首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 393 毫秒
1.
In this study, we developed an oviposition model of Neoseiulus californicus (McGregor) with Tetranychus urticae Koch as prey. To obtain data for the model, we investigated the longevity, fecundity and survivorship of adult female N. californicus at six constant temperatures (16, 20, 24, 28, 32 and 36°C), 60–70% RH and a photoperiod of 16 : 8 (L : D) h. Longevity (average ± SE) decreased as temperature increased and was longest at 16°C (46.7 ± 5.25 days) and shortest at 36°C (12.8 ± 0.75 days). Adult developmental rate (1/average longevity) was described by the Lactin 1 model (r2 = 0.95). The oviposition period (average±SE) was also longest at 16°C (29.8 ± 2.93 days) and shortest at 36°C (6.7 ± 0.54 days). Fecundity (average±SE) was greatest at 24°C (43.8 ± 3.23 eggs) and lowest at 36°C (15.9 ± 1.50 eggs). The oviposition model comprised temperature‐dependent fecundity, age‐specific cumulative oviposition rate and age‐specific survival rate functions. The temperature‐dependent fecundity was best described by an exponential equation (r2 = 0.81). The age‐specific cumulative oviposition rate was best described by the three‐parameter Weibull function (r2 = 0.96). The age‐specific survival rate was best described by a reverse sigmoid function (r2 = 0.85).  相似文献   

2.
Aims: Producing granular cultures of obligate aphid pathogen Pandora nouryi for improved sporulation and storage. Methods and Results: Small millet–gel granules were made of the mixtures of 80–95% millet powder with 5–20% polymer gel (polyacrylamide, polyacrylate or acrylate‐acrylamide copolymer) and inoculated with mycelia at 30 mg biomass g?1 dry granules plus 87·5% water, followed by static incubation at 20°C for 4–12 days. The fungus grew well on 12 preparations but best on that including 10% copolymer. An 8‐day culture of this preparation discharged maximally 58·5 × 104 conidia mg?1 granule at 100% RH and was capable of ejecting conidia at the nonsaturated regimes of 86–97% RH. During storage at 6°C, granular cultures with >85% water content had twofold longevity (120 days) and half‐decline period (34–36 days) of those stored at room temperature. The steadily high water content preserved the cultures better than that decreasing at 6°C. However, conidia from 70‐day‐stored granules were less infective to Myzus persicae nymphs than those from fresh ones based on their LC50s. Conclusions: The millet–gel granules had higher sporulation capacity than reported Pandora cultures and a capability of spore discharge at nonsaturated humidity. Significance and Impact of the Study: The granular cultures are more useful for aphid control.  相似文献   

3.
A laboratory study of preimaginal development, adult longevity and fecundity ofEncarsia inaron (Walker) was conducted. Preimaginal developmental times varied with temperature, from 55–60 d at 15±1°C to 14–17 d at 30±1°C. No development took place at 10°C, which was approximately the developmental minimum estimated from regression analysis of developmental rates vs. temperature in the range 15–30°C. Development was slowed and survival was reduced at 32°C. Females lived an average of 18.6 days and laid a average of 159 eggs/female at 25°C. At 25°C, average preimaginal survival was 59.3%, and the sex ratio was 73.5% female. The net reproductive rate (R0) forE. inaron calculated from these studies was 69.3, while the intrinsic rate of natural increase was 0.1686 individuals per individual per day. Oviposition was concentrated slightly in third instar nymphs of the host.  相似文献   

4.
The development, survivorship, longevity, reproduction, and life table parameters of the Asian citrus psyllid, Diaphorina citri Kuwayama were evaluated at 10°C, 15°C, 20°C, 25°C, 28°C, 30°C and 33°C. The populations reared at 10°C and 33°C failed to develop. Between 15°C and 30°C, mean developmental period from egg to adult varied from 49.3 days at 15°C to 14.1 days at 28°C. The low‐temperature developmental thresholds for 1st through 5th instars were estimated at 11.7°C, 10.7°C, 10.1°C, 10.5°C and 10.9°C, respectively. A modified Logan model was used to describe the relationship between developmental rate and temperature. The survival of the 3rd through 5th nymphal instars at 15–28°C was essentially the same. The mean longevity of females increased with decreasing temperature within 15–30°C. The maximal longevity of individual females was recorded 117, 60, 56, 52 and 51 days at 15°C, 20°C, 25°C, 28°C and 30°C, respectively. The average number of eggs produced per female significantly increased with increasing temperature and reached a maximum of 748.3 eggs at 28°C (P<0.001). The population reared at 28°C had the highest intrinsic rate of increased (0.199) and net reproductive rate (292.2); and the shortest population doubling time (3.5 days) and mean generation time (28.6 days) compared with populations reared at 15–25°C. The optimum range of temperatures for D. citri population growth was 25–28°C.  相似文献   

5.
Many species of mealybugs (Hemiptera: Pseudococcidae) are serious pests of economically important crops worldwide. We evaluated the influence of constant temperatures: 14, 16, 18, 20, 22, 24, 26, 28, 30, 32 and 34°C on the life history and demographic parameters of Spalgis epius (Lepidoptera: Lycaenidae), a candidate biological control agent of various species of mealybugs. No eggs completed their development at 14 and 34°C. Egg-to-adult developmental time significantly decreased from 89.9 days at 16°C to 20.4 days at 32°C. The estimated lower temperature threshold of 10.2°C and 416.6 degree-days were required to complete egg-to-adult development. The mortality of immature stages was maximum at 16 and 32°C and minimum at 28°C. The highest lifetime fecundity was recorded at 28°C and it significantly decreased at 32°C. The longevity of adults was about three times more at 16°C than at 30 and 32°C. The net reproductive rate (R 0) significantly increased with increased temperatures up to 28°C and significantly decreased at 32°C. The mean generation time (T) significantly decreased with increased temperature up to 30°C, but it significantly increased at 32°C. The intrinsic rate of population increase (r m ) was highest at 30°C. The finite rate of increase (λ) was significantly greater at 30°C than at other temperatures. These data suggest that S. epius can develop, reproduce and survive in a wide range of temperatures and thus could be regarded a potential biological control agent of mealybugs.  相似文献   

6.
The effect of temperature on the life table of Acyrthosiphon pisum reared on Pisum sativum was evaluated under laboratory conditions using temperatures of 10, 15, 20, 25, 30, and 35°C. The development time of juvenile A. pisum decreased with increasing temperature (from 21.3 days at 10°C to 4.7 days at 35°C). Adult longevity also decreased with increasing temperature (from 53.2 days at 10°C to 2.3 days at 35°C). Interestingly, 70% and 25% of A. pisum nymphs reared at 30°C and 35°C, respectively, successfully developed into adults. These temperatures have previously been considered unsuitable for A. pisum development. However, adult aphids reared at 30°C and 35°C failed to reproduce. Linear regression analysis revealed that the lower development threshold of A. pisum was 153.1 degree‐days above 1.9°C. Maximal average reproductive capability was observed at 10°C for A. pisum adults, with each adult producing more than 120 nymphs. The intrinsic rate of increase (rm) of A. pisum increased from 0.124/day at 10°C to 0.337/day at 25°C, whereas opposite trends were observed for the net reproductive rate (R0) and the mean generation time (GT). At 20°C and 25°C, the intrinsic rate of increase of A. pisum was significantly higher than at 10°C and 15°C (P < 0.0001), indicating that 20°C and 25°C are within the optimal range for the growth of A. pisum, and that 30°C is beyond the upper threshold limit for reproduction, which involves a temperature range that is narrower than that of the survival range (upper limit is unknown, but above 35°C).  相似文献   

7.
The effects of temperature on the development and survival of Lycaeides argyrognomon were examined in the laboratory. The eggs, larvae and pupae were reared at temperatures of 15, 17.5, 20, 25, 30 and 33°C under a long‐day photoperiod of 16‐h light and 8‐h darkness. The survival rates of the first–third instars ranged from 40.0 to 82.4%. The mortalities of the fourth instar were lower than those of the first–third instars. The development time of the overall immature stage decreased from 78.33 days at 15°C to 21.07 days at 30°C, and then increased to 24.33 days at 33°C. The common linear model and the Ikemoto–Takai model were used to estimate the thermal constant (K) and the developmental zero (T0). The values of T0 and K for the overall immature stages were 10.50°C and 418.83 degree‐days, and 9.71°C and 451.68 degree‐days by the common model and the Ikemoto–Takai model, respectively. The upper temperature thresholds (Tmax) and the optimal temperatures (Topt) of the egg, the first–third instars and the overall immature stages were estimated by the three nonlinear models. The ranges of Topt estimated were from 30.33°C to 32.46°C in the overall immature stages and the estimates of Tmax of the overall immature stages by the Briere‐1 and the Briere‐2 models were 37.18°C and 33.00°C, respectively. The method to predict the developmental period of L. argyrognomon using the nonlinear models was discussed based on the data of the average temperature per hour.  相似文献   

8.
Summary

Responses of larvae of two rhizocephalan species to changes in seawater temperature and salinity were studied under laboratory conditions. Peltogasterella gracilis parasitizes the hermit crab Pagurus pectinatus, which occurs at stable salinity and gradually changing temperature in summer. Sacculina polygenea is a parasite of the crab Hemigrapsus sanguineus, which lives in the intertidal zone in summer where salinity and temperature can fluctuate during the day. The development of both species is comprised of five naupliar stages and the cyprid stage, and it was considered successful if more than 50% of the nauplii attained the cyprid stage. P. gracilis nauplii successfully developed at 12–20°C and 30–34‰, but at 22°C successful development occurred in a narrower salinity range (32–34‰). All nauplii died both at 25°C and in 26‰. S. polygenea nauplii successfully reached the cyprid stage at higher temperatures (18–25°C) and a wider salinity range (18–34‰) than P. gracilis nauplii, but at 12°C and 16‰ larval development of S. polygenea was suppressed. Under favorable conditions, naupliar development lasted 3.5 days in P. gracilis and 2–3 days in S. polygenea. The cyprids of both rhizocephalan species demonstrated a greater resistance to temperature and salinity changes than nauplii. However, P. gracilis cyprids were active in a narrower salinity range (16–34‰), as compared to S. polygenea cyprids (8–34‰). Under favorable conditions the cyprids of both species survived for 6 to 10 days.  相似文献   

9.
Microplitis similis (Hymenoptera: Braconidae) is a solitary endoparasitoid of Spodoptera litura larvae (Lepidoptera: Noctuidae). Here, the effects of constant temperature (18, 21, 24, 27, 30, 33 and 36 °C) on the development and fecundity of M. similis developing in S. litura were studied in the laboratory to clarify the range of its potential distribution and better understand its potential as a biological control agent. The developmental duration of M. similis varied from 10.6 (33 °C) to 27.9 days (18 °C). The developmental threshold temperature and effective accumulative temperature of M. similis were 9.96 °C and 231.14 Degree-days, respectively. The average adult longevity of M. similis ranged from 5.1 (33 °C) to 26.8 days (18 °C). The maximum fecundity of the parasitoid was observed at 27 and 30 °C, which were 43.07 and 39.73 eggs, respectively. The minimum fecundity of the parasitoid was observed at 18 °C, which was 8.27 eggs. The intrinsic rate of increase (rm) and finite rate of increase (λ) of M. similis were the highest at 30 °C. The net reproduction rate (R0) was the highest at 27 °C and 30 °C, which were 44.34 and 40.39, respectively. We concluded that temperatures in the range 27–30 °C are the most suitable for development and reproduction of M. similis. Our study provides detailed basic information for development and reproduction of M. similis under different temperature conditions.  相似文献   

10.
The developmental time and survival of immature stages of Neoseiulus californicus were studied at nine constant temperatures (12, 16, 24, 24, 28 32, 36, 38 and 40°C), 60–70% RH, and a photoperiod of 16 : 8 (L : D) h. The total mortality of immature N. californicus was lowest at 24°C (4.5%) and highest at 38°C (15.2%). The total developmental time decreased with increasing temperature between 12°C (18.38 days) and 32°C (2.98 days), and increased beyond 32°C. The relationship between the developmental rate and temperature was fitted by five nonlinear developmental rate models (Logan 6, Lactin 1, 2 and Briere 1, 2). The nonlinear shape of temperature development was best described by the Lactin 1 model (r2 = 0.98). The developmental variation of each stage was well described by the three‐parameter Weibull distribution model (r2 = 0.91–0.93). The temperature‐dependent developmental models of N. californicus developed in this study could be used to determine optimal temperature conditions for its mass rearing, to predict its seasonal population dynamics in fruit tree orchards or greenhouse crops, or to develop a population dynamics model of N. californicus.  相似文献   

11.
Development, reproduction, and life table parameters of the parasitoid Encarsia acaudaleyrodis Hayat parasitizing Bemisia tabaci Gennadius were studied at constant temperatures in the range of 20–32°C under laboratory conditions. Egg-to-adult developmental time decreased from 20.3 days at 20°C to 9.0 days at 32°C. An average of 189.8 day-degrees was required to complete development above the lower threshold temperature (11.5°C). Juvenile survival was 84, 88, 70 and 69% at 20, 25, 30 and 32°C, respectively. Females of E. acaudaleyrodis oviposited means of 34.2, 54.6, 30.6 and 20.1 eggs at 20, 25, 30 and 32°C, respectively, and had a mean longevity of 21.1, 14.7, 10.0 and 9.1 days at the same four temperatures. The intrinsic rate of population increase (rm) at the different temperatures ranged from 0.082 to 0.169, with the highest value recorded at 25°C. These data indicate that E. acaudaleyrodis may be better adapted to intermediate temperatures around 25°C and, therefore, could be a useful biological control agent of B. tabaci during spring and autumn when such temperatures are prevalent in Southwestern of Iran. The result could also be useful in developing a population model for E. acaudaleyrodis under field conditions.  相似文献   

12.
SUMMARY.
  • 1 We evaluated survival, growth and time to maturation of the fairy shrimp, Streptocephalus seali Ryder, in the laboratory at various combinations of temperature and water hardness.
  • 2 Both independent factors affected survival and growth of S. seali. Multiple regression analysis and response surface modelling predict that after 4 days, over 80% survival is obtained at temperatures from 14 to 28°C and water hardnesses from 60 to 130 mg CaCO3 1-?1.
  • 3 Growth rates of larvae were often maximum at physicochemical conditions other than those which had promoted maximum rates of survival. For example, after 12 days mean total body length was almost 12 mm in larvae which had been maintained at 34°C (80 mg CaCO3 1-?1): the maximum survival rate had been obtained at 19°C. Total length was directly correlated with temperature at the lowest hardness tested, but not at the other two hardnesses (100 and 120 mg CaCO3 1-?1). At the latter water hardnesses, total length was significantly less at 34°C than at 32°C on all three sampling occasions (4, 8 and 12 days post-hatch).
  • 4 Similarly, developmental stage of larvae correlated well with temperature but larvae reared at 34°C did not develop more quickly than those reared at 32°C. After 12 days, most larvae at the two highest temperature treatments had developed at least to Stage 14 and many were nearly mature; at 17°C most larvae were still at Stage 10.
  • 5 During our study of maturation rate of females we noted that egg production was initiated after completion of fourteen or fifteen moults. Mean time to maturation at 27°C (17.3±2.8 days) exceeded that at 32°C (12.3±2.6days). The minimum time to maturation of a shrimp was 9 days at 32°C.
  相似文献   

13.
The results of laboratory tests indicated the average survival rates for Psorophora columbiae eggs remained quite high for all of the egg populations exposed to a temperature of 27°C (range 83.0–100.0% survival) after 96 days of exposure, except for the non‐diapausing eggs on dry soil (66.3%). In regard to the exposure of egg populations to moderately cold temperatures (i.e. 8°C, 4°C and ?2°C) for periods of up to 16 days, survival rates for egg populations exposed to 8°C continued to remain relatively high (average >85%) for the remainder of the experimental exposure period (i.e. 96 days). Diapausing Ps. columbiae eggs were more tolerant (82.0% survival) to low temperatures (?2°C) than non‐diapausing eggs (2.4% survival) for 64 days, particularly at temperatures of and below 4°C. Diapausing and non‐diapausing eggs were similar in their ability to survive under high temperatures (34°C and 38°C). High soil moisture (30–40%) or substrate moisture (95% relative humidity) content appeared to enhance the ability of the mosquito eggs to survive both low and high temperature extremes.  相似文献   

14.
The leaf beetle Gratiana boliviana Spaeth (Coleoptera: Chrysomelidae) was introduced from South America into the southeastern United States in 2003 as a classical biological control agent of tropical soda apple, Solanum viarum Dunal (Solanaceae). Temperature-dependent development and survival studies revealed that development was completed at temperatures >16°C and ≤34°C. The number of degree-days required to complete one generation was 341 and the estimated lower developmental threshold was 13.37°C. Using nonlinear regression, the upper lethal threshold was estimated to be 34–35°C. Cold tolerance studies revealed that the lethal time for 90% of adults (LT90) was 12.6 days at 5°C and 8.68 days at 0°C. Based on the developmental and cold tolerance data, a map predicting the areas of establishment and number of generations per year was generated, which suggests that the northern extent of the G. boliviana range in the USA will be near 32–33° north latitude. Fewer generations per year in more northern areas of the southeastern USA may decrease the effectiveness of this biological control agent.  相似文献   

15.
Adult longevity, developmental time and juvenile mortality ofEncarsia formosa Gahan (Hymenoptera:Aphelinidae) parasitizing the Poinsettia-strain ofBemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) on Poinsettia (Euphorbia pulcherrima Willd.) were investigated in laboratory experiments at three temperatures: 16 °C, 22 °C and 28 °C. Furthermore, the parasitoid's preference for different larval stages of the whitefly was determined at 24.5 °C. The lifespan ofE. formosa decreased with temperature from one month at 16 °C to nine days at 28 °C. A lower temperature threshold of 11 °C for adult development was found. The development of juvenile parasitoids inB. tabaci lasted more than two months at the lowest temperature, but was only 14 days when temperature was 28 °C. The lower temperature threshold for immature development was 13.3 °C, yielding an average of 207 day-degrees for the completion of development into adults. Juvenile mortality was high, varying from about 50% at 16 °C to about 30% at 22 °C and 28 °C.E. formosa preferred to oviposit in the 4th instar and prepupal stages ofB. tabaci followed by the 2nd and 3rd instars. The preference for the pupal stage was low. The parasitoid used all instars of the whitefly for hostfeeding, with no apparent differences between the stages. The average duration of the oviposition posture was four minutes. Demographic parameters were calculated from life tables constructed from the data. The intrinsic rate of increase (r m) and the net reproductive rate (R 0) increased with temperature from 0.0279 day−1 at 16 °C to 0.2388 day−1 at 28 °C and from about 12 at 16 °C to about 66 at 28 °C, respectively.  相似文献   

16.
Abstract The tolerance to temperature increase was tested for Halobates individuals collected during two cruises in the western tropical Pacific Ocean (MR‐06‐05‐Leg 3, December 21, 2006–January 12, 2007, 0°N‐8°N; KH‐06‐02‐Leg 5, August 18–31, 2006, 12°N–17°N). High temperature coma experiments were conducted on adults and 5th instar larvae. On average, H. sericeus (distributed in the wide latitude zone of 5°N–40°N), H. germanus (distributed in the moderate latitude zone of 0°N–35°N) and H. micans (distributed mainly in the lower latitudes around the equator) were on average paralyzed at 35.6°C (SD: 0.89), 32.9°C (SD: 2.17) and 31.6°C (SD: 2.60), respectively (P= 0.035). According to the current dynamics during the cruise, the colony of H. sericeus at one station (5°N 137°E) may have been transferred from the northern area of 14°N by three currents (North Equatorial Current, Mindanao Current and North Equatorial Counter Current) to the area of 5°N 138°E. Extremely high heat resistance was shown by the adults of H. germanus in the sea area around the equator. Dynamic current and air movements in this area around the equator, that is a “warm seawater pool”, could be hypothesized to be related to the high resistance to heat shown in this study.  相似文献   

17.
The sea anemone Anthopleura elegantissima (Brandt) hosts two species of symbiotic dinoflagellates, known as zooxanthellae, which coexist within the host at southern latitudes only. One of these species, Symbiodinium muscatinei LaJeunesse et Trench, has a broad latitudinal distribution, occurring in intertidal anemones from Washington state to Southern California. To investigate whether high thermal tolerance contributes to the ability of S. muscatinei to inhabit anemones from northern and southern regions, the upper thermal tolerance limit for photosynthesis of symbionts in northern (48°24′ N) populations of A. elegantissima was determined by subjecting anemones to a gradual increase in temperature from 12°C to 30°C over a 10‐week period. Light‐saturated photosynthetic rates of isolated zooxanthellae were the same over the range of 12°C–24°C and declined significantly at 26°C, which is 14°C and 5°C above average summertime seawater temperatures in northern Puget Sound and Southern California, respectively. At 28°C, zooxanthellae isolated from the anemones, and those expelled by their hosts, exhibited extremely low rates of photosynthesis and highly reduced chl content. The photosynthetic rates and chl content of expelled zooxanthellae were lower than those of retained zooxanthellae. The high thermal tolerance of S. muscatinei isolated from northern populations of anemones supports the broad latitudinal distribution of this symbiont, allowing it to coexist with S. californium (#383, Banaszak et al. 1993 ) in southern populations of anemones.  相似文献   

18.
The cabbage stem flea beetle, Psylliodes chrysocephala (L.) (Coleoptera: Chrysomelidae), is a major pest of winter oilseed rape. Despite the importance of this pest, detailed information on reproduction to predict risk of crop damage is lacking. This study investigates the effect of temperature on parameters of reproduction, egg development and viability at five constant temperatures. Significant temperature effects were found on the pre‐oviposition period, total number of eggs laid, daily oviposition rate, female longevity, egg‐development rate and viability. The mean length of the pre‐oviposition period ranged from 93.1 days at 4°C to 14.6 days at 20°C. Analysis of total number of eggs laid and daily oviposition rate during female lifespan estimated the highest total number of eggs laid (696 eggs/female) at 16°C and the highest oviposition rate (6.8 eggs/female and day) at 20°C. The daily oviposition rate at 20°C was not significantly higher than 5.4 eggs/female and day at 16°C. Female longevity was significantly longer at 4°C, shorter at 20°C and not significantly different between 8, 12 and 16°C. Estimated 50% survival time of females was 239, 153, 195, 186 and 78 days at 4, 8, 12, 16 and 20°C, respectively. A linear model of egg development at 8–20°C estimated the lower developmental threshold to be 5.1°C and the thermal constant for development 184.9 degree‐days. The percentage of eggs hatching was significantly lower at 4°C than at all other temperatures tested. The estimated mean hatching percentages were 47.3%, 70.0%, 72.4%, 66.2% and 67.9% at 4, 8, 12, 16 and 20°C, respectively. These results can be used to predict the start and intensity of egg‐laying in the autumn and the appearance of larvae in the field from knowledge about time of field invasion and from monitoring the weather.  相似文献   

19.
The parasitism rates by Trichogramma cacoeciae Marchal (Hymenoptera, Trichogrammatidae) using Ephestia kuehniella Zell. (Lepidoptera, Pyralidae) eggs held at 0, 4 and 8°C and for up to 31 days was measured. Parasitism was lowest on eggs held at 8°C and highest on eggs held at 0°C. The highest parasitism, 97.8%, was measured for parasitoids attacking eggs held for 3 days and stored at 0°C. Parasitism of eggs stored at all three temperatures decreased with increasing duration of storage. The number of T. cacoeciae successfully developing and emerging as adults after storage in E. kuehniella eggs held at 0, 4 and 8°C was measured. Parasitoid emergence was >83% from E. kuehniella eggs stored at 8°C for 3 weeks. Storage at 0°C caused a significant decline in parasitoid emergence after 2 weeks (P<0.05). Storage at 0°C for more than 4 weeks reduced fecundity by 50%. T. cacoeciae parasitized the highest number of E. kuehniella eggs 1 day after adult emergence. The oviposition period lasted 6–7 days, although the parasitoids lived up to 13–14 days. Impact of storage time and temperature on parasitism rates by T. cacoeciae stored while in E. kuehniella eggs was measured. As storage time and temperature increased, subsequent parasitism rates of resulting adult T. cacoeciae decreased. Eggs of E. kuehniella can be stored at 0°C for up to 31 days. Trichogramma cacoeciae developing in eggs of E. kuehniella can be stored at 4°C for up to 5 weeks prior to release.  相似文献   

20.
The codling moth Cydia pomonella (Linnaeus) (Lepidoptera: Tortricidae) is a serious pest of pome fruit crops. A natural enemy of codling moth, the larval ectoparasitoid Mastrus ridibundus (Gravenhorst) (Hymenoptera: Ichneumonidae) has been imported into South America from the USA but little is known about the biology and ecology of the wasp, knowledge that is needed to design an efficient strategy of release and establishment. Experiments were carried out to assess important traits of the biology of the parasitoid in relation to its possible use as a biocontrol agent for codling moth. When M. ridibundus females were offered larvae ranging in weight from 37 to 78 mg, they oviposited more eggs on heavier hosts. In another study, the adult wasps were offered honey, diluted honey (10%) or pollen in paired choice tests and both males and females preferred honey over the other two foods. Females preferred 10% honey over pollen, while the males showed the opposite preference. Honey‐fed females lived longer than starved females. Adults died rapidly at 35°C, while they lived 20 days at 25°C and 12–17 days at 15°C. Female wasps had on average 25 ± 14 and 18 ± 11 progeny at 15 and 25°C, respectively, but they did not had progeny at 35°C. The development time (egg to adult emergence) was on average 44 ± 7 and 24 ± 2 days at 15 and 25°C respectively. Immature insects did not reach the adult stage at 35°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号