首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Available crystallographic data for homologous immunoglobulin constant domains were correlated with measured association constants for these domains. High correlation was found between the association constant and both the buried surface area (number of interdomain contacts) and the number of salt bridges formed in the interaction, whereas no correlation with the number of hydrogen bonds between domains was evident. The total free energy of binding, as determined from the association constant, was related to the number of contacts, hydrogen bonds and salt bridges found in the domain:domain interface by the crystallographic studies. These calculations yielded reasonable average energy terms for each interaction category.  相似文献   

2.
In solution, Lys48-linked di-ubiquitin exists in dynamic equilibrium between closed and open conformations. To understand the effect of interdomain motion in polyubiquitin chains on their ability to bind ligands, we cyclized di-ubiquitin by cross-linking the free C terminus of the proximal ubiquitin with the side chain of residue 48 in the distal ubiquitin, using a chemical cross-linker, 1,6-Hexane-bis-vinylsulfone. Our NMR studies confirm that the cyclization affects conformational dynamics in di-ubiquitin by restricting opening of the interface and shifting the conformational equilibrium toward closed conformations. The cyclization, however, did not rigidly lock di-ubiquitin in a single closed conformation: The chain undergoes slow exchange between at least two closed conformations, characterized by interdomain contacts involving the same hydrophobic patch residues (Leu8-Ile44-Val70) as in the uncyclized di-ubiquitin. Lowering the pH changes the relative populations of these conformations, but in contrast with the uncyclized di-ubiquitin, does not lead to opening of the interface. This restriction of domain motions inhibits direct access of protein molecules to the hydrophobic patch residues located at the very center of the interdomain interface in di-ubiquitin, although the residual motions are sufficient to allow access of small molecules to the interface. This renders di-ubiquitin unable to bind protein molecules (e.g., UBA2 domain) in the normal manner, and thus could interfere with Ub(2) recognition by various downstream effectors. These results emphasize the importance of the opening/closing domain motions for the recognition and function of di-ubiquitin and possibly longer polyubiquitin chains.  相似文献   

3.
The receptor, a maltose/maltooligosaccharide-binding protein, has been found to be an excellent system for the study of molecular recognition because its polar and nonpolar binding functions are segregated into two globular domains. The X-ray structures of the "closed" and "open" forms of the protein complexed with maltose and maltotetraitol have been determined. These sugars have approximately 3 times more accessible polar surface (from OH groups) than nonpolar surface (from small clusters of sugar ring CH bonds). In the closed structures, the oligosaccharides are buried in the groove between the two domains of the protein and bound by extensive hydrogen bonding interactions of the OH groups with the polar residues confined mostly in one domain and by nonpolar interactions of the CH clusters with four aromatic residues lodged in the other domain. Substantial contacts between the sugar hydroxyls and aromatic residues are also formed. In the open structures, the oligosaccharides are bound almost exclusively in the domain rich in aromatic residues. This finding, along with the analysis of buried surface area due to complex formations in the open and closed structures, supports a major role for nonpolar interactions in initial ligand binding even when the ligands have significantly greater potential for highly specific polar interactions.  相似文献   

4.
The subunits of the dimeric enzyme aspartate aminotransferase have two domains: one large and one small. The active site lies in a cavity that is close to both the subunit interface and the interface between the two domains. On binding the substrate the domains close together. This closure completely buries the substrate in the active site and moves two arginine side-chains so they form salt bridges with carboxylate groups of the substrate. The salt bridges hold the substrate close to the pyridoxal 5'-phosphate cofactor and in the right position and orientation for the catalysis of the transamination reaction. We describe here the structural changes that produce the domain movements and the closure of the active site. Structural changes occur at the interface between the domains and within the small domain itself. On closure, the core of the small domain rotates by 13 degrees relative to the large domain. Two other regions of the small domain, which form part of the active site, move somewhat differently. A loop, residues 39 to 49, above the active site moves about 1 A less than the core of the small domain. A helix within the small domain forms the "door" of the active site. It moves with the core of the small domain and, in addition, shifts by 1.2 A, rotates by 10 degrees, and switches its first turn from the alpha to the 3(10) conformation. This results in the helix closing the active site. The domain movements are produced by a co-ordinated series of small changes. Within one subunit the polypeptide chain passes twice between the large and small domains. One link involves a peptide in an extended conformation. The second link is in the middle of a long helix that spans both domains. At the interface this helix is kinked and, on closure, the angle of the kink changes to accommodate the movement of the small domain. The interface between the domains is formed by 15 residues in the large domain packing against 12 residues in the small domain and the manner in which these residues pack is essentially the same in the open and closed structures. Domain movements involve changes in the main-chain and side-chain torsion angles in the residues on both sides of the interface. Most of these changes are small; only a few side-chains switch to new conformations.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Structural properties of polyubiquitin chains in solution   总被引:3,自引:0,他引:3  
Because polyubiquitin chain structure modulates Ub-mediated signaling, knowledge of the physiological conformations of chain signals should provide insights into specific recognition. Here, we characterized the solution conformations of K48-linked Ub(2) and Ub(4) using a combination of NMR techniques, including chemical shift mapping of the interdomain interface, domain orientation measurements on the basis of 15N relaxation and residual dipolar couplings, and the solvent accessibility studies. Our data indicate a switch in the conformation of Ub(2), from open to closed, with increasing pH. The closed conformation features a well-defined interface that is related to, but distinguishable from, that observed in the Ub(2) crystal structure. This interface is dynamic in solution, such that important hydrophobic residues (L8, I44, V70) that are sequestered at the interface in the closed conformation may be accessible for direct interactions with recognition factors. Our results suggest that the distal two units of Ub(4), which is the minimum signal for efficient proteasomal degradation, may adopt the closed Ub(2) conformation.  相似文献   

6.
Abstract

Oligopeptidases B (OpdBs) are trypsin-like peptidases from protozoa and bacteria that belong to the prolyl oligopeptidase (POP) family. All POPs consist of C-terminal catalytic domain and N-terminal β-propeller domain and exist in two major conformations: closed (active), where the domains and residues of the catalytic triad are positioned close to each other, and open (non-active), where two domains and residues of the catalytic triad are separated. The interdomain interface, particularly, one of its salt bridges (SB1), plays a role in the transition between these two conformations. However, due to double amino acid substitution (E/R and R/Q), this functionally important SB1 is absent in γ-proteobacterial OpdBs including peptidase from Serratia proteamaculans (PSP). In this study, molecular dynamics was used to analyze inter- and intradomain interactions stabilizing PSP in the closed conformation, in which catalytic H652 is located close to other residues of the catalytic triad. The 3D models of either wild-type PSP or of mutant PSPs carrying activating mutations E125A and D649A in complexes with peptide-substrates were subjected to the analysis. The mechanism that regulates transition of H652 from active to non-active conformation upon domain separation in PSP and other γ-proteobacterial OpdB was proposed. The complex network of polar interactions within H652-loop/C-terminal α-helix and between these areas and β-propeller domain, established in silico, was in a good agreement with both previously published results on the effects of single-residue mutations and new data on the effects of the activating mutations on each other and on the low active mutant PSP-K655A.

Communicated by Ramaswamy H. Sarma  相似文献   

7.
Ubiquitin (Ub) is a small protein highly conserved among eukaryotes and involved in practically all aspects of eukaryotic cell biology. Polymeric chains assembled from covalently-linked Ub monomers function as molecular signals in the regulation of a host of cellular processes. Our previous studies have shown that the predominant state of Lys48-linked di- and tetra-Ub chains at near-physiological conditions is a closed conformation, in which the Ub-Ub interface is formed by the hydrophobic surface residues of the adjacent Ub units. Because these very residues are involved in (poly)Ub interactions with the majority of Ub-binding proteins, their sequestration at the Ub-Ub interface renders the closed conformation of polyUb binding incompetent. Thus the existence of open conformation(s) and the interdomain motions opening and closing the Ub-Ub interface is critical for the recognition of Lys48-linked polyUb by its receptors. Knowledge of the conformational properties of a polyUb signal is essential for our understanding of its specific recognition by various Ub-receptors. Despite their functional importance, open states of Lys48-linked chains are poorly characterized. Here we report a crystal structure of the open state of Lys48-linked di-Ub. Moreover, using NMR, we examined interactions of the open state of this chain (at pH4.5) with a Lys48-linkage-selective receptor, the UBA2 domain of a shuttle protein hHR23a. Our results show that di-Ub binds UBA2 in the same mode and with comparable affinity as the closed state. Our data suggest a mechanism for polyUb signal recognition, whereby Ub-binding proteins select specific conformations out of the available ensemble of polyUb chain conformations. This article is part of a Special Issue entitled: Ubiquitin Drug Discovery and Diagnostics.  相似文献   

8.
The structure of the I domain of integrin alpha L beta 2 bound to the Ig superfamily ligand ICAM-1 reveals the open ligand binding conformation and the first example of an integrin-IgSF interface. The I domain Mg2+ directly coordinates Glu-34 of ICAM-1, and a dramatic swing of I domain residue Glu-241 enables a critical salt bridge. Liganded and unliganded structures for both high- and intermediate-affinity mutant I domains reveal that ligand binding can induce conformational change in the alpha L I domain and that allosteric signals can convert the closed conformation to intermediate or open conformations without ligand binding. Pulling down on the C-terminal alpha 7 helix with introduced disulfide bonds ratchets the beta 6-alpha 7 loop into three different positions in the closed, intermediate, and open conformations, with a progressive increase in affinity.  相似文献   

9.
Low-density lipoprotein (LDL) receptors bind lipoprotein particles at the cell surface and release them in the low pH environment of the endosome. The published structure of the receptor determined at endosomal pH reveals an interdomain interface between its beta propeller and its fourth and fifth ligand binding (LA) repeats, suggesting that the receptor adopts a closed conformation at low pH to release LDL. Here, we combine lipoprotein binding and release assays with NMR spectroscopy to examine structural features of the receptor promoting release of LDL at low pH. These studies lead to a model in which the receptor uses a pH-invariant scaffold as an anchor to restrict conformational search space, combining it with flexible linkers between ligand binding repeats to interconvert between open and closed conformations. This finely tuned balance between interdomain rigidity and flexibility is likely to represent a shared structural feature in proteins of the LDL receptor family.  相似文献   

10.
A classical model for allosteric regulation of enzyme activity posits an equilibrium between inactive and active conformations. An alternative view is that allosteric activation is achieved by increasing the potential for conformational changes that are essential for catalysis. In the present study, substitution of a basic residue in the active site of the catalytic (C) trimer of aspartate transcarbamoylase with a non‐polar residue results in large interdomain hinge changes in the three chains of the trimer. One conformation is more open than the chains in both the wild‐type C trimer and the catalytic chains in the holoenzyme, the second is closed similar to the bisubstrate‐analog bound conformation and the third hinge angle is intermediate to the other two. The active‐site 240s loop conformation is very different between the most open and closed chains, and is disordered in the third chain, as in the holoenzyme. We hypothesize that binding of anionic substrates may promote similar structural changes. Further, the ability of the three catalytic chains in the trimer to access the open and closed active‐site conformations simultaneously suggests a cyclic catalytic mechanism, in which at least one of the chains is in an open conformation suitable for substrate binding whereas another chain is closed for catalytic turnover. Based on the many conformations observed for the chains in the isolated catalytic trimer to date, we propose that allosteric activation of the holoenzyme occurs by release of quaternary constraint into an ensemble of active‐site conformations.  相似文献   

11.
Phosphoglycerate kinase (PGK) is a key glycolytic enzyme that catalyzes the reversible transfer of a phosphate from 1,3-bisphosphoglycerate to ADP to form 3-phosphoglycerate and ATP in the presence of magnesium. During catalysis, a conformational change occurs that brings the N- and C-domains of PGK closer together. Here we present the 1.8A crystal structure of unliganded PGK from Thermus caldophilus (Tca). Comparison of the structure of TcaPGK (open conformation) with that of Thermotoga maritima (Tma) PGK (closed conformation) revealed that the conformational change reflects a change in the interaction between the domains. We identified Arg148 as a key residue involved in open-to-closed transition. The open conformation of TcaPGK is stabilized by an interdomain salt bridge between Arg148 and Glu375. The binding of 3-PG (or maybe 1,3-BPG) disrupts this salt bridge and, in ternary complex, the formation of new salt bridge between Arg60 and Asp197 stabilizes the closed conformation.  相似文献   

12.
The Escherichia coli histidine binding protein HisJ is a type II periplasmic binding protein (PBP) that preferentially binds histidine and interacts with its cytoplasmic membrane ABC transporter, HisQMP2, to initiate histidine transport. HisJ is a bilobal protein where the larger Domain 1 is connected to the smaller Domain 2 via two linking strands. Type II PBPs are thought to undergo “Venus flytrap” movements where the protein is able to reversibly transition from an open to a closed conformation. To explore the accessibility of the closed conformation to the apo state of the protein, we performed a set of all‐atom molecular dynamics simulations of HisJ starting from four different conformations: apo‐open, apo‐closed, apo‐semiopen, and holo‐closed. The simulations reveal that the closed conformation is less dynamic than the open one. HisJ experienced closing motions and explored semiopen conformations that reverted to closed forms resembling those found in the holo‐closed state. Essential dynamics analysis of the simulations identified domain closing/opening and twisting as main motions. The formation of specific inter‐hinge strand and interdomain polar interactions contributed to the adoption of the closed apo‐conformations although they are up to 2.5‐fold less prevalent compared with the holo‐closed simulations. The overall sampling of the closed form by apo‐HisJ provides a rationale for the binding of unliganded PBPs with their cytoplasmic membrane ABC transporters. Proteins 2014; 82:386–398. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
The ribose-binding protein (RBP) is a sugar-binding bacterial periplasmic protein whose function is associated with a large allosteric conformational change from an open to a closed conformation upon binding to ribose. The crystal structures of RBP in open and closed conformations have been solved. It has been hypothesized that the open and closed conformations exist in a dynamic equilibrium in solution, and that sugar binding shifts the population from open conformations to closed conformations. Here, we study by computer simulations the thermodynamic changes that accompany this conformational change, and model the structural changes that accompany the allosteric transition, using umbrella sampling molecular dynamics and the weighted histogram analysis method. The open state is comprised of a diverse ensemble of conformations; the open ribose-free X-ray crystal conformations being representative of this ensemble. The unligated open form of RBP is stabilized by conformational entropy. The simulations predict detectable populations of closed ribose-free conformations in solution. Additional interdomain hydrogen bonds stabilize this state. The predicted shift in equilibrium from the open to the closed state on binding to ribose is in agreement with experiments. This is driven by the energetic stabilization of the closed conformation due to ribose-protein interactions. We also observe a significant population of a hitherto unobserved ribose-bound partially open state. We believe that this state is the one that has been suggested to play a role in the transfer of ribose to the membrane-bound permease complex.  相似文献   

14.
The multiple transferable resistance (mTR) pump from Neisseria gonorrhoeae MtrCDE multidrug pump is assembled from the inner and outer membrane proteins MtrD and MtrE and the periplasmic membrane fusion protein MtrC. Previously we established that while there is a weak interaction of MtrD and MtrE, MtrC binds with relatively high affinity to both MtrD and MtrE. MtrD conferred antibiotic resistance only when it was expressed with MtrE and MtrC, suggesting that these proteins form a functional tripartite complex in which MtrC bridges MtrD and MtrE. Furthermore, we demonstrated that MtrC interacts with an intraprotomer groove on the surface of MtrE, inducing channel opening. However, a second groove is apparent at the interface of the MtrE subunits, which might also be capable of engaging MtrC. We have now established that MtrC can be cross-linked to cysteines placed in this interprotomer groove and that mutation of residues in the groove impair the ability of the pump to confer antibiotic resistance by locking MtrE in the closed channel conformation. Moreover, MtrE K390C forms an intermolecular disulfide bond with MtrC E149C locking MtrE in the open channel conformation, suggesting that a functional salt bridge forms between these residues during the transition from closed to open channel conformations. MtrC forms dimers that assemble into hexamers, and electron microscopy studies of single particles revealed that these hexamers are arranged into ring-like structures with an internal aperture sufficiently large to accommodate the MtrE trimer. Cross-linking of single cysteine mutants of MtrC to stabilize the dimer interface in the presence of MtrE, trapped an MtrC-MtrE complex with a molecular mass consistent with a stoichiometry of 3:6 (MtrE(3)MtrC(6)), suggesting that dimers of MtrC interact with MtrE, presumably by binding to the two grooves. As both MtrE and MtrD are trimeric, our studies suggest that the functional pump is assembled with a stoichiometry of 3:6:3.  相似文献   

15.
Subunit interactions and the allosteric response in phosphorylase.   总被引:1,自引:0,他引:1       下载免费PDF全文
The contribution of intersubunit interactions to allosterically induced conformational changes in phosphorylase are considered. Phosphorylase a, Pa (phosphorylated at Ser-14), is significantly in the active (R) conformation, while phosphorylase b, Pb (nonphosphorylated), is predominantly in the inactive (T) conformation. The structure of glucose-inhibited (T) Pa has been determined at 2.5-A resolution and atomic coordinates have been measured. These data have been used to calculate the solvent accessible surface area at the subunit interface and map noncovalent interactions between protomers. The subunit contact involves only 6% of the Pa monomer surface, but withdraws an area of 4,600 A2 from solvent. The contact region is confined to the N-terminal (regulatory) domain of the subunit. Half of the residues involved are among the 70 N-terminal peptides. A total of approximately 100 atoms take part in polar or nonpolar contacts of less than 4.0 A with atoms of the symmetry-related monomer. The contact surface surrounds a central cavity at the core of the interface of sufficient volume to accommodate 150-180 solvent molecules. There are four intersubunit salt bridges. Two of these (Arg 10/Asp 32, Ser-14-P/Arg 43) are interactions between the N-terminus of one protomer with an alpha-helix loop segment near the N-terminus of the symmetry-related molecule. These two are relatively solvent accessible. The remainder (Arg 49/Glu 195, Arg 184/Asp 251) are nearer the interface core and are less accessible. The salt bridges at the N-terminus are surrounded by the polar and nonpolar contacts which may contribute to their stability. Analysis of the difference electron density between the isomorphous Pa and Pb crystal structures reveals that the N-terminal 17 residues of Pb are disordered. Pb thus lacks two intermolecular and one intersubunit (Ser-14-P/Arg 69) salt linkage present in Pa. The absence of these interactions in Pb is manifested in the difference in the free energy of T leads to R activation, which is 4 kcal more than that for Pa. Difference Fourier analysis of the T leads to R transition in substrate-activated crystals of Pa suggests that the 70 N-terminal residues undergo a concerted shift towards the molecular core; salt bridges are probably conserved in the transition. It is proposed that the N-terminus, when "activated" by phosphorylation (via a specific kinase) behaves as an intramolecular "effector" of the R state in phosphorylase and serves as the vehicle of homotropic cooperativity between subunits of the dimer.  相似文献   

16.
Ryabov Y  Fushman D 《Proteins》2006,63(4):787-796
Domain orientation and dynamics can play an essential role in the function of multidomain proteins. Lys48-linked polyubiquitin chains, the principal signal for proteasomal protein degradation, adopt a closed conformation at physiological conditions, in which the functionally important residues Leu8, Ile44, and Val70 are sequestered at the interdomain interface. This interface must open in order for these groups to become available for interactions with various chain-recognition factors. Knowledge of the mechanism of domain motion leading to the opening of the interdomain interface in polyubiqutin is, therefore, essential for the understanding of the processes controlling molecular recognition events in polyubiquitin signaling. Here we use NMR to characterize the interdomain dynamics that open the interface in a di-ubiquitin chain. This process occurs via domain reorientations on a 10-ns time scale and with the amplitudes that are sufficient for making functionally important hydrophobic residues in polyubiquitin available for direct interactions with various ubiquitin-binding factors. The analysis revealed the structures of the interconverting conformational states of di-ubiquitin and the rates and amplitudes of this process at near-physiological and acidic pH. The proposed mechanism of domain reorientation is quite general and could serve as a paradigm of interdomain mobility in other multidomain systems.  相似文献   

17.
The structure of the maltodextrin or maltose-binding protein, an initial receptor for bacterial ABC-type active transport and chemotaxis, consists of two globular domains that are separated by a groove wherein the ligand is bound and enclosed by an inter-domain rotation. Here, we report the determination of the crystal structures of the protein complexed with reduced maltooligosaccharides (maltotriitol and maltotetraitol) in both the "closed" and "open" forms. Although these modified sugars bind to the receptor, they are not transported by the wild-type transporter. In the closed structures, the reduced sugars are buried in the groove and bound by both domains, one domain mainly by hydrogen-bonding interactions and the other domain primarily by non-polar interactions with aromatic side-chains. In the open structures, which abrogate both cellular activities of active transport and chemotaxis because of the large separation between the two domains, the sugars are bound almost exclusively to the domain rich in aromatic residues. The binding site for the open chain glucitol residue extends to a subsite that is distinct from those for the glucose residues that were uncovered in prior structural studies of the binding of active linear maltooligosaccharides. Occupation of this subsite may also account for the inability of the reduced oligosaccharides to be transported. The structures reported here, combined with those previously determined for several other complexes with active oligosaccharides in the closed form and with cyclodextrin in the open form, revealed at least four distinct modes of ligand binding but with only one being functionally active. This versatility reflects the flexibility of the protein, from very large motions of interdomain rotation to more localized side-chain conformational changes, and adaptation by the oligosaccharides as well.  相似文献   

18.
The conformation of a surface loop, the lid, controls activity of pancreatic triglyceride lipase (PTL) by moving from a position that sterically hinders substrate access to the active site into a new conformation that opens and configures the active site. Movement of the lid is accompanied by a large change in steady state tryptophan fluorescence. Although a change in the microenvironment of Trp-253, a lid residue, could account for the increased fluorescence, the mechanism and tryptophan residues have not been identified. To identify the tryptophan residues responsible for the increased fluorescence and to gain insight into the mechanism of lid opening and the structure of PTL in aqueous solution, we examined the effects of mutating individual tryptophan residues to tyrosine, alanine, or phenylalanine on lipase activity and steady state fluorescence. Substitution of tryptophans 86, 107, 253, and 403 reduced activity against tributyrin with the largest effects caused by substituting Trp-86 and Trp-107. Trp-107 and Trp-253 fluorescence accounts for the increased fluorescence emissions of PTL that is stimulated by tetrahydrolipstatin and sodium taurodeoxycholate. The largest contribution is from Trp-107. Contrary to the prediction from the crystal structure of PTL, Trp-107 is likely exposed to solvent. Both tetrahydrolipstatin and sodium taurodeoxycholate are required to produce the increased fluorescence in PTL. Alone, neither is sufficient. Colipase does not significantly influence the conformational changes leading to increased emission fluorescence. Thus, Trp-107 and Trp-253 contribute to the change in steady state fluorescence that is triggered by mixed micelles of inhibitor and bile salt. Furthermore, the results suggest that the conformation of PTL in solution differs significantly from the conformation in crystals.Lipases belong to a large gene family of proteins characterized by a common protein structure (1, 2). Included in this family are pancreatic triglyceride lipase (PTL,2 triacylglycerol acylhydrolase, EC 3.1.1.3) and its close homologues pancreatic triglyceride lipase related proteins 1 and 2 (3). Not only do these pancreatic lipases have highly conserved primary structures, their x-ray crystal structures are essentially identical (46). Each contains two domains, a globular N-terminal domain consisting of an α/β hydrolase fold and a C-terminal domain consisting of a β-sandwich structure. A striking feature of these lipases and many others is the presence of a surface loop termed the lid domain. Together with the β5 loop and β9 loops of the N-terminal domain, the lid domain sterically hinders access of substrate to the active site. In this conformation, PTL cannot hydrolyze substrate, and the existence of another conformation was proposed (6).Subsequently, a second, open conformation of PTL was identified in studies of the crystal structure of the PTL-colipase complex (7, 8). In these studies, the investigators obtained crystals of the complex in the presence and absence of detergent and phospholipid mixed micelles. Without micelles, the lid domain remained in the same closed position as observed in the PTL structure even though colipase clearly bound to the C-terminal domain (8). With micelles, the lid domain and the β5 loop adopted new conformations (7). A large hinge movement of the lid moved the domain away from the active site to form new interactions with colipase. The lid movement opened and configured the active site to generate a conformation compatible with catalysis. Additionally, the movement exposed a large hydrophobic surface on the PTL-colipase complex, a surface that likely contributes to the anchoring of the complex on the substrate interface.Although x-ray crystallography studies clearly demonstrated two conformations of PTL and other lipases, these only provide a static picture of what may be the beginning and end of the process. The mechanism that triggers lid opening and the presence of intermediate conformations remains speculative. Initially, many assumed that a lipid-water interface triggered the conformational change (9). However, a number of studies using inhibitors, small angle neutron scattering, neutron diffraction, and monoclonal antibodies suggest that the lid can open in solution (1014). In these studies, it was variously suggested that bile salt micelles and colipase or bile salt micelles alone were sufficient to trigger lid opening. The presence of a lipid substrate was not required.None of these studies addressed the relative contribution of bile salts and colipase to the lid opening. A recent paper described the use of electron paramagnetic resonance spectroscopy combined with site-directed spin labeling to monitor conformational changes in the PTL lid and to determine the effect of bile salts and colipase on lid opening (15). A cysteine was substituted for Asp-250 in the lid domain, and a paramagnetic probe was linked at that site. Using this method, the authors observed a mixture of closed and open conformations of the lid in the presence of bile salt micelles alone. Colipase by itself did not induce lid opening, but in the presence of bile salt micelles, colipase increased the relative concentration of PTL in the open conformation. Although the spin labeling did not have dramatic effects on the activity of the labeled PTL, it may not be benign. The presence of the probe may alter the kinetics of lid opening and may explain why a portion of PTL always stayed in the closed position.Another spectral method to follow conformation changes in proteins is fluorescence spectroscopy of native tryptophan. After systematically mutating the three tryptophans to alanine, investigators measured the binding of Thermomyces lanuginosus lipase and the mutants to mixed micelles of cis-parinaric acid and bile salt by fluorescence quenching and fluorescence resonance energy transfer (16). The measured values correlated with lid opening and depended on the presence of the single tryptophan in the lid. PTL shows a large increase in tryptophan fluorescence when incubated with a lipase inhibitor, tetrahydrolipstatin (THL), in the presence of bile salts (11). It was suggested, but not demonstrated, that the fluorescence change reflected movement of the lid domain. Because PTL contains seven tryptophan residues including one in the lid, Trp-253, the interpretation of this study is quite complicated. Another study monitoring time-resolved fluorescence of PTL and several tryptophan mutants demonstrated that Trp-30 makes a significant contribution to the tryptophan fluorescence of PTL (17). The lid tryptophan, Trp-253, had a low quantum yield and contributed considerably less to the overall tryptophan fluorescence. This report did not include investigations of PTL fluorescence in the presence of bile salts or colipase. Consequently, the assumption that the large increase in steady state fluorescence of PTL in the presence of THL and bile salt results from changes in the environment of the lid domain tryptophan remains unproven.To determine whether the increased tryptophan fluorescence of PTL in THL and bile saIt represents a conformational change in PTL, we measured the effect of tryptophan substitution mutations on the activity and intrinsic steady state fluorescence of PTL. Each of the seven tryptophans was mutated to tyrosine. Selected tryptophans were mutated to alanine or phenylalanine. Each mutant PTL was expressed and purified. We monitored the effect of bile salts, colipase, THL, and mixtures of these compounds on the steady state fluorescence of PTL.  相似文献   

19.
The significant variation among solved structures of the λ Cro dimer suggests its flexibility. However, contacts in the crystal lattice could have stabilized a conformation which is unrepresentative of its dominant solution form. Here we report on the conformational space of the Cro dimer in solution using replica exchange molecular dynamics in explicit solvent. The simulated ensemble shows remarkable correlation with available x-ray structures. Network analysis and a free energy surface reveal the predominance of closed and semi-open dimers, with a modest barrier separating these two states. The fully open conformation lies higher in free energy, indicating that it requires stabilization by DNA or crystal contacts. Most NMR models are found to be unstable conformations in solution. Intersubunit salt bridging between Arg4 and Glu53 during simulation stabilizes closed conformations. Because a semi-open state is among the low-energy conformations sampled in simulation, we propose that Cro-DNA binding may not entail a large conformational change relative to the dominant dimer forms in solution.  相似文献   

20.
We report on an atomistic molecular dynamics simulation of the complete conformational transition of Escherichia coli adenylate kinase (ADK) using the recently developed TEE-REX algorithm. Two phases characterize the transition pathway of ADK, which folds into the domains CORE and LID and the AMP binding domain AMPbd. Starting from the closed conformation, half-opening of the AMPbd precedes a partially correlated opening of the LID and AMPbd, defining the second phase. A highly stable salt bridge D118-K136 at the LID-CORE interface, contributing substantially to the total nonbonded LID-CORE interactions, was identified as a major factor that stabilizes the open conformation. Alternative transition pathways, such as AMPbd opening following LID opening, seem unlikely, as full transition events were not observed along this pathway. The simulation data indicate a high enthalpic penalty, possibly obstructing transitions along this route.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号