agent of various lepidopteran pests in Asia. We examined the preference of M. tuberculifer for different instars of its common host, Mythimna separata (Walker), host instar effects on parasitoid development, and the consequences of parasitism in different stages for growth and consumption of host larvae. The wasp successfully parasitized the first four larval instars of M. separata, but not the fifth, which appeared to be behaviorally resistant. First and second instars were parasitized at higher rates compared to thirds and fourths in no-choice situations, ostensibly due to longer handling times for the latter, but second instars were most preferred in a choice test that presented all stages simultaneously. Although later instar hosts yielded heavier cocoons, the fastest parasitoid development was obtained in second instars. Lower sex ratios were obtained from first instars as females appeared to lay a smaller proportion of fertilized eggs in small hosts. Both weight gain and food consumption of parasitized larvae were reduced significantly within 24 h of parasitism, regardless of the stage parasitized, and final body weights were less than 10% those of unparasitized larvae. Thus, M. tuberculifer has good potential as a biological control agent of M. separata, successfully parasitizing the first four larval instars and dramatically reducing plant consumption by the host in all cases.  相似文献   

10.
11.
Larvae of Anastrepha suspensa that were in the first day of the third instar were parasitized by females of the solitary endoparasitoid, Biosteres longicaudatus. At the end of the 6-hr oviposition period, larvae were ligated posterior to the ring gland so that some larvae had parasitoids anterior to the ligature while in others, the parasitoids were in the abdomen, posterior to the ligature. Ninety-two percent of the parasitoids anterior to the ligature hatched to the first through third instars. Parasitoids posterior to the ligature had a 75% egg hatch to the first instar only. No larval molts to the second or subsequent instars occurred in these parasitoids. Upon parabiosis to 3-day-old, unparasitized host pupae, the ligated larvae pupated and 97% of the first-instar parasitoids in these parabiosed larval abdomens molted to the second instar. Newly laid parasitoid eggs transplanted to 3-day-old pupal hosts had less than one-third of the egg hatch of those transplanted to first-day third-instar hosts. The data implicate the physiological state of the host (vis-a-vis pupation and associated events) as being an important factor in the development of the endoparasitoid.  相似文献   

12.
The effect of a nuclear polyhedrosis virus on the relationship between Trichoplusia ni and the parasite, Hyposoter exiguae, was investigated to determine if the virus could invade and multiply in the tissues of the parasites, if parasites which emerged from virus-infected T. ni larvae had normal emergence, fecundity, and longevity, and if the parasite could serve as a vector for the virus. Light microscopy revealed particles which appeared to be polyhedra within the lumen of the midgut of parasite larvae from virus-infected hosts. Transmission electron microscopy confirmed the presence of polyhedra and free virions within the midgut of the larvae. Polyhedra or free virions were never found within any parasite tissues. Parasite larvae within hosts exposed to virus before parasitization perished when their hosts died of virus infection. Parasite larvae in hosts exposed to virus after parasitization completed their development before their hosts died of virus infection. The proportion of parasites which survived increased as the time between host parasitization and host virus exposure increased. Parasite larvae which developed in hosts exposed to the virus soon after parasitization spent significantly less time in their hosts than did parasites which developed in noninfected hosts. There was no significant difference in time spent in the pupal stage, percent adult emergence, adult longevity with and without food and water, and fecundity of parasites which developed in virus-infected hosts and those which developed in noninfected hosts. Female parasites laid as many eggs in virus-infected hosts as they did in noninfected hosts. Sixty percent of the female parasites which oviposited in virus-infected hosts vectored infective doses of virus to an average of 6% of the healthy hosts subsequently exposed to them. None of the healthy host larvae exposed to male parasites which had been exposed to virus-infected host larvae became infected with the virus. Forty percent of the female parasites which developed in virus-infected hosts transmitted infective doses of the virus to an average of 65% of the healthy host larvae exposed to them. Ninety percent of the male parasites which developed in virus-infected hosts transferred infective doses of the virus to an average of 21% of the healthy host larvae exposed to them.  相似文献   

13.
In this study we examined interactions between two solitary endoparasitoids, the braconid Chelonus insularis and the ichneumonid Campoletis sonorensis, and a multiple-enveloped nucleopolyhedrovirus infecting Spodoptera frugiperda larvae. We examined whether ovipositing females minimize interference by discriminating amongst hosts and examined the outcome of within-host competition between parasitoid species and between the parasitoids and the virus. The egg–larval parasitoid Ch. insularis did not discriminate between virus-contaminated and uncontaminated S. frugiperda eggs; all S. frugiperda larvae that emerged from surface-contaminated eggs died of viral infection prior to parasitoid emergence. The larval parasitoid C. sonorensis also failed to discriminate between healthy and virus-infected S. frugiperda larvae or between larvae unparasitized or parasitized by Ch. insularis. Host larvae parasitized in the egg stage by Ch. insularis were suitable for the development of C. sonorensis when they were multiparasitized by C. sonorensis as first, second, third, and fourth instars, whereas emergence of Ch. insularis was dramatically reduced (by 85 to 100%) in multiparasitized hosts. Nonspecific host mortality was significantly higher in multiparasitized hosts than in singly parasitized hosts. The development time and sex ratio of C. sonorensis in multiparasitized host larvae were unaffected by the presence of Ch. insularis larval stages. Both Ch. insularis parasitized and nonparasitized larvae of the same instar (second, third, or fourth instars) had a similar quantitative response to a challenge of virus inoculum. All host larvae that ingested a lethal dose of virus were unsuitable for Ch. insularis development. In contrast, C. sonorensis did not survive in hosts that ingested a lethal virus dose immediately after parasitism, but parasitoid survival was possible with a 2-day delay between parasitism and viral infection and the percentage of parasitoid emergence increased significantly as the interval between parasitism and viral infection increased. The development time of C. sonorensis was significantly reduced in virus-infected hosts compared to conspecifics that developed in healthy hosts. C. sonorensis females that oviposited in virus-infected hosts did not transmit the virus to healthy hosts that were parasitized subsequently. Field applications of virus for biocontrol of S. frugiperda may lead to substantial mortality of immature parasitoids, although field experiments have not yet demonstrated such an effect.  相似文献   

14.
As a result of parasitism by Glyptapanteles liparidis in the first, second, third and fourth instar larvae of Acronicta rumicis, the mortality of each larval stage was found to be 46.67, 90, 71 and 16.67%, respectively. The mortality was highest when G. liparidis parasitized the second and third instar larvae. The difference in mortality between the parasitized group and the control group was 72.14% in the second instar larvae. With regards to the food consumption of the parasitized larvae, the first and second instar larvae consumed 6495.58 ± 646.52 mm2 (leaf surface) and 7951.12 ± 4167.36 mm2, respectively, while the third and fourth larvae consumed 13 826.77 ± 3396.66 mm2 and 18 599.85 mm2, respectively, showing that food consumption increased with instar stages of the host larvae. The clutch size of G. liparidis increased in relation to the instar stages of the host: it was 25.25 ± 7.89, 48.65 ± 53.75, 91.09 ± 44.52 and 114 individuals when they were fed with the first, second, third and the fourth instar larvae of the host, respectively.  相似文献   

15.
Studies were conducted to compare preference among Bemisia tabaci Gennadius, biotype B instars for parasitization by Eretmocerus mundus Mercet and Encarsia pergandiella Howard when provided one instar only, two different instars, and four different instars simultaneously. In the single‐instar no choice treatment, Er. mundus was more successful in parasitizing the younger host instars, while En. pergandiella parasitized a greater proportion of the older instars. Similar results were observed when parasitoids were provided a choice of two instars in six different pair combinations. When all four instars were provided simultaneously, the numbers of first, second, and third instars parasitized by Er. mundus were not significantly different from each other (range 10.3–16.4%), but all were significantly higher than parasitism of fourth instar nymphs (2.1%). The highest percentage parasitization by En. pergandiella was in third instar (17.2%), and the lowest in first instar (2.8%).  相似文献   

16.
The tachinid Celatoria compressa, a parasitoid of adult Diabrotica species in North America has been studied as a candidate classical biological control agent for the western corn rootworm, Diabrotica virgifera virgifera, in Europe. Prior to its potential importation, a thorough understanding of the parasitoid's reproductive biology is essential, and is an important component in the evaluation of a species as a biological control agent. In this study it has been clarified that C. compressa belongs to a group of a few tachinid species characterised by having eggs that contain fully developed larvae which are laid directly into the host. After mating, the egg load of females increased steadily from day 1 to a maximum egg load on day 4. Thereafter eggs containing fully developed first instar larvae reached a maximum of 31 in 69 eggs. At the first day of larviposition, females laid on average only five eggs into multiple hosts, which is in contrast to the availability of 18 eggs containing fully developed first instars in the uterus per female at that time. During a mean female's larviposition period of 23 days, a total of 33 first instars were larviposited into the hosts, which is only half of the female's egg load. Lifetime fecundity of C. compressa was significantly correlated with longevity. However no relationship was found between body size and either lifetime fecundity or longevity. In this study, an inverse host density-dependent pattern of percent parasitism was shown for C. compressa under 24-h fixed-time laboratory conditions, reflecting a Holling type II response. The number of host parasitized per C. compressa female reached an upper limit of 10 hosts with an increasing host density, which can be explained by the long host handling time of C. compressa.  相似文献   

17.
The increase in the juvenile hormone (JH) III titer in the hemolymph of Lymantria dispar larvae that were parasitized by the endoparasitoid braconid, Glyptapanteles liparidis, during the host's premolt to third instar, coincided with the molt of the parasitoid larvae to the second instar between day 5 and 7 of the fourth host instar. It reached a maximum mean value of 89 pmol/ml on day 7 of the fifth instar while it remained below 1 pmol/ml in unparasitized larvae. Only newly molted fifth instar hosts showed a low JH III titer similar to that of the unparasitized larvae. JH II, which is the predominant JH homologue in unparasitized gypsy moth larvae, also increased relative to controls in the last two samples (days 7 and 9) from parasitized fourth and fifth instars. Compared to unparasitized larvae, a generally reduced activity of JH esterase (JHE) was found in parasitized larvae throughout both larval stages. The reduction in enzyme activity at the beginning and at the end of each instar, when the JHE activity in unparasitized larvae was high, may be in part responsible for the increased JH II and JH III titers in parasitized larvae. Ester hydrolysis was the only pathway of JH metabolism in the hemolymph of unparasitized and parasitized gypsy moth larvae as detected by chromatographic assays. © 1996 Wiley-Liss, Inc.  相似文献   

18.
Abstract:  Interspecific competition between Diadegma semiclausum and Cotesia plutellae was investigated at 25°C in the laboratory, by exposing the third instar larvae of the diamondback moth, Plutella xylostella to both species together, either species alone or by exposing the host larvae already parasitized by one species, at different intervals, to the other. When host larvae were exposed simultaneously to two species in one arena, parasitism rates of the host by each species were not reduced by the presence of the other species; joint parasitism rate by two species was not significantly higher than that by either parasitoid alone. Both parasitoids could lay eggs into the host larvae which had previously been parasitized by the other species, leading to the occurrence of multiparasitized hosts. When host larvae were parasitized first by D. semiclausum and then being followed within 1–2 h by exposing to C. plutellae , or vice versa, ensuing parasitoid cocoons from the multiparasitized host larvae were nearly all C. plutellae . When host larvae were parasitized initially by C. plutellae and then being followed by D. semiclausum two or more days later, all parasitoids ensued from the multiparasitized hosts were C. plutellae . In contrast, when host larvae were parasitized initially by D. semiclausum and then being followed by C. plutellae two or more days later, most host larvae could not survive to prepupae and most of the ensuing parasitoid adults from the surviving hosts were D. semiclausum . Dissections of host larvae at various time intervals after parasitization by the two parasitoids showed that development of both parasitoids in multiparasitized hosts were somewhat arrested, and that the first instar larvae of C. plutellae could initiate a physical attack on the larvae of D. semiclausum and remove the latter.  相似文献   

19.
The early second instar larvae of Toxoneuron nigriceps, a larval endoparastioid of Heliothis virescens, were incubated in artificial rearing media, supplemented with hemolymph of the unparasitized and parasitized fifth instar larvae of the host, H. virescens. The parasitoid larvae were incubated in both a semisolid and liquid form of the artificial rearing medium, and their growth and development were evaluated. The growth in size (increase in length and width), development (molting), and survival of the incubated larvae were observed for 10 days. The incubated larvae exhibited some level of growth in all nine types of media tested, including the control (without host hemolymph). However, ingesting the semisolid rearing media supplemented with the hemolymph from the late fifth instar (day 5, 7 and 9) parasitized host resulted in 100% of the larvae molting to third instars. Some of the in vitro reared third instar larvae demonstrated behavioral changes that could be interpreted as the preparation for cocoon formation or pupation i.e. oral secretion of a whitish material and lots of twisting and turning; however, none produced a cocoon nor pupa.  相似文献   

20.
闭弯尾姬蜂与菜蛾盘绒茧蜂寄生菜蛾幼虫时的种间竞争   总被引:5,自引:1,他引:4  
在室内25℃下,以菜蛾3龄初幼虫作寄主,研究了菜蛾盘绒茧蜂Cotesia plutellae和半闭弯尾姬蜂Diadegma semiclausum的种间竞争。当寄主供2种蜂同时产卵寄生时,2种蜂各自的寄生率与其单独寄生时无显著差异,合计寄生率比一种蜂单独存在时有所提高,但差异不显著。2种蜂均能产卵寄生已被另一种蜂寄生了的寄主幼虫。当寄主被2种蜂寄生的间隔时间很短(少于10 h)时,所育出的蜂绝大部分(80%以上)为绒茧蜂;当寄主先被绒茧蜂寄生,并饲养2天以上再供弯尾姬蜂寄生时,所育出的全为绒茧蜂;当寄主先被弯尾姬蜂寄生,并饲养2天以上再供绒茧蜂寄生时,寄主幼虫绝大部分不能存活,只有少部分能育出寄生蜂,且多为弯尾姬蜂。当2种蜂的幼虫存在于同一寄主体内时,2种蜂的发育均受到另一种蜂的抑制;绒茧蜂1龄幼虫具有物理攻击能力,能将弯尾姬蜂卵或幼虫致死。这些结果表明,菜蛾盘绒茧蜂与半闭弯尾姬蜂在同一寄主中发育时,前者具有明显的竞争优势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号