首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The biogeochemistry of nitrogen in freshwater wetlands   总被引:12,自引:7,他引:12  
The biogeochemistry of N in freshwater wetlands is complicated by vegetation characteristics that range from annual herbs to perennial woodlands; by hydrologic characteristics that range from closed, precipitation-driven to tidal, riverine wetlands; and by the diversity of the nitrogen cycle itself. It is clear that sediments are the single largest pool of nitrogen in wetland ecosystems (100's to 1000's g N m-2) followed in rough order-of-magnitude decreases by plants and available inorganic nitrogen. Precipitation inputs (< 1–2 g N m-2 yr-1) are well known but other atmospheric inputs, e.g. dry deposition, are essentially unknown and could be as large or larger than wet deposition. Nitrogen fixation (acetylene reduction) is an important supplementary input in some wetlands (< < 1–3 g N m-2 yr-1) but is probably limited by the excess of fixed nitrogen usually present in wetland sediments.Plant uptake normally ranges from a few g N m-2 yr-1 to 35 g N m-2 yr-1 with extreme values of up to 100g N m-2 yr-1 Results of translocation experiments done to date may be misleading and may call for a reassessment of the magnitude of both plant uptake and leaching rates. Interactions between plant litter and decomposer microorganisms tend, over the short-term, to conserve nitrogen within the system in immobile forms. Later, decomposers release this nitrogen in forms and at rates that plants can efficiently reassimilate.The NO3 formed by nitrification (< 0.1 to 10 g N m-2 yr-1 has several fates which may tend to either conserve nitrogen (uptake and dissimilatory reduction to ammonium) or lead to its loss (denitrification). Both nitrification and denitrification operate at rates far below their potential and under proper conditions (e.g. draining or fluctuating water levels) may accelerate. However, virtually all estimates of denitrification rates in freshwater wetlands are based on measurements of potential denitrification, not actual denitrification and, as a consequence, the importance of denitrification in these ecosystems may have been greatly over estimated.In general, larger amounts of nitrogen cycle within freshwater wetlands than flow in or out. Except for closed, ombrotrophic systems this might seem an unusual characteristic for ecosystems that are dominated by the flux of water, however, two factors limit the opportunity for N loss. At any given time the fraction of nitrogen in wetlands that could be lost by hydrologic export is probably a small fraction of the potentially mineralizable nitrogen and is certainly a negligible fraction of the total nitrogen in the system. Second, in some cases freshwater wetlands may be hydrologically isolated so that the bulk of upland water flow may pass under (in the case of floating mats) or by (in the case of riparian systems) the biotically active components of the wetland. This may explain the rather limited range of N loading rates real wetlands can accept in comparison to, for example, percolation columns or engineered marshes.  相似文献   

2.
Interspecific interactions between plants influence plant phenotype, distribution, abundance, and community structure. Each of these can, in turn, impact sediment biogeochemistry. Although the population and community level impacts of these interactions have been extensively studied, less is known about their effect on sediment biogeochemistry. This is surprising given that many plants are categorized as foundation species that exert strong control on community structure. In southern California salt marshes, we used clipping experiments to manipulate aboveground neighbor presence to study interactions between two dominant plants, Pacific cordgrass (Spartina foliosa) and perennial pickleweed (Sarcocornia pacifica). We also measured how changes in cordgrass stem density influenced sediment biogeochemistry. Pickleweed suppressed cordgrass stem density but had no effect on aboveground biomass. For every cordgrass stem lost per square meter, porewater ammonium increased 0.3–1.0 µM. Thus, aboveground competition with pickleweed weakened the effects of cordgrass on sediment biogeochemistry. Predictions about plant–soil feedbacks, especially under future climate scenarios, will be improved when plant–plant interactions are considered, particularly those containing dominant and foundation species.  相似文献   

3.
Recent upsurges in the incidence of dam construction over rivers for farming and hydro electric power in the West African sub‐region is a known promoter of fluctuating water levels on tropical coastal wetlands. Waterbirds, being one of the dominant fauna on wetlands, are key species that can be affected by fluctuating water levels. Waterbird census and water level monitoring at four coastal wetlands in Ghana revealed that different guilds (species assemblages) of waterbirds responded differently to fluctuating water levels. The populations density of birds in guilds 1 (ducks and cormorants), 3 (tactile surface foraging waders), 4 (pelagic foraging waders) and 5 (stalking herons and egrets) significantly (P < 0.05) increased linearly with decreasing water levels. The population density of birds in guilds 2 (visual surface foraging waders) and 7 (fishing terns) responded significantly (P < 0.05) in a second order polynomial function with optimum numbers occurring when water levels were neither too high nor too low. As far as farming and energy requirement are met from these dams, it is important that the ecological needs of waterbirds on wetlands are incorporated into the management of these dams so as to maintain appropriate water levels beneficial to waterbird populations.  相似文献   

4.
以水体盐度作为核心指标,综合水文结构连通指标(沟渠水面率、进出水渠密度、海陆距离以及沟塘距离)构建海陆水文连通性指数.在多尺度空间分析的基础上,选择150 mx 150 m网格作为评价单元,对研究区内海陆水文连通性进行空间定量分析和等级划分.结果表明:研究区海陆水文连通性由海向陆逐渐递减,但递减速率存在差异,这是由于研...  相似文献   

5.
A microcosm experiment was conducted to assess the effects of salinity on coastal lagoon plankton assemblages. Five salinity levels were replicated four-fold in 3801 fiberglass tanks. Salinity levels used were 0, 8.5, 17, 34 and 51 ppt, or 0, 25, 50, 100 and 150 percent seawater. These were achieved by mixing concentrated lagoon water and tapwater in different proportions. Tanks were inoculated with plankton collected from San Dieguito Lagoon (Del Mar, San Diego County, California) and other fresh and saline waterbodies in the area. Selected physical-chemical variables, phytoplankton, zooplankton, and other invertebrate populations were monitored on five sampling dates over a 114 day period (13 August–5 December 1986).Total phytoplankton abundance increased with salinity, for salinities >17 ppt. Most taxa showed marked effects of salinity, though the pattern of the effects often varied greatly from date to date. Chlorophytes tended to be most abundant at 51 ppt. Pyrrhophytes were most abundant at 0 or 51 ppt, and least abundant at 8.5 or 17 ppt. Cryptophytes increased with increasing salinity. Euglenophytes exhibited no salinity effect on any date. Bacillariophytes were most abundant at 8.5–34 ppt and least abundant at 51 ppt, with individual taxa showing maxima at 0–17 ppt (Navicula, Synedra), 8.5–34 ppt (Surirella, Amphora), and 34 ppt (Cylindrotheca).Total zooplankton abundance decreased with salinity, for salinities > 17 ppt. The dominant taxa were protozoans, rotifers, cladocerans, and copepods, and all but the first group showed strong salinity effects. Protozoan abundance was unaffected by salinity. Rotifers were most abundant at 0 ppt (Keratella, Filinia) or 8.5 ppt (Brachionus). With few exceptions, cladocerans (Alona, Ceriodaphnia, Scapholeberis) were found only at 0 ppt. Abundance of calanoid copepods decreased with increasing salinity, with individual taxa showing maxima at 0 ppt (Diaptomus), 8.5–17 ppt (Pseudodiaptomus, Eurytemora), and 34 ppt (Acartia). Cyclopoid copepods were most abundant at 17 ppt, with individual taxa showing maxima at 0 ppt (Eucyclops), 8.5 ppt (Halicyclops), and 17 ppt (Oithona). Harpacticoid copepods (Cletocamptus, Tachidius) were most abundant at 17–34 ppt. Ostracods and mosquito (Culex) larvae were most abundant at 8.5 ppt and absent at 34 and 51 ppt. Polychaetes generally were most abundant at 17–34 ppt, and water boatmen (Trichocorixa) at 8.5–34 ppt. Various physical and chemical variables also showed significant variations with salinity. Tending to increase with salinity were temperature, ammonia and orthophosphate concentrations. Decreasing with salinity were pH, dissolved oxygen and silica concentrations. The causes and interrelationships of these salinity effects are discussed.  相似文献   

6.
Effects of road salt deicers on sediment biogeochemistry   总被引:1,自引:0,他引:1  
Road salt deicers, especially NaCl and CaCl2, are increasingly applied to paved areas throughout the world. The goal of this study is to investigate the influence of high concentrations of these salts on wetland biogeochemistry. Sediment cores were collected in fall and spring from a freshwater wetland fringing an urban kettle lake (Asylum Lake, Kalamazoo, MI, USA), and incubated for 100 days in deionized water (control) or with treatments of 1 or 5 g/L CaCl2·2H2O or 5 g/L NaCl to simulate addition of road salt deciers. At monthly intervals, cores were sliced into three depths (0–5, 5–10, 10–15 cm) and pore waters extracted for analysis of pH, total alkalinity and dissolved Mn(II), Fe(II), PO 4 ?3 , NH3, H2S, SO4 ?2, Na, K, Mg, and Ca. Changes in solid phase geochemistry were assessed by measuring the percent organic matter and the distribution of Fe and Mn among four operationally defined sediment fractions (exchangeable, carbonate, reducible, oxidizable) in the control and treatment cores. Addition of NaCl, and especially CaCl2, stimulated significant growth of microbial mats at the core sediment–water interface and led to decreased pH and increased concentrations of Mn(II), Fe(II) and exchangeable cations (Ca, Mg, K, Na) in the sediment pore waters. This study demonstrates that the influx of road salt deciers is likely to have a significant impact on biogeochemical cycling in wetland sediments.  相似文献   

7.
Temporal and spatial dynamics within an ammonia-oxidising community from intertidal, freshwater sediments were studied in microcosms simulating flooding twice a day with fresh, brackish and marine waters. The microcosms had been filled with the upper 5 cm of intertidal freshwater sediment from the river Scheldt. Changes in community composition were examined by denaturing gradient gel electrophoresis of amplified DNA from the community. In the first week of incubation the initially present members of the Nitrosomonas oligotropha lineage were replaced by other members of the same lineage in the top layer of the sediment subjected to flooding with freshwater. Prolonged incubation extended niche differentiation to a depth of 5 cm. In the microcosms flooded with saline media, the initially present members of the N. oligotropha lineage were replaced by strains belonging to the Nitrosomonas marina lineage, but only in the top 1cm. Shift in community composition occurred earlier in the marine microcosms than in the brackish microcosms and was slower than the change in the freshwater microcosms. Irrespective of the nature of the flooding medium, shifts in community composition were always consistent among replicate microcosms. We conclude that salinity is an important steering factor in niche differentiation among ammonia-oxidising bacteria and also that changes within the community of this functional group of bacteria may occur at different rates.  相似文献   

8.
In the Neotropics where fragmentation is common, environmental factors structuring fish communities are poorly known. In this study two hypotheses were tested in 13 coastal wetlands of southern Brazil: 1) physical features (such as wetland area, habitat diversity, water depth and temperature, and water and sediment chemistry) are important determinants of richness, density and composition of fish assemblages; and 2) species richness and composition of fish assemblages differ between wetlands with different hydroperiods (i.e. permanent versus intermittent). A total of 1,597 individuals distributed among 20 species were collected. Richness was positively associated with wetland area and water depth and it was negatively associated with water conductivity. The species-area power function explained 27.3% of the variation in richness. Fish richness was similar between permanent and intermittent wetlands. The density was negatively associated with water depth and temperature, and it was positively correlated with water nitrate concentration. The first three axes from the CCA accounted for 55.5% of total variation in fish composition. The most important variables related to fish composition were percentage of sediment organic matter, phosphorus concentration, habitat diversity and water depth. Composition of fish species changed among permanent and intermittent wetlands. Understanding the environmental factors that shape and maintain the biodiversity in these ecosystems is essential to develop conservation and management programs of wetlands in this region, where more than 90% of wetland systems have already been lost due to anthropogenic activities.  相似文献   

9.
Abstract.  1. Salinity is an important cause of abiotic stress in wetland communities yet little is known about its consequences for freshwater plants and their insect herbivores. The goal of this study was to test the effect of salinity on a leafmining insect, Cerodontha iridiphora , and its herbaceous host plant, Iris hexagona .
2. Leafminer performance was evaluated on irises grown in control and saline treatments, and the effects of salinity and herbivory on leaf quality and mortality was measured.
3. Leafminer density and size were significantly lower on irises grown in saline water compared with freshwater.
4. Both salinity and herbivory accelerated leaf senescence and mortality, and their combined effects increased tissue loss by an order of magnitude compared with controls.
5. Leafminers acted as nutrient sinks. The undamaged regions of mined leaves contained 40% less nitrogen than unmined leaves, providing a mechanism for the premature leaf mortality.
6. Salinity was detrimental to the performance and survival of both the iris leafminer and its host plant. We propose that glycophytic host plants and their insect herbivores will suffer more than halophytic communities from environmental salinity because they lack the adaptive mechanisms to tolerate this potent physiological stress.  相似文献   

10.
Accelerated sea-level rise is expected to cause the salinization of freshwater wetlands, but the responses to salinity of the availability of soil phosphorus (P) and of microbial genes involved in the cycling of P remain unexplored. We conducted a field experiment to investigate the effects of salinity on P cycling by soil microbial communities and their regulatory roles on P availability in coastal freshwater and brackish wetlands. Salinity was positively correlated with P availability, with higher concentrations of labile P but lower concentrations of moderately labile P in the brackish wetland. The diversity and richness of microbial communities involved in P cycling were higher in the brackish wetland than the freshwater wetland. Salinity substantially altered the composition of the P-cycling microbial community, in which those of the brackish wetland were separated from those of the freshwater wetland. Metagenomic sequence analysis indicated that functional genes involved in the solubilization of inorganic P and the subsequent transport and regulation of P were more abundant in coastal soils. The relative abundances of most of the target genes differed between the wetlands, with higher abundances of P-solubilization (gcd and ppa) and -mineralization (phoD, phy, and ugpQ) genes and lower abundances of P-transport genes (pstB, ugpA, ugpB, ugpE, and pit) in the brackish wetland. A significant positive correlation between the concentration of labile P and the abundances of the target genes suggested that salinity may, at least in part, improve P availability by regulating the P-cycling microbial community. Our results suggest that the P-cycling microbial community abundance and P availability respond positively to moderate increases in salinity by promoting the microbial solubilization and mineralization of soil P. Changes in microbial communities and microbially mediated P cycling may represent microbial strategies to adapt to moderate salinity levels, which in turn control soil function and nutrient balance.  相似文献   

11.
Tidal freshwater wetlands are sensitive to sea level rise and increased salinity, although little information is known about the impact of salinification on nutrient biogeochemistry in tidal freshwater forested wetlands. We quantified soil nitrogen (N) and phosphorus (P) mineralization using seasonal in situ incubations of modified resin cores along spatial gradients of chronic salinification (from continuously freshwater tidal forest to salt impacted tidal forest to oligohaline marsh) and in hummocks and hollows of the continuously freshwater tidal forest along the blackwater Waccamaw River and alluvial Savannah River. Salinification increased rates of net N and P mineralization fluxes and turnover in tidal freshwater forested wetland soils, most likely through tree stress and senescence (for N) and conversion to oligohaline marsh (for P). Stimulation of N and P mineralization by chronic salinification was apparently unrelated to inputs of sulfate (for N and P) or direct effects of increased soil conductivity (for N). In addition, the tidal wetland soils of the alluvial river mineralized more P relative to N than the blackwater river. Finally, hummocks had much greater nitrification fluxes than hollows at the continuously freshwater tidal forested wetland sites. These findings add to knowledge of the responses of tidal freshwater ecosystems to sea level rise and salinification that is necessary to predict the consequences of state changes in coastal ecosystem structure and function due to global change, including potential impacts on estuarine eutrophication.  相似文献   

12.
In the coastal pine forests (Pinus pinea and Pinus pinaster) of Ravenna (Italy) along the Adriatic coast, many pine trees are stressed or dying. In this paper we present ground elevation, depth to watertable, salinity of groundwater and vegetation species richness data within one of the coastal pine forests and some wetlands north of the Bevano River between LAT. 44°23′10″ and LAT. 44°20′21″ and between LONG. 12°17′25″ and LONG. 12°19′33″. The data are presented areally and along a 50 m long transect perpendicular to the coast to study the cause of distress in the pine forest and in different water pools within the wetlands. The findings were compared to published values of tolerance to salinity for 39 plant species typical of the area and incorporated into a web application to help nature managers in assessing or adjusting water salinity in relation to the vegetation species present. The pine trees are relatively tolerant to salinity (up to 12 g/l) but cannot survive a shallow watertable. On the other hand, species richness or biodiversity in this area is promoted by a shallow watertable and low salinity.  相似文献   

13.
Accurate prediction of denitrification rates remains difficult, potentially owing to complex uncharacterized interactions between resource conditions and denitrifier communities. To better understand how the availability of organic matter (OM) and nitrate (NO3), two of the resources most fundamental to denitrifiers, affect these populations and their activity, we performed an in situ resource manipulation in tidal freshwater wetland soils. Soils were augmented with OM to double ambient concentrations, using either compost or plant litter, and fertilized with KNO3 at two levels (low: ~ 5 mg l–1 NO3–N and high: ~ 50 mg l–1 NO3–N) in a full factorial design. Community composition of nirS‐denitrifers (assessed using terminal restriction fragment length polymorphism) was interactively regulated by both NO3 concentration and OM type, and the associated shifts in community composition were relatively consistent across sampling dates (6, 9 and 12 months of incubation). Denitrification potential (pDNF) rates were also strongly affected by NO3 fertilization and increased by ~ 10–100‐fold. Path analysis revealed that the influence of resource availability on pDNF rates was largely mediated through changes in nirS‐denitrifier community composition. These results suggest that a greater understanding of denitrifier community ecology may enable more accurate prediction of denitrification rates.  相似文献   

14.
15.
We tested the response of Enteromorpha intestinalis to fluctuating reduced salinity regimes which may occur in coastal estuaries due to both natural and anthropogenic influences. In a fully crossed two factor experiment, we subjected E. intestinalis to 0, 5, 15 and 25 psu water enriched with nutrients for 1-, 5-, 11- and 23-day periods. Each period was followed by 24 h of exposure to 25 psu (ambient) water that was not nutrient enriched. Following 24 h in ambient salinity water, algae were returned to reduced salinity conditions for the appropriate period and the cycle continued over the 24 days for which all treatments were maintained. Exposure to 0 psu for 5 days or longer resulted in loss of pigmentation, decreased wet and dry biomass, increased wet wt:dry wt ratios, decreased removal of nitrogen (N) and phosphorus (P) from the water column and an accumulation of NH(4) in the water column. More frequent exposure to ambient salinity in the 1-day treatment mitigated these effects. Across all salinity levels tested, biomass increased as frequency of exposure to ambient salinity increased. At all durations of exposure to low salinity tested, biomass increased as salinity level increased. We conclude that growth of E. intestinalis is decreased by reduced salinity. E. intestinalis is able to withstand exposure to 0 psu but there is a temporal limit to this tolerance that is somewhere between 1 and 5 days. Populations of E. intestinalis in coastal estuaries may suffer from freshwater inputs if salinity conditions are persistently reduced.  相似文献   

16.
The effects of natural nematode communities on bacterial activity and abundance were investigated in a microcosm study. Nematodes were added at different densities to a freshwater sediment and bacterial parameters were measured after 1, 5, 9, and 17 days. Significant effects of nematode density on bacterial activity were noted on day 5. No long-term changes in bacterial activity were recorded. Bacterial abundance displayed an overall decrease in both treatments and controls. In a second experiment, the effect of nematode feeding-type on bacterial activity was studied. Microcosms were incubated with 100 individuals of a fungus-feeding (Aphelenchus avenae) or a bacteria-feeding nematode species (Caenorhabditis elegans) respectively, and bacterial activity was determined after 0, 1, 2, 4, and 7 days. Significant time and feeding-type effects were found, with consistently higher bacterial activity estimates in treatments with bacteria-feeding nematodes. These results suggest that grazing affects bacterial activity, and indicate that grazing by nematodes may be more important in stimulating bacterial activity than bioturbation or excretion. Combining these results, we conclude that natural nematode communities may have an impact on bacterial activity, and that the magnitude of this impact depends on the proportion of actively feeding bactivores within the community. Received: 2 September 1996 / Accepted: 20 May 1997  相似文献   

17.
The critical thermal maximum (CTM) of Etheostoma spectabile differed significantly among four populations whose habitats ranged from thermally constant to highly fluctuating conditions. Mean CTM of the population at the most fluctuating location was highest, populations in intermediate thermal environments were intermediate in thermal tolerance, and a population in a constant temperature spring run had thelowest CTM. The results support the view that thermal physiology can be evolutionarily labile within a species, and that changes respond to directional selection.  相似文献   

18.
Soil salinization constitutes an environmental hazard worldwide. The Bohai Sea coastal wetland area is experiencing dramatic soil salinization, which is affecting its economic development. This study focused on the spatial variation and distribution characteristics of soil salinity in this area using geostatistical analysis combined with the kriging interpolation method, based on a large-scale field investigation and layered soil sampling (0–30, 30–60 and 60–100 cm). The results revealed that soil salinity in these layers demonstrated strong variability, obvious spatial structure characteristics and strong spatial autocorrelation. Soil salinity displayed a significant zonal distribution, gradually decreasing with increasing distance from the coastline. Apart from the northern part of the study area, which appeared to be not affected by soil salinization, there were varying degrees of soil salinization in nearly 70% of the total area. With increasing soil depth, the areas of non-salinized and mild salinized soil gradually decreased, while those of moderate salinized and strong salinized soils increased. The area of saline soil first decreased and then increased. The study area could be divided into four management zones according to soil salinities in the top 1-m soil body, and utilization measures, adapted to local conditions, were proposed for each zone. The results of our study present an important theoretical basis for the improvement of saline soils, for wetland re-vegetation and for the sustainable utilization of soil resources in the Bohai Sea coastal wetland.  相似文献   

19.
Among many other abiotic variations in an estuarine ecosystem, osmotic stress is an inescapable part of life. Organisms living in such environments must cope with changing osmotic conditions by either behavioral or physiological adaptations. Pollutants may increase the physiological stresses that an osmoregulating animal may encounter. We have developed a flow-through system that exposes test species to insecticides and continuously changing salinity conditions. This system has provided an insight into how susceptibility of a species to an insecticide can be affected by changing concentrations of salinity. Toxicity tests using this system were conducted with two arthropod species that are found in saline habitats: mosquito Aedes taeniorhynchus (Wiedemann) and brine shrimp (Artemia sp.). Four insecticides-aldicarb, dimethoate, imidacloprid, and tebufenozide-were studied. Both species were exposed for 48 h to a concentration of various insecticides that would cause 50% of the population to die in hyperosmotic artificial sea water (ASW). The mortality rate for both species was more acute in increasing salinity (10-200% ASW) than in decreasing salinity (200-10% ASW) conditions. A. taeniorhynchus was more susceptible than Artemia when exposed to its hyperosmotic LC50 concentration of toxicant while experiencing a change in salinity, e.g., adjusting to a changing salinity decreased the LT50. Our results indicated a change in salinity; more importantly, the direction of change altered the susceptibility of these organisms.  相似文献   

20.
Experiments demonstrated that Beggiatoa could induce a H2S-depleted suboxic zone of more than 10 mm in marine sediments and cause a divergence in sediment NO3(-) reduction from denitrification to dissimilatory NO3(-) reduction to ammonium. pH, O2, and H2S profiles indicated that the bacteria oxidized H2S with NO3(-) and transported S0 to the sediment surface for aerobic oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号