首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Taurine, a sulfur-containing β-amino acid, is highly contained in heart and skeletal muscle. Taurine has a variety of biological actions, such as ion movement, calcium handling and cytoprotection in the cardiac and skeletal muscles. Meanwhile, taurine deficiency leads various pathologies, including dilated cardiomyopathy, in cat and fox. However, the essential role of taurine depletion on pathogenesis has not been fully clarified. To address the physiological role of taurine in mammalian tissues, taurine transporter-(TauT-) knockout models were recently generated. TauTKO mice exhibited loss of body weight, abnormal cardiac function and the reduced exercise capacity with tissue taurine depletion. In this chapter, we summarize pathological profile and histological feature of heart and skeletal muscle in TauTKO mice.  相似文献   

2.
The effects of taurine in the mammalian nervous system are numerous and varied. There has been great difficulty in determining the specific targets of taurine action. The authors present a review of accepted taurine action and highlight recent discoveries regarding taurine and calcium homeostasis in neurons. In general there is a consensus that taurine is a powerful agent in regulating and reducing the intracellular calcium levels in neurons. After prolonged L-glutamate stimulation, neurons lose the ability to effectively regulate intracellular calcium. This condition can lead to acute swelling and lysis of the cell, or culminate in apoptosis. Under these conditions, significant amounts of taurine (mM range) are released from the excited neuron. This extracellular taurine acts to slow the influx of calcium into the cytosol through both transmembrane ion transporters and intracellular storage pools. Two specific targets of taurine action are discussed: Na+-Ca2+ exchangers, and metabotropic receptors mediating phospholipase-C.  相似文献   

3.
Taurine is a conditionally essential amino acid for human that is involved in the control of glucose homeostasis; however, the mechanisms by which the amino acid affects blood glucose levels are unknown. Using an animal model, we have studied these mechanisms. Mice were supplemented with taurine for 30 d. Blood glucose homeostasis was assessed by intraperitoneal glucose tolerance tests (IPGTT). Islet cell function was determined by insulin secretion, cytosolic Ca2+ measurements and glucose metabolism from isolated islets. Islet cell gene expression and translocation was examined via immunohistochemistry and quantitative real-time polymerase chain reaction. Insulin signaling was studied by Western blot. Islets from taurine-supplemented mice had: (i) significantly higher insulin content, (ii) increased insulin secretion at stimulatory glucose concentrations, (iii) significantly displaced the dose-response curve for glucose-induced insulin release to the left, (iv) increased glucose metabolism at 5.6 and 11.1-mmol/L concentrations; (v) slowed cytosolic Ca2+ concentration ([Ca2+]i) oscillations in response to stimulatory glucose concentrations; (vi) increased insulin, sulfonylurea receptor-1, glucokinase, Glut-2, proconvertase and pancreas duodenum homeobox-1 (PDX-1) gene expression and (vii) increased PDX-1 expression in the nucleus. Moreover, taurine supplementation significantly increased both basal and insulin stimulated tyrosine phosphorylation of the insulin receptor in skeletal muscle and liver tissues. Finally, taurine supplemented mice showed an improved IPGTT. These results indicate that taurine controls glucose homeostasis by regulating the expression of genes required for glucose-stimulated insulin secretion. In addition, taurine enhances peripheral insulin sensitivity.  相似文献   

4.
P Huang  D Temizer  T Quertermous 《FEBS letters》1990,274(1-2):207-213
The sequences of the highly conserved S4 regions of voltage-sensitive ion channels were used to design oligonucleotide primers for the polymerase chain reaction. Specific fragments of the cDNA encoding L-type calcium channels from the heart, brain, and skeletal muscle were amplified and cloned. The nucleotide sequences of the cardiac and brain calcium channels obtained are identical over this region, and share 78% homology with the skeletal muscle calcium channel. Comparison of the predicted amino acid sequences of our clones with those of other calcium channels reveals unexpected patterns of conservation which suggest alternative exon use.  相似文献   

5.
The amino acid taurine is essential for the function of skeletal muscle and administration is proposed as a treatment for Duchenne Muscular Dystrophy (DMD). Taurine homeostasis is dependent on multiple processes including absorption of taurine from food, endogenous synthesis from cysteine and reabsorption in the kidney. This study investigates the cause of reported taurine deficiency in the dystrophic mdx mouse model of DMD. Levels of metabolites (taurine, cysteine, cysteine sulfinate and hypotaurine) and proteins (taurine transporter [TauT], cysteine deoxygenase and cysteine sulfinate dehydrogenase) were quantified in juvenile control C57 and dystrophic mdx mice aged 18 days, 4 and 6 weeks. In C57 mice, taurine content was much higher in both liver and plasma at 18 days, and both cysteine and cysteine deoxygenase were increased. As taurine levels decreased in maturing C57 mice, there was increased transport (reabsorption) of taurine in the kidney and muscle. In mdx mice, taurine and cysteine levels were much lower in liver and plasma at 18 days, and in muscle cysteine was low at 18 days, whereas taurine was lower at 4: these changes were associated with perturbations in taurine transport in liver, kidney and muscle and altered metabolism in liver and kidney. These data suggest that the maintenance of adequate body taurine relies on sufficient dietary intake of taurine and cysteine availability and metabolism, as well as retention of taurine by the kidney. This research indicates dystrophin deficiency not only perturbs taurine metabolism in the muscle but also affects taurine metabolism in the liver and kidney, and supports targeting cysteine and taurine deficiency as a potential therapy for DMD.  相似文献   

6.
The effects of redox reagents on the activity of the intracellular calcium release channels (ryanodine receptors) of skeletal and cardiac muscle, or brain cortex neurons, was examined. In lipid bilayer experiments, oxidizing agents (2,2'-dithiodipyridine or thimerosal) modified the calcium dependence of all single channels studied. After controlled oxidation channels became active at sub microM calcium concentrations and were not inhibited by increasing the calcium concentration to 0.5 mM. Subsequent reduction reversed these effects. Channels purified from amphibian skeletal muscle exhibited the same behavior, indicating that the SH groups responsible for modifying the calcium dependence belong to the channel protein. Parallel experiments that measured calcium release through these channels in sarcoplasmic reticulum vesicles showed that following oxidation, the channels were no longer inhibited by sub mM concentrations of Mg2+. It is proposed that channel redox state controls the high affinity sites responsible for calcium activation as well as the low affinity sites involved in Mg2+ inhibition of channel activity. The possible physiological and pathological implications of these results are discussed.  相似文献   

7.
Bladder smooth muscle contraction is mediated by both direct calcium entry through the cell membrane, and by calcium induced calcium release (CICR) from the sarcoplasmic reticulum (SR) storage sites. Ryanodine is a neutral plant alkaloid which binds to an ion channel located on the SR membrane. Its effects in cardiac skeletal muscle are well characterized where it inibits the efflux of intracellular calcium stores, and thus it serves as a negative inotrope. It has also been shown that in the develpping rabbit myocardium, there is a gradual increase in the expression of this ion channel. Little has been written about the expression and function of the ryanodine sensitive ion channel in smooth muscle. Recently we have shown that neonatal rabbit bladder smooth muscle is not very sensitive to ryanodine, while that from mature rabbits is extremely sensitive. This leads us to quantify the expression of the ryanodine sensitive ion channel. In this paper we demonstrate that the Kd values do not change to any significant degree with normal rabbit bladder development. However the Bmax values for 3 day, 2, 4, 6, and 8 week rabbit bladder smooth muscle are 7, 10, 15, 29, and 44 fmol specifically bound ryanodine/mg protein. The differences between the neonatal groups and the mature groups are significant (P<0.5). This increase in ryanodine sensitive ion channel expression with normal growth would suggest that with normal maturation, the bladder smooth muscle cell acquires an increased pool of sequestrered intracellular calcium. This would follow a similar pattern of development that has already been described in rabbit myocardium.  相似文献   

8.
Summary Exercise induces significant changes in the free intracellular amino acid pool in skeletal muscle but little is known of whether such changes also occur in cardiac muscle. In this study the effect of regular exercise on the size and the constituents of the free amino acid pool in the hearts and in the plasma of thoroughbred horses was investigated. The total free intracellular amino acid pool in the hearts of control horses was 30.9 ± 1.2mol/g wet weight (n = 6). Glutamine but not taurine was present at the highest concentration (13.5 ± 0.9 and 7.7 ± 0.69mol/g wet weight for glutamine and taurine respectively). As for the rest of the amino acids in the pool, only glutamate and alanine were present at levels greater than 1mol/g wet weight (4.6 ± 0.25 and 1.7 ± 0.14 for glutamate and alanine respectively). The tissue to plasma ratio was highest for taurine at 155, followed by glutamate at 111, aspartate and glutamine at 37, alanine at 5.8 and ratios of less than 3 for the rest of the amino acids. The total free intracellular amino acid pool in the hearts of exercised horses was slightly but not significantly lower than control (28.1 ±1.1mol/g wet weight, n = 6). Regular exercise increased the intracellular concentration of threonine, valine, isoleucine, leucine and phenylalanine but was only significant (p < 0.05) for threonine. This work has documented the profile of taurine and protein amino acids in the heart and in the plasma of thoroughbred horses and showed that in contrast to skeletal muscle, heart muscle does not show major changes in amino acids during regular exercise.  相似文献   

9.
牛磺酸的生物学效应与运动能力的研究进展   总被引:1,自引:0,他引:1  
牛磺酸是人和动物的重要营养素,具有多种生物学作用,能清除自由基、对抗脂质过氧化、调节渗透压、维持体液平衡和胞内钙离子稳态、参与糖和氨基酸的代谢。在体育运动中,牛磺酸能显著提高运动能力。本文对牛磺酸在人体内的分布和代谢进行介绍,并对牛磺酸在人体内的功能及其与运动能力的关系进行概述。  相似文献   

10.
Compartmentalization of cellular amino acid pools occurs in cultures of cardiac and skeletal muscle cells, but the factors involved in this are not clear. We have further defined this problem by analyzing the intracellular free leucine and the transfer-RNA-(tRNA)-bound leucine pool in cultures of skeletal and cardiac muscle incubated with 3H-leucine in the presence and absence of serum and amino acids. Withdrawal of nitrogen substrates caused substantial changes in leucine pool relationships–in particular, a change in the degree to which intracellular free leucine and tRNA-leucine were derived from the culture medium. In separate experiments, the validity of our tRNA measurements was confirmed by measurements of the specific activity of newly synthesized ferritin after iron induction. We discuss the implications of these findings with regard-to factors involved in the control of amino acid flux through the cell, as well as with regard to design of experiments using isotopic amino acids to measure rates of amino acid utilization.  相似文献   

11.
A cDNA clone encoding a protein with high homology to the beta-subunit of the rabbit skeletal muscle dihydropyridine-sensitive calcium channel was isolated from a rat brain cDNA library. This rat brain beta-subunit cDNA hybridizes to a 3.4 kb message that is expressed in high levels in the cerebral hemispheres and hippocampus but is significantly reduced in cerebellum. The open reading frame encodes 597 amino acids with a predicted mass of 65 679 Da which is 82% homologous with the skeletal muscle beta-subunit. The brain cDNA encodes a unique 153 amino acid C-terminus and predicts the absence of a muscle-specific 50 amino acid internal segment. It also encodes numerous consensus phosphorylation sites suggesting a role in calcium channel regulation. The corresponding human beta-subunit gene was localized to chromosome 17. Hence the encoded brain beta-subunit, which has a primary structure highly similar to its isoform in skeletal muscle, may have a comparable role as an integral regulatory component of a neuronal calcium channel.  相似文献   

12.
El Idrissi A 《Amino acids》2008,34(2):321-328
Summary. We have determined the role of mitochondria in the sequestration of calcium after stimulation of cerebellar granule cells with glutamate. In addition we have evaluated the neuroprotective role of taurine in excitotoxic cell death. Mitochondrial inhibitors were used to determine the calcium buffering capacity of mitochondria, as well as how taurine regulates the ability of mitochondria to buffer intracellular calcium during glutamate depolarization and excitotoxicity. We report here that pre-treatment of cerebellar granule cells with taurine (1 mM, 24 h) significantly counteracted glutamate excitotoxicity. The neuroprotective role of taurine was mediated through regulation of cytoplasmic free calcium ([Ca2+] i ), and intra-mitochondrial calcium homeostasis, as determined by fluo-3 and 45Ca2+-uptake. Furthermore, the overall mitochondrial function was increased in the presence of taurine, as assessed by rhodamine accumulation into mitochondria and total cellular ATP levels. We specifically tested the hypothesis that taurine reduces glutamate excitotoxicity through both the enhancement of mitochondrial function and the regulation of intracellular (cytoplasmic and intra-mitochondrial) calcium homeostasis. The role of taurine in modulating mitochondrial calcium homeostasis could be of particular importance under pathological conditions that are characterized by excessive calcium overloads. Taurine may serve as an endogenous neuroprotective molecule against brain insults. Authors’ address: Abdeslem El Idrissi, Biology Department and Center for Developmental Neuroscience, College of Staten Island/CUNY, 6S-134 Staten Island, NY 10314, U.S.A.  相似文献   

13.
It is widely accepted that Ca2+ is released from the sarcoplasmic reticulum by a specialized type of calcium channel, i.e., ryanodine receptor, by the process of Ca2+-induced Ca2+ release. This process is triggered mainly by dihydropyridine receptors, i.e., L-type (long lasting) calcium channels, directly or indirectly interacting with ryanodine receptor. In addition, multiple endogenous and exogenous compounds were found to modulate the activity of both types of calcium channels, ryanodine and dihydropyridine receptors. These compounds, by changing the Ca2+ transport activity of these channels, are able to influence intracellular Ca2+ homeostasis. As a result not only the overall Ca2+ concentration becomes affected but also spatial distribution of this ion in the cell. In cardiac and skeletal muscles the release of Ca2+ from internal stores is triggered by the same transport proteins, although by their specific isoforms. Concomitantly, heart and skeletal muscle specific regulatory mechanisms are different.  相似文献   

14.
Ito T  Schaffer SW  Azuma J 《Amino acids》2012,42(5):1529-1539
Taurine (2-aminoethanesulfonic acid) is a free amino acid found ubiquitously in millimolar concentrations in all mammalian tissues. Taurine exerts a variety of biological actions, including antioxidation, modulation of ion movement, osmoregulation, modulation of neurotransmitters, and conjugation of bile acids, which may maintain physiological homeostasis. Recently, data is accumulating that show the effectiveness of taurine against diabetes mellitus, insulin resistance and its complications, including retinopathy, nephropathy, neuropathy, atherosclerosis and cardiomyopathy, independent of hypoglycemic effect in several animal models. The useful effects appear due to the multiple actions of taurine on cellular functions. This review summarizes the beneficial effects of taurine supplementation on diabetes mellitus and the molecular mechanisms underlying its effectiveness.  相似文献   

15.
Abnormalities of calcium homeostasis are involved in the process of cell injuries such as Duchenne muscular dystrophy characterized by the absence of the protein dystrophin. But how the absence of dystrophin leads to cytosolic calcium overload is as yet poorly understood. This question has been addressed with skeletal muscle cells from human DMD muscles or mdx mice. Although easier to obtain than human muscles, mdx muscle cells have provided controversial data concerning the resting intracellular calcium level ([Ca2+](i)). This work describes the culture of Sol8 cell line that expresses neither dystrophin nor adhalin, a dystrophin-associated protein. The [Ca2+](i)and intracellular calcium transients induced by different stimuli (acetylcholine, caffeine and high potassium) are normal during the first days of culture. At later stages, calcium homeostasis exhibits drastic alterations with a breaking down of the calcium responses and a large [Ca2+](i)elevation. Concomitantly, Sol8 cells exhibit morphological signs of cell death like cytoplasmic shrinkage and incorporation of propidium iodide. Cell death could be significantly reduced by blocking the activity of calpains, a type of calcium-regulated proteases. These results suggest that Sol8 cell line provides an alternative model of dystrophin-deficient skeletal muscle cells for which a clear disturbance of the calcium homeostasis is observed in culture in association with calpain-dependent cell death. It is shown that transfection with a plasmid cDNA permits the forced expression of dystrophin in Sol8 myotubes as well as a correct sorting of the protein. This approach could be used to explore possible interactions between dystrophin deficiency, calcium homeostasis alteration, and dystrophic cell death.  相似文献   

16.
Taurine, a ubiquitous endogenous sulfur-containing amino acid, possesses numerous pharmacological and physiological actions, including antioxidant activity, modulation of calcium homeostasis and antiapoptotic effects. There is mounting evidence supporting the utility of taurine as a pharmacological agent against heart disease, including chronic heart failure (CHF). In the past decade, angiotensin II blockade and β-adrenergic inhibition have served as the mainstay in the treatment of CHF. Both groups of pharmaceutical agents decrease mortality and improve the quality of life, a testament to the critical role of the sympathetic nervous system and the renin--angiotensin system in the development of CHF. Taurine has also attracted attention because it has beneficial actions in CHF, in part by its demonstrated inhibition of the harmful actions of the neurohumoral factors. In this review, we summarize the beneficial actions of taurine in CHF, focusing on its antagonism of the catecholamines and angiotensin II.  相似文献   

17.
Mutations in the DYSF gene that severely reduce the levels of the protein dysferlin are implicated in muscle-wasting syndromes known as dysferlinopathies. Although studies of its function in skeletal muscle have focused on its potential role in repairing the plasma membrane, dysferlin has also been found, albeit inconsistently, in the sarcoplasm of muscle fibers. The aim of this article is to study the localization of dysferlin in skeletal muscle through optimized immunolabeling methods. We studied the localization of dysferlin in control rat skeletal muscle using several different methods of tissue collection and subsequent immunolabeling. We then applied our optimized immunolabeling methods on human cadaveric muscle, control and dystrophic human muscle biopsies, and control and dysferlin-deficient mouse muscle. Our data suggest that dysferlin is present in a reticulum of the sarcoplasm, similar but not identical to those containing the dihydropyridine receptors and distinct from the distribution of the sarcolemmal protein dystrophin. Our data illustrate the importance of tissue fixation and antigen unmasking for proper immunolocalization of dysferlin. They suggest that dysferlin has an important function in the internal membrane systems of skeletal muscle, involved in calcium homeostasis and excitation-contraction coupling.  相似文献   

18.
The development of specific pharmacological agents that modulate different types of ion channels has prompted an extensive effort to elucidate the molecular structure of these important molecules. The calcium channel blockers that specifically modulate the L-type calcium channel activity have aided in the purification and reconstitution of this channel from skeletal muscle transverse tubules. The L-type calcium channel from skeletal muscle is composed of five subunits designated alpha 1, alpha 2, beta, gamma, and sigma. The alpha 1-subunit is the pore-forming polypeptide and contains the ligand binding and phosphorylation sites through which channel activity can be modulated. The role of the other subunits in channel function remains to be studied. The calcium channel components have also been partially purified from cardiac muscle. The channel consists of at least three subunits that have properties related to the subunits of the calcium channel from skeletal muscle. A core polypeptide that can form a channel and contains ligand binding and phosphorylation sites has been identified in cardiac preparations. Here we summarize recent biochemical and molecular studies describing the structural features of these important ion channels.  相似文献   

19.
Polyacrylamide gel electrophoresis of purified rabbit skeletal muscle L-type calcium channel before and after reduction of disulfide bonds confirmed that 27- and 24-kDa forms of the delta subunit are disulfide-linked to the 143-kDa alpha 2 subunit. The amino acid sequences of three peptides obtained by tryptic digestion of the delta subunits corresponded to amino acid sequences predicted from the 3' region of the mRNA encoding alpha 2. One of these peptides had the same sequence as the N terminus of the 24- and 27-kDa forms of the delta subunit and corresponded to residues 935-946 of the predicted alpha 2 primary sequence. Anti-peptide antibodies directed to regions on the N-terminal side of this site recognized the 143-kDa alpha 2 subunit in immunoblots of purified calcium channels under reducing conditions, whereas an antipeptide antibody directed toward a sequence on the C-terminal side of this site recognized 24- and 27-kDa forms of the delta subunit. A similar result was obtained after immunoblotting using purified transverse tubules or crude microsomal membrane preparations indicating that alpha 2 and delta occur as distinct disulfide-linked polypeptides in skeletal muscle membranes. Thus, the delta subunits are encoded by the same gene as the alpha 2 subunit and are integral components of the skeletal muscle calcium channel.  相似文献   

20.
Ryanodine receptors (RyRs), intracellular calcium release channels required for cardiac and skeletal muscle contraction, are macromolecular complexes that include kinases and phosphatases. Phosphorylation/dephosphorylation plays a key role in regulating the function of many ion channels, including RyRs. However, the mechanism by which kinases and phosphatases are targeted to ion channels is not well understood. We have identified a novel mechanism involved in the formation of ion channel macromolecular complexes: kinase and phosphatase targeting proteins binding to ion channels via leucine/isoleucine zipper (LZ) motifs. Activation of kinases and phosphatases bound to RyR2 via LZs regulates phosphorylation of the channel, and disruption of kinase binding via LZ motifs prevents phosphorylation of RyR2. Elucidation of this new role for LZs in ion channel macromolecular complexes now permits: (a) rapid mapping of kinase and phosphatase targeting protein binding sites on ion channels; (b) predicting which kinases and phosphatases are likely to regulate a given ion channel; (c) rapid identification of novel kinase and phosphatase targeting proteins; and (d) tools for dissecting the role of kinases and phosphatases as modulators of ion channel function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号