首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The conventional stoichiometry of the oxidation of elemental sulfur by ferric iron in Acidithiobacillus ferrooxidans was not in agreement with our experimental data in terms of ferrous iron and proton formation. Reaction modelling under the actual conditions of bacterial activity resulted in a different stoichiometry, where additional iron species participate in the process to affect the number of released protons. The suggested reaction equation may more accurately predict the intensity of environmental acidification during the anaerobic bioprocess.  相似文献   

2.
Blair  Graeme J.  Lefroy  Rod B.  Dana  M.  Anderson  G. C. 《Plant and Soil》1993,(1):379-382
An elemental S oxidation model has been developed which combines a maximum S release rate with modifiers for temperature and soil moisture conditions. This model has been combined with a pasture growth and CNSP nutrient cycling model to match S oxidation rate to pasture S demand. In two Southern Australian enviroments, 100m elemental S was superior to 200m particles whilst in Northern Australia the 200m particles were superior. These models can be used to match S release to plant demand.  相似文献   

3.
The kinetics of sulfur oxidation by T. thiooxidans has been studied in a batch well-mixed reactor and in shaker flasks. A mathematical model is proposed, which considers the attachment of the cells onto the sulfur particles' surface following Freundlich isotherm, growth of the attached bacteria, and growth inhibition by sulfates accumulation. Best-fit values of the model parameters have been calculated from the experimental data. Results show that the addition of dimethyl-dichloro-silane in the aerated reactor to prevent the formation of foam reduces the maximum specific growth rate of attached bacteria, probably because of the resulting changes in surface properties of the sulfur particles. The other model parameters are not significantly affected. The formation of clusters of sulfur particles has been observed at an initial sulfur concentration of 5% . This phenomenon reduces the rate of sulfur conversion due to the reduction of the total surface area of the particles, and the model therefore over-estimates the formation of sulfates. At lower initial sulfur concentration, the phenomenon has not been observed and the model simulations are then satisfactory.  相似文献   

4.
The kinetics of sulfur oxidation by Acidithiobacillus ferrooxidans in shaking flasks and a 10-L reactor was studied. The observed linearity of growth and sulfur oxidation was explained by sulfur limitation. Total cell yield was not significantly different for exponential growth as compared to growth during the sulfur-limiting phase. Kinetic studies of sulfur oxidation by growing and nongrowing bacteria indicated that both free and adsorbed bacteria oxidize sulfur. Changes in the number of free bacteria rather than cells adsorbed on sulfur were better predictors of the kinetics of sulfur oxidation, indicating that the free bacteria were performing sulfur oxidation. The active growth phase always followed adsorption of bacteria on sulfur; however, the special metabolic role of adsorbed bacteria was unclear. Their activity in sulfur solubilization was considered.  相似文献   

5.
Thiobacillus denitrificans strain RT could be grown anaerobically in batch culture on thiosulfate but not on other reduced sulfur compounds like sulfide, elemental sulfur, thiocyanate, polythionates or sulfite. During growth on thiosulfate the assimilated cell sulfur was derived totally from the outer or sulfane sulfur. Thiosulfate oxidation started with a rhodanese type cleavage between sulfane and sulfone sulfur leading to elemental sulfur and sulfite. As long as thiosulfate was present elemental sulfur was transiently accumulated within the cells in a form that could be shown to be more reactive than elemental sulfur present in a hydrophilic sulfur sol, however, less reactive than sulfane sulfur of polythionates or organic and inorganic polysulfides. When thiosulfate had been completely consumed, intracellular elemental sulfur was rapidly oxidized to sulfate with a specific rate of 45 natom S°/min·mg protein. Extracellularly offered elemental sulfur was not oxidized under anaerobic conditions.  相似文献   

6.
Perchlorate (ClO(4)(-)) contamination of ground and surface water has been recently recognized as a widespread environmental problem. Biological methods offer promising perspectives of perchlorate remediation. Facultative anaerobic bacteria couple the oxidation of organic and inorganic electron-donating substrates to the reduction of perchlorate as a terminal electron acceptor, converting it completely to the benign end-product, chloride. Insoluble inorganic substrates are of interest for low maintenance bioreactor or permeable reactive barrier systems because they can provide a long-term supply of electron donor without generating organic residuals. The main objective of this research was to investigate the feasibility of utilizing elemental sulfur (S(0)) as an insoluble electron donor for the biological reduction of perchlorate. A chemolithotrophic enrichment culture derived from aerobic activated sludge was obtained which effectively coupled the oxidation of elemental sulfur to sulfate with the reduction of perchlorate to chloride and gained energy from the process for cell growth. The enrichment culture grew at a rate of 0.41 or 0.81 1/d in the absence and presence of added organic carbon for cell growth, respectively. The enrichment culture was also shown to carry out sulfur disproportionation to a limited extent as evidenced by the formation of sulfide and sulfate in the absence of added electron acceptor. When nitrate and perchlorate were added together, the two electron acceptors were removed simultaneously after an initial partial decrease in the nitrate concentration.  相似文献   

7.
The kinetics of oxidation of elemental sulfur by Thiobacillus ferrooxidans in a batch reactor was followed by measuring the concentration of adsorbed cells on the sulfur surface, the concentration of free cells in liquid medium, and the amount of sulfur oxidized. As the elemental sulfur was oxidized to sulfate, the liquid-phase concentration of free cells continued to increase with time, whereas the surface concentration of adsorbed cells per unit weight of sulfur approached a limiting value, i.e., the maximum adsorption capacity. During sulfur oxidation, there was a close correlation between the concentrations of adsorbed and free cells, and these data were well correlated with the Langmuir isotherm. The observed rates of batch growth and sulfur oxidation were consistent with a kinetic model, assuming that the growth rate of batch growth and sulfur oxidation were consistent with a kinetic model. Assuming that the growth rate of adsorbed bacteria is proportional to the product of the concentration of adsorbed cells and the fraction of adsorption sites unoccupied by cells. The kinetic and stoichiometric parameters appearing in the model were evaluated using the experimental data and were compared with parameters determined previously for a few metal sulfides. (c) 1994 John Wiley & Sons, Inc.  相似文献   

8.
The strict anaerobe Desulfuromonas acetoxidans can oxidize acetate to CO2 with elemental sulfur as electron acceptor. 14C-labelling experiments and enzyme studies are described revealing that acetate oxidation proceeds via the citric acid cycle with the synthesis of oxaloacetate from acetate and 2 CO2 via pyruvate as anaplerotic reaction. An oxidation of acetate via one carbon unit intermediates as proposed for anaerobic bacteria fermenting acetate to 2 CO2 and 4 H2 was excluded.Dedicated to Professor Dr. Gerhart Drews on the occasion of his 60th birthday  相似文献   

9.
Among sulfur compounds, thiosulfate and polythionates are present at least transiently in many environments. These compounds have a similar chemical structure and their metabolism appears closely related. They are commonly used as energy sources for photoautotrophic or chemolithotrophic microorganisms, but their assimilation has been seldom studied and their importance in bacterial physiology is not well understood. Almost all bacterial strains are able to cleave these compounds since they possess thiosulfate sulfur transferase, thiosulfate reductase or S-sulfocysteine synthase activities. However, the role of these enzymes in the assimilation of thiosulfate or polythionates has not always been clearly established. Elemental sulfur is, on the contrary, very common in the environment. It is an energy source for sulfur-reducing eubacteria and archaebacteria and many sulfur-oxidizing archaebacteria. A phenomenon still not well understood is the 'excessive assimilatory sulfur metabolism' as observed in methanogens which perform a sulfur reduction which exceeds their anabolic needs without any apparent benefit. In heterotrophs, assimilation of elemental sulfur is seldom described and it is uncertain whether this process actually has a physiological significance. Thus, reduction of thiosulfate and elemental sulfur is a common but incompletely understood feature among bacteria. These activities could give bacteria a selective advantage, but further investigations are needed to clarify this possibility. Presence of thiosulfate, polythionates and sulfur reductase activities does not imply obligatorily that these activities play a role in thiosulfate, polythionates or sulfur assimilation as these compounds could be merely intermediates in bacterial metabolism. The possibility also exists that the assimilation of these sulfur compounds is just a side effect of an enzymatic activity with a completely different function. As long as these questions remain unanswered, our understanding of sulfur and thiosulfate metabolism will remain incomplete.  相似文献   

10.
Abstract Among sulfur compounds, thiosulfate and polythionates are present at least transiently in many environments. These compounds have a similar chemical structure and their metabolism appears closely related. They are commonly used as energy sources for photoautotrophic or chemolithotrophic microorganisms, but their assimilation has been seldom studied and their importance in bacterial physiology is not well understood. Almost all bacterial strains are able to cleave these compounds since they possess thiosulfate sulfur transferase, thiosulfate reductace or S -sulfocysteine synthase activities. However, the role of these enzymes in the assimilation of thiosulfate or polythionates has not always been clearly established.
Elemental sulfur is, on the contrary, very common in the environmental. It is an energy source for sulfur-reducing eubacteria and archaebacteria and many sulfur-oxidizing archaebacteria. A phenomenon still not well understood is the 'excessive assimilatory sulfur metabolism' as observed in methanogens which perform a sulfur reduction which exceeds their anabolic needs without any apparent benefit. In heterotrophs, assimilation of elemental sulfur is seldom described and it is uncertain whether this process actually has a physiological significance.
Thus, reduction of thiosulfate and elemental sulfur is a common by incompletely understood feature among bacteria. These activities could give bacteria a selective advantage, but futher investigations are needed to clarify this possibility. Presence of thiosulfate, polythionates and sulfur reductase activities does not imply obligatorily that these activities play a role in thiosulfate, polythionates or sulfur assimilation as these compounds could be merely intermediates in bacterial metabolism. The possibility also exists that the assimilation of these sulfur compounds is just a side effect of an enzymatic activity with a completely different function.  相似文献   

11.
硫氧化细菌的种类及硫氧化途径的研究进展   总被引:3,自引:0,他引:3  
硫,作为生物必需的大量营养元素之一,参与了细胞的能量代谢与蛋白质、维生素和抗生素等物质代谢。自然界中,硫以多种化学形态存在,包括单质硫、还原性硫化物、硫酸盐和含硫有机物。硫氧化是硫元素生物地球化学循环的重要组成部分,通常是指单质硫或还原性硫化物被微生物氧化的过程。硫氧化细菌种类繁多,其硫氧化相关基因、酶和途径也多种多样。近几年,相关方面的研究已取得很多进展,但在不同层面仍存在一些尚未解决的科学问题。本文主要围绕硫氧化细菌的种类及硫氧化途径的研究进展进行了综述。  相似文献   

12.
The intermediary production of elemental sulfur during the microbial oxidation of reduced sulfur compounds has frequently been reported. Thiobacillus ferrooxidans, an acidophilic chemolithoautotroph, was found to produce an insoluble sulfur compound, primarily elemental sulfur, during the oxidation of thiosulfate, trithionate, tetrathionate and sulfide. This was confirmed by light and electron microscopy. Sulfur was produced from sulfide by an oxidative step, while the production from tetrathionate was initiated by a hydrolytic step, probably followed by a series of chemical reactions. The oxidation of intermediary sulfur was severely inhibited by sulfhydryl-binding reagents such as N-ethylmaleimide, by the addition of uncouplers or after freezing and thawing of the cells, which probably damaged the cell membrane. The mechanisms behind these inhibitions have not yet been clarified. Finally, it was observed that elemental sulfur oxidation by whole cells depended on the medium composition. The absence of sulfate or selenate reduced the sulfur oxidation rate.Non-standard abbreviations NEM N-ethylmaleimide - CCCP carbonyl cyanide m-chlorophenyl hydrazone  相似文献   

13.
Experimental studies were conducted to determine the feasibility of autotrophic denitrification with Thiobacillus denitrificans as a nitrate removal process for wastewater. S0-acclimated activated sludge, which can carry out autotrophic denitrification using S0 as electron donors, was prepared by the fill and draw cultivation method. The kinetic constants for the S0-denitrification reaction using S0-acclimated activated sludge under NO3-N limiting growth conditions were determined to be Y = 0.33 mg-NO3-N and b = 0.058 d−1. High percentages of denitrification (over 95%) and rates of denitrification ranging from 0.19 to 0.24 mg-NO3-N/mg-TOC·d were obtained in the continuous denitrification experiments using S0-acclimated activated sludge.  相似文献   

14.
15.
The utilization of sulfide by phototrophic sulfur bacteria temporarily results in the accumulation of elemental sulfur. In the green sulfur bacteria (Chlorobiaceae), the sulfur is deposited outside the cells, whereas in the purple sulfur bacteria (Chromatiaceae) sulfur is found intracellularly. Consequently, in the latter case, sulfur is unattainable for other individuals. Attempts were made to analyze the impact of the formation of extracellular elemental sulfur compared to the deposition of intracellular sulfur.According to the theory of the continuous cultivation of microorganisms, the steady-state concentration of the limiting substrate is unaffected by the reservoir concentration (S R).It was observed in sulfide-limited continuous cultures ofChlorobium limicola f.thiosulfatophilum that higherS R values not only resulted in higher steady-state population densities, but also in increased steady-state concentrations of elemental sulfur. Similar phenomena were observed in sulfide-limited cultures ofChromatium vinosum.It was concluded that the elemental sulfur produced byChlorobium, althouth being deposited extracellularly, is not easily available for other individuals, and apparently remains (in part) attached to the cells. The ecological significance of the data is discussed.Non-standard abbreviations RP reducing power - BChl bacteriochlorophyll - Ncell cell material - specific growth rate - {ie52-1} maximal specific growth rate - D dilution rate - K s saturation constant - s concentration of limiting substrate - S R same ass but in reservoir bottle - Y yield factor - iSo intracellular elemental sulfur - eSo extracellular elemental sulfur - PHB poly-beta-hydroxybutyric acid  相似文献   

16.
The enzymatic pathways of elemental sulfur and thiosulfate disproportionation were investigated using cell-free extract of Desulfocapsa sulfoexigens. Sulfite was observed to be an intermediate in the metabolism of both compounds. Two distinct pathways for the oxidation of sulfite have been identified. One pathway involves APS reductase and ATP sulfurylase and can be described as the reversion of the initial steps of the dissimilatory sulfate reduction pathway. The second pathway is the direct oxidation of sulfite to sulfate by sulfite oxidoreductase. This enzyme has not been reported from sulfate reducers before. Thiosulfate reductase, which cleaves thiosulfate into sulfite and sulfide, was only present in cell-free extract from thiosulfate disproportionating cultures. We propose that this enzyme catalyzes the first step in thiosulfate disproportionation. The initial step in sulfur disproportionation was not identified. Dissimilatory sulfite reductase was present in sulfur and thiosulfate disproportionating cultures. The metabolic function of this enzyme in relation to elemental sulfur or thiosulfate disproportionation was not identified. The presence of the uncouplers HQNO and CCCP in growing cultures had negative effects on both thiosulfate and sulfur disproportionation. CCCP totally inhibited sulfur disproportionation and reduced thiosulfate disproportionation by 80% compared to an unamended control. HQNO reduced thiosulfate disproportionation by 80% and sulfur disproportionation by 90%.  相似文献   

17.
Fate of elemental sulfur in an intertidal sediment   总被引:2,自引:0,他引:2  
Abstract: Sediment from a tidal flat at Wedderwarden, near the mouth of the Weser estuary, northern Germany, was amended with elemental sulfur, and concentrations of metabolic end products were monitored. The production of both sulfate and sulfide was consistent with disproportionation as the most important fate of the added elemental sulfur. A population of bacteria conducting active elemental sulfur disproportionation was also enriched from the sediment. In the enrichments, containing both elemental sulfur and Fe oxides as a sulfide 'scrub', sulfide and sulfate were produced in a ratio of     , somewhat lower than the predicted ratio of     . The mismatch between predicted and observed production ratios is explained by the channelling of electrons into autotrophic or mixotrophic CO2 fixation rather than sulfide formation. The production of organic carbon, in the correct amount to explain the observed sulfide to sulfate production ratio, was verified by organic carbon analysis. Finally, rates of sulfate reduction were identical in the elemental sulfur amended sediment, and in control sediment with no added sulfur. Hence, the heterotrophic bacterial community was completely unaffected by an active metabolism conducting elemental sulfur disproportionation.  相似文献   

18.
Prokaryotic sulfur oxidation   总被引:3,自引:0,他引:3  
Recent biochemical and genomic data differentiate the sulfur oxidation pathway of Archaea from those of Bacteria. From these data it is evident that members of the Alphaproteobacteria harbor the complete sulfur-oxidizing Sox enzyme system, whereas members of the beta and gamma subclass and the Chlorobiaceae contain sox gene clusters that lack the genes encoding sulfur dehydrogenase. This indicates a different pathway for oxidation of sulfur to sulfate. Acidophilic bacteria oxidize sulfur by a system different from the Sox enzyme system, as do chemotrophic endosymbiotic bacteria.  相似文献   

19.
Incubation of intact spinach (Spinacia oleracea L.) chloroplasts in the presence of 35SO42− resulted in the light-dependent formation of a chloroform-soluble sulfur-containing compound distinct from sulfolipid. We have identified this compound as the most stable form (S8) of elemental sulfur (S0, valence state for S = O) by mass spectrometry. It is possible that elemental sulfur (S0) was formed by oxidation of bound sulfide, i.e. after the photoreduction of sulfate to sulfide by intact chloroplasts, and released as S8 under the experimental conditions used for analysis.  相似文献   

20.
Biomass and oxygen uptake activity profiles of a mixed bioleaching culture were studied and compared at various temperatures. Bacteria were grown on ferrous ion or elemental sulfur in a Micro-Oxymax respirometer apparatus that allowed measurement of both oxygen consumption and carbon dioxide assimilation. Balanced growth was observed between 10 degrees C and 35 degrees C, with an optimum at 30 degrees C, on both energy sources. No significant growth was observed at the lowest temperature used, 5 degrees C, or at the highest temperature used, 40 degrees C. The oxygen to carbon dioxide molar yield was 50:1 when growing on ferrous ion but only 17:1 when growing on elemental sulfur. Upon transfer from a sulfide ore to a new energy source, greater numbers in the inoculum reduced the duration of the lag phase. Lag phase duration was also reduced by proximity to the optimum growth temperature. A longer lag phase decreased the achievable growth rate of the cells exponentially, significantly affecting biooxidation activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号