首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To identify the intracellular signals which increase the adhesiveness of leukocyte function-associated antigen 1 (LFA-1), we established an assay system for activation-dependent adhesion through LFA-1/intercellular adhesion molecule 1 ICAM-1 using mouse lymphoid cells reconstituted with human LFA-1 and then introduced constitutively active forms of signaling molecules. We found that the phorbol myristate acetate (PMA)-responsive protein kinase C (PKC) isotypes (alpha, betaI, betaII, and delta) or phosphatidylinositol-3-OH kinase (PI 3-kinase) itself activated LFA-1 to bind ICAM-1. H-Ras and Rac activated LFA-1 in a PI 3-kinase-dependent manner, whereas Rho and R-Ras had little effect. Unexpectedly, Rap1 was demonstrated to function as the most potent activator of LFA-1. Distinct from H-Ras and Rac, Rap1 increased the adhesiveness independently of PI 3-kinase, indicating that Rap1 is a novel activation signal for the integrins. Rap1 induced changes in the conformation and affinity of LFA-1 and, interestingly, caused marked LFA-1/ICAM-1-mediated cell aggregation. Furthermore, a dominant negative form of Rap1 (Rap1N17) inhibited T-cell receptor-mediated LFA-1 activation in Jurkat T cells and LFA-1/ICAM-1-dependent cell aggregation upon differentiation of HL-60 cells into macrophages, suggesting that Rap1 is critically involved in physiological processes. These unique functions of Rap1 in controlling cellular adhesion through LFA-1 suggest a pivotal role as an immunological regulator.  相似文献   

2.
We investigated the role of H-Ras in chemokine-induced integrin regulation in leukocytes. Stimulation of Jurkat T cells with the CXC chemokine stromal cell-derived factor-1alpha (SDF-1alpha) resulted in a rapid increase in the phosphorylation, i.e., activation of extracellular signal receptor-activated kinase (ERK) but not c-Jun NH(2)-terminal kinase or p38 kinase, and phosphorylation of Akt, reflecting phosphatidylinositol 3-kinase (PI3-K) activation. Phosphorylation of ERK in Jurkat cells was enhanced and attenuated by expression of dominant active (D12) or inactive (N17) forms of H-Ras, respectively, while N17 H-Ras abrogated SDF-1alpha-induced Akt phosphorylation. SDF-1alpha triggered a transient regulation of adhesion to intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 mediated by lymphocyte function antigen-1 (LFA-1) and very late antigen-4 (VLA-4), respectively, and a rapid increase in LFA-1 binding to soluble ICAM-1.Ig, which was inhibited by D12 but not N17 H-Ras. Both D12 and N17 H-Ras abrogated the regulation of LFA-1 but not VLA-4 avidity, and impaired LFA-1-mediated transendothelial chemotaxis but not VLA-4-dependent transmigration induced by SDF-1alpha. Analysis of the mutant Jurkat J19 clone revealed LFA-1 with constitutively high affinity and reduced ERK phosphorylation, which were partially restored by expression of active H-Ras. Inhibition of PI3-K blocked the up-regulation of Jurkat cell adhesion to ICAM-1 by SDF-1alpha, whereas inhibition of mitogen-activated protein kinase kinase impaired the subsequent down-regulation and blocking both pathways abrogated LFA-1 regulation. Our data suggest that inhibition of initial PI3-K activation by inactive H-Ras or sustained activation of an inhibitory ERK pathway by active H-Ras prevail to abolish LFA-1 regulation and transendothelial migration induced by SDF-1alpha in leukocytes, establishing a complex and bimodal involvement of H-Ras.  相似文献   

3.
Dynamic regulation of beta(2) integrin-dependent adhesion is critical for a wide array of T cell functions. We previously showed that binding of high-affinity alpha(4)beta(1) integrins to VCAM-1 strengthens alpha(L)beta(2) integrin-mediated adhesion to ICAM-1. In this study, we compared beta(2) integrin-mediated adhesion of T cells to ICAM-1 under two different functional contexts: alpha(4) integrin signaling during emigration from blood into tissues and CD3 signaling during adhesion to APCs and target cells. Cross-linking either alpha(4) integrin or CD3 on Jurkat T cells induced adhesion to ICAM-1 of comparable strength. Adhesion was dependent on phosphatidylinositol (PI) 3-kinase but not p44/42 mitogen-activated protein kinase (extracellular regulated kinase 1/2), because it was inhibited by wortmannin and LY294002 but not U0126. These data suggest that PI 3-kinase is a ubiquitous regulator of beta(2) integrin-mediated adhesion. A distinct morphological change consisting of Jurkat cell spreading and extension of filopodia was induced by alpha(4) integrin signaling. In contrast, CD3 induced radial rings of cortical actin polymerization. Inhibitors of PI 3-kinase and extracellular regulated kinase 1/2 did not affect alpha(4) integrin-induced rearrangement of the actin cytoskeleton, but treatment with ionomycin, a Ca(2+) ionophore, modulated cell morphology by reducing filopodia and promoting lamellipodia formation. Qualitatively similar morphological and adhesive changes to those observed with Jurkat cells were observed following alpha(4) integrin or CD3 stimulation of human peripheral blood T cells.  相似文献   

4.
5.
The integrins can activate signaling pathways, but the final downstream outcome of these pathways is often unclear. This study analyzes the consequences of signaling events initiated by the interaction of the leukocyte integrin LFA-1 with its ligand, dimeric ICAM-1. We show that the active form of LFA-1 regulates its own function on primary human T cells by directing the remodeling of the F-actin cytoskeleton to strengthen T cell adhesion to ICAM-1. Confocal microscopy revealed that both F-actin bundling and overall levels of F-actin are increased in the ICAM-1-adhering T cells. This increase in F-actin levels and change in F-actin distribution was quantitated for large numbers of T cells using the technique of laser scanning cytometry and was found to be significant. The study went on to show that clustering of conformationally altered LFA-1 is essential for the changes in F-actin, and a model is proposed in which clustered, high-avidity T cell LFA-1, interacting with multivalent ICAM-1, causes LFA-1 signaling, which results in F-actin polymerization and higher-order F-actin bundling. The findings demonstrate that LFA-1 acts not only as an adhesion receptor but also as a signaling receptor by actively initiating the F-actin reorganization that is essential for many T cell-dependent processes.  相似文献   

6.
We have previously shown that CD4 ligand binding inhibits LFA-1-dependent adhesion between CD4+ T cells and B cells in a p56(lck)- and phosphatidylinositol 3-kinase (PI3-kinase)-dependent manner. In this work, downstream events associated with adhesion inhibition have been investigated. By using HUT78 T cell lines, CD4 ligands were shown to induce a dissociation of LFA-1 from cytohesin, a cytoplasmic protein known to bind LFA-1 and to enhance the affinity/avidity of LFA-1 for its ligand ICAM-1. A dissociation of PI3-kinase from cytohesin is also observed. In parallel, we have found that CD4 ligand binding induced a redistribution of PI3-kinase and of the tyrosine phosphatase SHP-2 to the membrane and induced a transient formation of protein interactions including PI3-kinase; an adaptor protein, Gab2; SHP-2; and a SH2 domain-containing inositol phosphatase, SHIP. By using antisense oligonucleotides or transfection of transdominant mutants, down-regulation of adhesion was shown to require the Gab2/PI3-kinase association and the expression of SHIP and SHP-2. We therefore propose that CD4 ligands, by inducing these molecular associations, lead to sustained local high levels of D-3 phospholipids and possibly regulate the cytohesin/LFA-1 association.  相似文献   

7.
CD98 is a multifunctional heterodimeric membrane protein involved in the regulation of cell adhesion as well as amino acid transport. We show that CD98 cross-linking persistently activates Rap1 GTPase in a LFA-1-dependent manner and induces LFA-1/ICAM-1-mediated cell adhesion in lymphocytes. Specific phosphatidylinositol-3-kinase (PI3K) inhibitors suppressed both LFA-1 activation and Rap1GTP generation, and abrogation of Rap1GTP by retroviral over-expression of a specific Rap1 GTPase activating protein, SPA-1, totally inhibited the LFA-1/ICAM-1-mediated cell adhesion. These results suggest that CD98 cross-linking activates LFA-1 via the PI3K signaling pathway and induces accumulation of Rap1GTP in a LFA-1-dependent manner, which in turn mediates the cytoskeleton-dependent cell adhesion process.  相似文献   

8.
Ab stimulation of the TCR rapidly enhances the functional activity of the LFA-1 integrin. Although TCR-mediated changes in LFA-1 activity are thought to promote T cell-APC interactions, the Ag specificity and sensitivity of TCR-mediated triggering of LFA-1 is not clear. We demonstrate that peptide/MHC (pMHC) tetramers rapidly enhance LFA-1-dependent adhesion of OT-I TCR transgenic CD8(+) T cells to purified ICAM-1. Inhibition of src family tyrosine kinase or PI3K activity blocked pMHC tetramer- and anti-CD3-stimulated adhesion. These effects are highly specific because partial agonist and antagonist pMHC tetramers are unable to stimulate OT-I T cell adhesion to ICAM-1. The Ag thresholds required for T cell adhesion to ICAM-1 resemble those of early T cell activation events, because optimal LFA-1 activation occurs at tetramer concentrations that fail to induce maximal T cell proliferation. Thus, TCR signaling to LFA-1 is highly Ag specific and sensitive to low concentrations of Ag.  相似文献   

9.
Leukocyte recruitment is a key step in the inflammatory reaction. Several changes in the cell morphology take place during lymphocyte activation and migration: spheric-shaped resting T cells become polarized during activation, developing a well defined cytoplasmic projection designated as cellular uropod. We found that the chemotactic and proinflammatory chemokines RANTES, MCP-1, and, to a lower extent, MIP-1 alpha, MIP-1 beta, and IL-8, were able to induce uropod formation and ICAM-3 redistribution in T lymphoblasts adhered to ICAM-1 or VCAM- 1. A similar chemokine-mediated effect was observed during T cells binding to the fibronectin fragments of 38- and 80-kD, that contain the binding sites for the integrins VLA-4 and VLA-5, respectively. The uropod structure concentrated the ICAM-3 adhesion molecule (a ligand for LFA-1), and emerged to the outer milieu from the area of contact between lymphocyte and protein ligands. In addition, we found that other adhesion molecules such as ICAM-1, CD43, and CD44, also redistributed to the lymphocyte uropod upon RANTES stimulation, whereas a wide number of other cell surface receptors did not redistribute. Chemokines displayed a selective effect among different T cell subsets; MIP-1 beta had more potent action on CD8+ T cells and tumor infiltrating lymphocytes (TIL), whereas RANTES and MIP-1 alpha targeted selectively CD4+ T cells. We have also examined the involvement of cAMP signaling pathway in uropod formation. Interestingly, several cAMP agonists were able to induce uropod formation and ICAM-3 redistribution, whereas H-89, a specific inhibitor of the cAMP- dependent protein kinase, abrogated the chemokine-mediated uropod formation, thus pointing out a role for cAMP-dependent signaling in the development of this cytoplasmic projection. Since the lymphocyte uropod induced by chemokines was completely abrogated by Bordetella pertussis toxin, the formation of this membrane projection appears to be dependent on G proteins signaling pathways. In addition, the involvement of myosin-based cytoskeleton in uropod formation and ICAM-3 redistribution in response to chemokines was suggested by the prevention of this phenomenon with the myosin-disrupting agent butanedione monoxime. Interestingly, this agent also inhibited the ICAM- 3-mediated cell aggregation, but not the cell adhesion to substrata. Altogether, these results demonstrate that uropod formation and adhesion receptor redistribution is a novel function mediated by chemokines; this phenomenon may represent a mechanism that significantly contributes to the recruitment of circulating leukocytes to inflammatory foci.  相似文献   

10.
11.
Integrin-dependent interactions between T cells and antigen-presenting cells are vital for proper T cell activation, effector function, and memory. Regulation of integrin function occurs via conformational change, which modulates ligand affinity, and receptor clustering, which modulates valency. Here, we show that conformational intermediates of leukocyte functional antigen 1 (LFA-1) form a concentric array at the immunological synapse. Using an inhibitor cocktail to arrest F-actin dynamics, we show that organization of this array depends on F-actin flow and ligand mobility. Furthermore, F-actin flow is critical for maintaining the high affinity conformation of LFA-1, for increasing valency by recruiting LFA-1 to the immunological synapse, and ultimately for promoting intracellular cell adhesion molecule 1 (ICAM-1) binding. Finally, we show that F-actin forces are opposed by immobilized ICAM-1, which triggers LFA-1 activation through a combination of induced fit and tension-based mechanisms. Our data provide direct support for a model in which the T cell actin network generates mechanical forces that regulate LFA-1 activity at the immunological synapse.  相似文献   

12.
13.
Intracellular signals are required to activate the leukocyte-specific adhesion receptor lymphocyte function-associated molecule-1 (LFA-1; CD11a/CD18) to bind its ligand, intracellular adhesion molecule-1 (ICAM-1). In this study, we investigated the role of the cytoskeleton in LFA-1 activation and demonstrate that filamentous actin (F-actin) can both enhance and inhibit LFA-1-mediated adhesion, depending on the distribution of LFA-1 on the cell surface. We observed that LFA-1 is already clustered on the cell surface of interleukin-2/phytohemagglutinin-activated lymphocytes. These cells bind strongly ICAM-1 and disruption of the actin cytoskeleton inhibits adhesion. In contrast to interleukin-2/phytohemagglutinin-activated peripheral blood lymphocytes, resting lymphocytes, which display a homogenous cell surface distribution of LFA-1, respond poorly to intracellular signals to bind ICAM-1, unless the actin cytoskeleton is disrupted. On resting peripheral blood lymphocytes, uncoupling of LFA-1 from the actin cytoskeleton induces clustering of LFA-1 and this, along with induction of a high-affinity form of LFA-1, via "inside-out" signaling, results in enhanced binding to ICAM-1, which is dependent on intact intermediate filaments, microtubules, and metabolic energy. We hypothesize that linkage of LFA-1 to cytoskeletal elements prevents movement of LFA-1 over the cell surface, thus inhibiting clustering and strong ligand binding. Release from these cytoskeletal elements allows lateral movement and activation of LFA-1, resulting in ligand binding and "outside-in" signaling, that subsequently stimulates actin polymerization and stabilizes cell adhesion.  相似文献   

14.
《The Journal of cell biology》1994,126(5):1277-1286
Intercellular adhesion molecule (ICAM)-3, a recently described counter- receptor for the lymphocyte function-associated antigen (LFA)-1 integrin, appears to play an important role in the initial phase of immune response. We have previously described the involvement of ICAM-3 in the regulation of LFA-1/ICAM-1-dependent cell-cell interaction of T lymphoblasts. In this study, we further investigated the functional role of ICAM-3 in other leukocyte cell-cell interactions as well as the molecular mechanisms regulating these processes. We have found that ICAM-3 is also able to mediate LFA-1/ICAM-1-independent cell aggregation of the leukemic JM T cell line and the LFA-1/CD18-deficient HAFSA B cell line. The ICAM-3-induced cell aggregation of JM and HAFSA cells was not affected by the addition of blocking mAb specific for a number of cell adhesion molecules such as CD1 1a/CD18, ICAM-1 (CD54), CD2, LFA-3 (CD58), very late antigen alpha 4 (CD49d), and very late antigen beta 1 (CD29). Interestingly, some mAb against the leukocyte tyrosine phosphatase CD45 were able to inhibit this interaction. Moreover, they also prevented the aggregation induced on JM T cells by the proaggregatory anti-LFA-1 alpha NKI-L16 mAb. In addition, inhibitors of tyrosine kinase activity also abolished ICAM-3 and LFA-1- mediated cell aggregation. The induction of tyrosine phosphorylation through ICAM-3 and LFA-1 antigens was studied by immunofluorescence, and it was found that tyrosine-phosphorylated proteins were preferentially located at intercellular boundaries upon the induction of cell aggregation by either anti-ICAM-3 or anti-LFA-1 alpha mAb. Western blot analysis revealed that the engagement of ICAM-3 or LFA-1 with activating mAb enhanced tyrosine phosphorylation of polypeptides of 125, 70, and 38 kD on JM cells. This phenomenon was inhibited by preincubation of JM cells with those anti-CD45 mAb that prevented cell aggregation. Altogether these results indicate that CD45 tyrosine phosphatase plays a relevant role in the regulation of both intracellular signaling and cell adhesion induced through ICAM-3 and beta 2 integrins.  相似文献   

15.
To analyze the binding requirements of LFA-1 for its two most homologous ligands, ICAM-1 and ICAM-3, we compared the effects of various LFA-1 activation regimes and a panel of anti-LFA-1 mAbs in T cell binding assays to ICAM-1 or ICAM-3 coated on plastic. These studies demonstrated that T cell binding to ICAM-3 was inducible both from the exterior of the cell by Mn2+ and from the interior by an agonist of the "inside-out" signaling pathway. T cells bound both ICAM ligands with comparable avidity. A screen of 29 anti-LFA-1 mAbs led to the identification of two mAbs specific for the alpha subunit of LFA-1 which selectively blocked adhesion of T cells to ICAM-3 but not ICAM-1. These two mAbs, YTH81.5 and 122.2A5, exhibited identical blocking properties in a more defined adhesion assay using LFA-1 transfected COS cells binding to immobilized ligand. Blocking was not due to a steric interference between anti-LFA-1 mAbs and N-linked carbohydrate residues present on ICAM-3 but not ICAM-1. The epitopes of mAbs YTH81.5 and 122.2A5 were shown to map to the I domain of the LFA-1 alpha subunit. A third I domain mAb, MEM-83, has been previously reported to uniquely activate LFA-1 to bind ICAM-1 (Landis, R. C., R. I. Bennett, and N. Hogg. 1993. J. Cell Biol. 120:1519-1527). We now show that mAb MEM-83 is not able to stimulate binding of T cells to ICAM-3 over a wide concentration range. Failure to induce ICAM-3 binding by mAb MEM-83 was not due to a blockade of the ICAM-3 binding site on LFA-1. This study has demonstrated that two sets of functionally distinct mAbs recognizing epitopes in the I domain of LFA-1 are able to exert differential effects on the binding of LFA-1 to its ligands ICAM-1, and ICAM-3. These results suggest for the first time that LFA-1 is capable of binding these two highly homologous ligands in a selective manner and that the I domain plays a role in this process.  相似文献   

16.
The role of phosphatidylinositol 3-kinase (PI3-kinase), an important enzyme involved in signal transduction events, has been studied in the polarization and chemotaxis of lymphocytes induced by the chemokine stromal cell-derived factor-1 alpha (SDF-1 alpha). This chemokine was able to directly activate p85/p110 PI3-kinase in whole human PBL and to induce the association of PI3-kinase to the SDF-1 alpha receptor, CXCR4, in a pertussis toxin-sensitive manner. Two unrelated chemical inhibitors of PI3-kinase, wortmannin and Ly294002, prevented ICAM-3 and ERM protein moesin polarization as well as the chemotaxis of PBL in response to SDF-1 alpha. However, they did not interfere with the reorganization of either tubulin or the actin cytoskeleton. Moreover, the transient expression of a dominant negative form of the PI3-kinase 85-kDa regulatory subunit in the constitutively polarized Peer T cell line inhibited ICAM-3 polarization and markedly reduced SDF-1 alpha-induced chemotaxis. Conversely, overexpression of a constitutively activated mutant of the PI3-kinase 110-kDa catalytic subunit in the round-shaped PM-1 T cell line induced ICAM-3 polarization. These results underline the role of PI3-kinase in the regulation of lymphocyte polarization and motility and indicate that PI3-kinase plays a selective role in the regulation of adhesion and ERM proteins redistribution in the plasma membrane of lymphocytes.  相似文献   

17.
The beta2 integrin LFA-1 (CD11a/CD18) mediates adhesion of lymphocytes to cells expressing ICAM. The strength of this adhesion is regulated by different signals delivered by cytokines and chemokines, and by the TCR in the case of T cells. To determine the receptor-ligand interactions required for adhesion of resting NK cells, Drosophila cells expressing different combinations of ligands of human NK cell receptors were generated. Expression of ICAM-1 alone was sufficient for an adhesion of resting NK cells that was sensitive to inhibitors of src family kinase and of phosphatidylinositol 3-kinase. Binding of resting NK cells to solid-phase ICAM-1 showed similar signaling requirements. A pulse of either IL-2 or IL-15 to resting NK cells resulted in strongly enhanced, actin-dependent adhesion to insect cells expressing ICAM-1 alone. Coexpression of either LFA-3 (CD58) or CD48 with ICAM-1 resulted in strong adhesion by resting NK cells, even in the absence of cytokines. Therefore, receptors for LFA-3 and CD48 on resting NK cells strengthen the adhesion mediated by LFA-1.  相似文献   

18.
WASP family proteins are key players for connecting multiple signaling pathways to F-actin polymerization. To dissect the highly integrated signaling pathways controlling WASP activity, we identified a Rac protein that binds to the GTPase binding domain of WASP. Using two-hybrid and FRET-based functional assays, we identified RacC as a major regulator of WASP. RacC stimulates F-actin assembly in cell-free systems in a WASP-dependent manner. A FRET-based microscopy approach showed local activation of RacC at the leading edge of chemotaxing cells. Cells overexpressing RacC exhibit a significant increase in the level of F-actin polymerization upon cAMP stimulation, which can be blocked by a phosphatidylinositol (PI) 3-kinase inhibitor. Membrane translocation of PI 3-kinase and PI 3,4,5-trisphosphate reporter is absent in racC null cells. Cells overexpressing dominant negative RacC mutants and racC null cells move at a significantly slower speed and show a poor directionality during chemotaxis. Our results suggest that RacC plays an important role in PI 3-kinase activation and WASP activation for dynamic regulation of F-actin assembly during Dictyostelium chemotaxis.  相似文献   

19.
LFA-1 binding to ICAM-I provides a costimulatory signal for CD8(+) T cell activation that results in increased IL-2 mRNA levels and protein production to support proliferation. CD28 binding to its B7 ligands has the same effect, and the two costimulatory receptors activate some of the same intracellular signaling events, including up-regulation of phosphatidylinositol (PI) 3-kinase activity. However, costimulation by LFA-1 depends upon the activity of this enzyme, whereas costimulation by CD28 does not, as evidenced by differential effects of specific inhibitors of PI 3-kinase. When cells are costimulated with ICAM-1 in the presence of the inhibitors wortmannin or LY294002, proliferation is blocked, but increases in IL-2 mRNA levels and protein production are not. Costimulation also results in increased surface expression of CD25, which is essential for formation of an active IL-2R. This is blocked by the PI 3-kinase inhibitors when costimulation is via LFA-1 but not when it is via CD28. Finally, IL-2-driven proliferation is not blocked by the inhibitors once CD25 surface expression has increased. Thus, the PI 3-kinase-dependent step in CD8 T cell costimulation by LFA-1 is up-regulation of IL-2R expression. In contrast, CD28 engagement also increases IL-2R surface expression, but the up-regulation does not depend upon PI 3-kinase activity.  相似文献   

20.
The formation of a conjugate between a T cell and an APC requires the activation of integrins on the T cell surface and remodeling of cytoskeletal elements at the cell-cell contact site via inside-out signaling. The early events in this signaling pathway are not well understood, and may differ from the events involved in adhesion to immobilized ligands. We find that conjugate formation between Jurkat T cells and EBV-B cells presenting superantigen is mediated by LFA-1 and absolutely requires Lck. Mutations in the Lck kinase, Src homology 2 or 3 domains, or the myristoylation site all inhibit conjugation to background levels, and adhesion cannot be restored by the expression of Fyn. However, ZAP-70-deficient cells conjugate normally, indicating that Lck is required for LFA-1-dependent adhesion via other downstream pathways. Several drugs that inhibit T cell adhesion to ICAM-1 immobilized on plastic, including inhibitors of mitogen-activated protein/extracellular signal-related kinase kinase, phosphatidylinositol-3 kinase, and calpain, do not inhibit conjugation. Inhibitors of phospholipase C and protein kinase C block conjugation of both wild-type and ZAP-70-deficient cells, suggesting that a phospholipase C that does not depend on ZAP-70 for its activation is involved. These results are not restricted to Jurkat T cells; Ag-specific primary T cell blasts behave similarly. Although the way in which Lck signals to enhance LFA-1-dependent adhesion is not clear, we find that cells lacking functional Lck fail to recruit F-actin and LFA-1 to the T cell:APC contact site, whereas ZAP-70-deficient cells show a milder phenotype characterized by disorganized actin and LFA-1 at the contact site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号