首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In a mushroom crop (Agaricus bisporus) affected by a very low level of sciarid fly (Lycoriella auripila) infestation, the effects of an indigenous isolate of insect-parasitic nematode (Steinernema feltiae) and of two commonly used insecticides (diazinon and diflubenzuron) were studied. When compared with untreated plots, nematodes applied to the casing had no adverse effects on mushroom yields whereas insecticides decreased yields. At a rate of 3 × 106 infective juveniles per tray (surface area = 0.56 m2), S. feltiae elicited increases of 28.5% and 19% in the mean total numbers and weights of mushrooms respectively. Treatment only with diflubenzuron resulted in 14.6% and 6% reductions in mean total numbers and weights of mushrooms, respectively; treatment with both diazinon and diflubenzuron caused 18.5% and 9.4% losses. Application of nematodes generally reduced the mean weight per mushroom whereas insecticides increased it; nematodes delayed the onset of mushroom production (first flush) whereas diflubenzuron delayed the third and fourth flushes. Nematode contamination of sporophores was minimal when S. feltiae was applied at casing. Although their numbers declined with time, the nematodes persisted, in the casing layer, throughout the cropping period of seven weeks. It is concluded that yield benefits associated with nematode application can result mainly from nematode effects on A. bisporus and not solely from suppression of a damaging pest population.  相似文献   

2.
The potential of Steinernema feltiae for the biological control of Lycoriella auripila was tested in commercial mushroom‐growing conditions. The nematodes, applied at rates of 1.5, 3, 6 or 12 x 10 6 infective juveniles per 34 kg tray of spawn‐run compost, were mixed into the casing material before it was spread over the compost surface. When compared with untreated control trays, any rate of nematode application significantly reduced fly emergence. Insecticides significantly reduced mushroom yields; nematodes significantly increased them. At a rate of 3 x 10 6 infectives/tray S. feltiae elicited mean total increases in the weight and numbers of mushrooms produced of 8% and 11% respectively. The nematodes also reduced the incidence of mushrooms spoiled by tunnelling sciarid larvae. The early decline in the numbers of nematodes persisting in casing was a trend that was reversed later, when evidence was obtained that S. feltiae was recycling in insects that had been killed. When applied at a rate of 3 ‐106infectives/tray of compost S. feltiae should provide reliable and cost‐effective biological control of L. auripila.  相似文献   

3.
The insect pathogenic nematode Steinernema feltiae (Nematoda: Steinernematidae) was shown to offer an alternative to the use of diflubenzuron for the control of the mushroom fly Lycoriella auripila (Diptera: Sciaridae). The influence of diflubenzuron and S. feltiae treatments on the yield and numbers of the mushroom, Agaricus bisporus , was studied. Applications of diflubenzuron after casing significantly reduced total mushroom yields by 10-13%. The greatest yield reductions were observed in the first flush. In the second flush, high yields were found despite significantly lower numbers of mushrooms. These high yields, however, could not compensate for the yield loss of the first flush. Some of the treatments with S. feltiae significantly increased yields, but these were not associated with a particular time of application. As nematodes did not reduce mushroom yields they were able to compete with diflubenzuron. Although the purchase costs of nematodes were high, their use was more economical than that of diflubenzuron when the yield losses of 10% due to casing treatments were taken into account.  相似文献   

4.
The efficacy of different species of entomopathogenic nematodes was tested against larvae of the mushroom phorid Megaselia halterata (Diptera: Phoridae) and the mushroom sciarid Lycoriella auripila (Diptera: Sciaridae). Sciarid larvae originating from infestations in casing soil during colonization by Agaricus bisporus were almost completely controlled by applications of Steinernema feltiae to the casing soil. When larvae originated from infestations in freshly spawned compost, they could be controlled by compost applications halfway through spawnrunning and by very early casing treatments. The control of phorids in compost was maximally 31% when nematodes were mixed within the infested compost at a concentration of 3 106 nematodes/m2. Only slightly higher reduction rates were obtained at higher concentrations. The control of phorids was more promising in the infested casing layer, in which S. carpocapsae was most successful. At concentrations of 6 and 15 106 nematodes/m2 this species obtained reduction rates of 65 and 73% respectively when it was applied 3 days after the end of the infestation period. These concentrations are, however, too high for practical application.  相似文献   

5.
In small-scale experiments, the predatory mites, Hypoaspis aculeifer (Canestrini) and H. miles Berlese, applied at 700 mites m(-2), and the entomopathogenic nematode, Steinernema feltiae (Filipjev) applied at 3 x 10(-6) nematodes m(-2) controlled sciarids and phorids in mushroom compost and casing substrates. For both mite species, earliest application to the growing substrate following sciarid infestation reduced sciarid emergence. In contrast, later application of each biological control agent provided more effective control of phorid emergence. The behaviour of adult mites suggested that H. aculeifer were more positively geotactic than H. miles although both species could penetrate compost and casing substrates to a depth of 2-12 cm. A majority of S. feltiae nematodes resided at a depth of 2-4 cm in both substrate types. Independent application of H. aculeifer provided more comprehensive control of sciarids and phorids than the other biological agents studied, owing to its better dispersal within compost and casing, and ability to attack larvae of differing ages.  相似文献   

6.
The life-history of L. auripila, as a pest of mushrooms, is outlined and an explanation is given of the different types of damage caused. The most satisfactory control is based on the incorporation of insecticides in compost at spawning. Emulsions of chlorfenvinphos and diazinon at 50 ppm are lethal to young larvae for at least 7 weeks but granular formulations of the former must be applied at 100 ppm to achieve comparable results. Drenches of 0–01% malathion, applied at about 40 gal/1000 ft2, are effective against larvae in the casing.  相似文献   

7.
Thirteen species of saprobic rhabditid nematodes (11 genera) were identified from samples of compost and casing material collected from mushroom farms in the British Isles. Caenorhabditis elegans, the most frequently found saprobe, was mass-produced monoxenically and its effects on the cultivated mushroom, Agaricus bisporus (strain U3) were studied. C. elegans did not multiply in well-prepared, pasteurised, spawned compost, whereas casing material proved to be a highly suitable environment for its reproduction. An initial casing inoculum of 106 nematodes/crate of compost (7.5 kg), caused a significant reduction in mushroom yield. Losses in total mushroom yields of 11%, 20% and 26% were caused by initial inoculum rates of 106, 107and 2 × 107 nematodes/crate, respectively. Yields were negatively correlated with the initial nematode inoculation level and regression equations were derived. The nematode treatments caused fewer mushrooms to be produced and an absence of the usual distinctive flushing patterns. C. elegans caused considerable deterioration in mushroom quality and characteristic distortion of mushrooms. Individual sporophores were mis-shapen, notched and had brown or violet coloured grills. Up to 3.8%, 6.7% and 10.8% of total weight and 3.5%, 5.4% and 8% of total numbers of mushrooms were distorted at the three highest nematode inoculum rates tested. Weights and numbers of distorted mushrooms were positively correlated with the initial nematode population. C. elegans commonly colonised sporophores.  相似文献   

8.
Three insect growth regulator insecticides and an entomopathogenic strain of Bacillus thuringiensis (GC327), products effective against the mushroom sciarid, Lycoriella auripila, were compared for their effect on mushroom cropping. Cyromazine and diflubenzuron were applied as a surface drench to mushroom compost before or after pasteurisation (at filling or spawning, respectively); admixed into casing material (at casing); or at a combination of these times. Hexaflumuron and GC327 were applied only at filling and casing, respectively. The presence of the target pest, L. auripila, had no effect on treatment trends, although it was accounted for in the analysis by use of a yield model. The trial was notable for the disparate effects that cyromazine and diflubenzuron casing treatments had on mushroom cropping. Cyromazine treatments that included application at casing resulted in increases in yield, compared to the untreated control whereas, with diflubenzuron, the opposite was true, with treatment at casing alone causing the greatest reduction overall (10%). GC327 applied at casing was also conspicuous for giving a 13% increase in yield. Treating the crop at casing with either cyromazine or GC327, therefore, resulted in a 15% or 24% increase in yield, respectively, compared to a similar treatment with diflubenzuron. Hexaflumuron applied at filling caused increases in yield compared to application of cyromazine at filling and cyromazine or diflubenzuron at spawning. There were also effects on crop timing. The addition of a cyromazine casing treatment normally caused the distinct flushes of mushrooms to be produced significantly earlier than the untreated control (up to 2.5 days), as did GC327. With diflubenzuron, the earlier flushes were only produced by those treatments that did not include a casing application. The combinations that included a casing treatment with diflubenzuron initially produced mushroom flushes earlier than the untreated control. They became either synchronous with the control or they were delayed. From the crop tolerance perspective, therefore, cyromazine and GC327 would be the sciarid control products of choice for a commercial mushroom grower.  相似文献   

9.
Bioassays were initially conducted in Petri-dishes to screen the efficacy of four Heterorhabiditis and Steinernema species against the mushroom phorid Megaselia halterata. Control rates of 61 to 70% control were obtained at a dosage of 1500 infective juveniles (IJs) per 30 larvae. In order to avoid stress-induced susceptibility, an improved bioassay system in micro-wells, filled with 0.6 ml of compost agar and 0.2 of compost colonized by Agaricus bisporus, was developed. In a screening of different species of Heterorhabiditis and Steinernema with applications of 30 IJs per phorid larva, a highest parasitization rate of 20% was obtained with S. feltiae. Bioassays were continued with S. feltiae in dosage-mortality assays in which larvae of the sciarid Lycoriella auripila and the phorid M. halterata were challenged. At the lowest dosage of 30 IJs per sciarid larva, 78% control was obtained. Increasing the dosage from 30 to 1000 led to only small increases of the phorid mortality. At 1000 IJs per larva a significant mortality of 18% was obtained. The nature of the substrate, compost or casing did not greatly influence the parasitization rates. The sex ratio of nematodes that were able to penetrate and establish in the phorid larvae appeared to be female-skewed. Males were only present at a mean of 19%. Low susceptibility of the phorid larva was ascribed to the inaccessibility of its small mouth opening.  相似文献   

10.
The potential of two species of insect-parasitic rhabditid nematodes (Steinernema feltiae, Heterorhabditis heliothidis) for biological control of mushroom flies was studied in pot trials. Three Diptera that commonly infest mushroom crops were used; the larvae of Megaselia halterata (Phoridae), Heteropeza pygmaea (Cecidomyiidae) and Lycoriella auripila (Sciaridae) were all susceptible to parasitism by both nematode species. Fewer adult phorids and sciarids emerged when compost was nematode-treated and, for L. auripila, the effects of nematode applications at spawning, casing or on both occasions were compared. Casing treatments were more effective than spawning treatments; little extra benefit was gained from applying the nematodes twice. Populations of paedogenetic larvae of H. pygmaea built up rapidly in untreated compost, but were reduced when S. feltiae was applied, and were eradicated by H. heliothidis. Because they can penetrate insect cuticle, as well as natural body openings, Heterorhabditis spp. may be more suitable than Steinernema spp. for the control of mushroom fly larvae.  相似文献   

11.
The nematode Steinernema feltiae (Nematoda: Steinemematidae) was tested for its ability to control two main mushroom pests i.e. the sciarid Lycoriella auripila (Diptera: Sciaridae) and the phorid Megaselia halterata (Diptera: Phoridae) in growing-rooms filled with spawned compost. A clear difference between female and male sciarid control was observed. A nematode application 1 day after casing preceded by an application 1 day before casing on the compost caused an almost complete control (97%) of the F1-generation of female sciarids. The F2-generation of females was similarly controlled (95%) by an application 7 days after casing. A dosage of 1 × 106nematodes m-2was found to be equally effective as higher dosages. Diflubenzuron remained active throughout entire the cropping period with high sciarid mortality rates varying from 72% to 99%. Phorid control was variable and seemed to depend on the presence of sciarids. In one occasion the control rate of F2-generation phorid larvae was 75% and was possibly caused by the presence of new infective juvenile nematodes recycled in F2-generation sciarid larvae. Diflubenzuron did not significantly reduce phorid numbers.  相似文献   

12.
A method of selecting a Steinernema feltiae strain that is effective against a mushroom fly, Lycoriella solani, is described in detail. The pest control efficacy of the selected nematode strain was evaluated and compared with the efficacy of two unselected strains. The selection procedure was designed to give preference to nematode individuals with the greatest ability (1) to search effectively for the target insect larvae in their natural habitat, (2) to infect them shortly after application and (3) to reproduce in their haemocoel. Thirty‐four rounds of selection achieved a 4‐fold improvement in nematode ability to find and parasitize third‐ and fourth‐instar larvae of the pest in the mushroom substrate. In 24‐h laboratory experiments, mortality of the insect caused by nematode juveniles rose from 22.5%, recorded for the original unselected isolate, to 92.5% for the selected strain. In a 51‐day experiment conducted on a mixed age mushroom house population of L. solani, the enhanced pest control ability of the selected strain was detected shortly after nematode application and remained high throughout the experimental period. During the first 4 weeks of the trial the selected nematode strain was significantly better than both unselected strains and caused 91.1–92.7% reduction of the fly emergence from the mushroom substrate. No difference was observed between the efficacy of the selected nematodes applied at 1 × 106 and 3 ×106 infective juveniles per m2, while the unselected strains performed significantly better at the higher concentration. All the nematodes examined showed good persistence in the mushroom casing apparently due to recycling in the insect host.  相似文献   

13.
Diflubenzuron and bendiocarb treatments of compost and casing soil at a rate of 1 g a.i./m2 each, resulted in comparable or even improved compost and casing soil colonisation over endosulfan treatments (at a rate of 1.5 g a.i./m2). Alternating diflubenzuron/bendiocarb treatments were preferable to the reverse treatments, which tended to diminish total yield of mushrooms significantly by 1.4–3.9 kg/m2. This effect was due to the casing soil treatment with diflubenzuron and not due to the compost treatment with bendiocarb after spawning. The effectiveness of these substitutes for endosulfan was tested on five commercial mushroom farms, where a similar or improved control of Megaselia halterata (Diptera: Phoridae) was obtained over control (endosulfan) treatments. If present, Lycoriella auripila (Diptera: Lycoriidae) was very effectively controlled by the substitute insecticides compared with endosulfan. Relatively high numbers of M. halterata were occasionally observed in endosulfan-treated houses, indicating that a certain level of resistance towards this insecticide may already have developed. This assessment of tolerance in M. halterata emphasised the need for substitute insecticides with different modes of action, in addition to environmental reasons. The chemicals should be alternately applied within individual crops to avoid resistance development.  相似文献   

14.
The entomopathogenic nematodes Steinernema feltiae (Biosys strain #27) and Heterorhabditis heliothidis were evaluated for the larval control of a mushroom-infesting sciarid, Lycoriella mali, and for the effects of these nematodes on mushroom (Agaricus bisporus) production. In a series of small-scale mushroom crops, infective-stage H. heliothidis and S. feltiae were applied to the mushroom casing surface in the irrigation water or incorporated into the casing material at densities ranging from 28 to 1120 and 11 to 1120 nematodes cm-2 of casing surface respectively. The mortality of L. mali larvae ranged from 52 to 100% for H. heliothidis and 38 to 100% for S. feltiae. Both nematode species reduced mycelial coverage on the casing surface at primordia initiation. Neither mushroom strain (off-white or white hybrid) or method of application (incorporation into or irrigation onto the casing surface) altered the effect on mycelial coverage. The nematodes's negative effect on mycelial growth confounded the benefit of fly control. At high nematode densities (up to 1120 nematodes cm-2), damage-free mushroom yields for the first week of harvest were less than those from the untreated control. However, at lower nematode densities, at or below 140 cm-2, the nematodes had less effect on mushroom growth, and consequently, damage-free mushroom yields for the first week of harvest were frequently greater than those from the untreated control. In the absence of flies, the first-week mushroom yield generally declined with increasing nematode densities for both white and off-white mushroom hybrids. After 4 weeks of harvest, accumulated mushroom yields had nearly recovered from the earlier decline.  相似文献   

15.
The sciarid, Lycoriella auripila, is a serious pest of commercial mushroom production. A series of trials demonstrated that the use of early, specifically-targeted, treatments of insecticides and/or antagonists and repellents, which distance treatment time from crop harvest, have the potential to play a useful part in the control of initial and subsequent generations of this pest. Of the treatments examined, those involving a drench treatment of the compost at filling (before pasteurisation) proved to be the most effective. Cyromazine and diflubenzuron were the most active insecticides tested, with cyromazine achieving a superior level of control of the initial infestation. Repellents and antifeedants were also effective, with calcium oxalate and sinapic acid both achieving about 50% control when applied at filling. Treatments applied later during the production cycle, unless in combination with a treatment at filling, were progressively less effective at controlling both the initial sciarid infestation and later generations of larvae. Multiple treatments caused greater reductions in fly populations than did the single treatments and continued to do so throughout the cropping cycle, the greatest reduction in the initial generation (79%) occurring with a triple treatment of cyromazine. With the exception of some diflubenzuron treatments, those that were effective resulted in increases in yield. The use of a physical paper barrier caused significant increases in both fly numbers and total yield.  相似文献   

16.
Pasteurized, spawned, full-grown and immediately-cased full-grown compost were simultaneously exposed to natural populations of the mushroom pests Lycoriella auripila (Winnertz) (Diptera: Sciaridae) and Megaselia halterata (Wood) (Diptera: Phoridae). Different numbers of adults emerged from each of these composts. Highest numbers of L. auripila emerged from spawned and pasteurized compost whereas lowest numbers of L. auripila emerged from full-grown compost. the emergence from full-grown compost was delayed, which could be explained by the delayed development of the larvae in this type of compost. High numbers of M. halterata emerged from compost that was completely colonized by the mycelia of the edible white button mushroom Agaricus bisporus (Lange) Imbach. The immediate covering of the compost with a casing layer significantly lowered the numbers of emerging M. halterata flies. Compared with the emergence pattern from full-grown and immediately-cased full-grown compost, adult M. halterata showed a delayed pattern of emergence in spawned compost. Adult M. halterata did not emerge from pasteurized compost. The results of these experiments enabled us to improve the timing of the application of insect pathogenic nematodes in the control of the larvae of both insect pests.  相似文献   

17.
When introduced into a mushroom crop at rates of 2, 20 or 200 larvae/tray (0.56 m2), the mushroom cecid, Heteropeza pygmaea, caused significant reductions in both yield and number of mushrooms in relation to the infestation level. The reductions were greater when the larvae were introduced at spawning rather than at casing. The yield and number of infested (unmarketable) mushrooms increased significantly in relation to the initial infestation level. Just two H. pygmaea larvae, introduced at spawning, resulted in cecid populations that caused a 12% loss in total yield in addition to a 7% loss due to spoilage. Loss assessment in the future, therefore, should take into account both yield suppression and spoilage. There was little effect of cecid infestation on flush timing and mushroom size was only affected in the fourth flush, when a significant reduction (27%) was shown at the highest infestation rate at spawning.  相似文献   

18.
Infective juveniles (J3) of the entomogenous nematodes Steinernema feltiae DD-136 (ca. 10,000 J3/100 ml) and S. glaseri (ca. 2,500 J3/100 ml) were incubated in steam-sterilized and nonsterilized sandy soil and bark compost for 8 weeks at 25 C. The nematodes were recovered by a two-step extraction procedure at 1-week intervals, and their infectivity to lepidopterous larvae (Spodoptera litura and Galleria mellonella) and their effect on the population and community of native nematodes in soil were determined. Survival of inoculated nematodes and mortality of insects were enhanced in sterilized media. Nonsterilized bark compost proved to be equally as suitable a medium as sterilized compost. In nonsterilized soil, the survival curve of S.feltiae declined more rapidly than that or S. glaseri which was less infective to insects despite its greater persistence even in nonsterilized soil. Soon after the addition of steinernematids to soil, the population of native nematodes showed a fluctuation with an increase in rhabditids and a decrease in other kinds of nematodes.  相似文献   

19.
Codling moth (CM) is a serious and global pest of pome fruit. It overwinters in cryptic habitats as cocooned diapausing larvae. Field trials with the entomopathogenic nematode Steinernema feltiae (Rhabditida: Steinernematidae) report control of diapausing CM of up to 70%, but results are variable. The objective of this study was to define environmental conditions favouring the performance of the nematodes. Cocooned larvae were more susceptible than non-cocooned larvae. S. feltiae was unable to infect CM at a water activity (aw-values) < or = 0.9. Mortality of cocooned larvae was reported at lower aw-values than of non-cocooned larvae. Exposure time and impact of external relative humidity (RH) was studied. Mortality of cocooned larvae did not further increase after half an hour of exposure, whereas the mortality increased with increasing exposure time in non-cocooned larvae. LC50 and LC90 considerably decreased with increasing RH. The influence of the relative humidity was less pronounced when surpassing 80% than the effect of the volume of applied water. When S. feltiae was formulated in a surfactant-polymer-formulation (SPF), mortality significantly increased when compared to application in water.  相似文献   

20.
The entomopathogenic nematodes, Steinernema felitae (=bibionis) and Heterorhabditis megidis, were encapsulated in calcium alginate and their efficacy was tested against immature houseflies. Aliquots of capsules (15 ml) containing either 1 000 000, 500 000, 250 000 or 125 000 nematodes were added to 70-ml portions of grassmeal diet containing either eggs of first, second or third instar larvae. After 2 days, the treatment with 1 000 000 encapsulated S. feltiae (=bibionis) had killed 94% of housefly eggs and 90% of first instar larvae. By day 6, both of these mortalities had increased significantly (P 0.005) to 100%. By day 2, in the same medium, 1 000 000 encapsulated H. megidis had killed 71.4% of eggs and 90% of first instar larvae. This increased significantly (P 0.01) by day 6, to 99.2% and 100% respectively. Another experiment was carried out where immature houseflies were placed in chicken manure. The emergence of houseflies as adults was used to measure the effect of the encapsulated nematodes. Depending on the numbers of nematodes and the original stage of the housefly, the treatment with encapsulated S. feltiae resulted in 55-96% reduction in adult housefly emergence, whereas treatment with encapsulated H. megidis resulted in 35-98% reduction in emergence. Finally, when encapsulated nematodes were presented as a bait to adult houseflies, little infectivity was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号