首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondria were isolated from rat adult liver, foetal liver, kidney cortex, heart, skeletal muscle and interscapular brown adipose tissue. DL-2-Bromopalmitoyl-CoA inhibited the overt form of carnitine palmitoyltransferase (CPT1) in heart, skeletal muscle and brown adipose tissue, with an IC50 value (concentration giving 50% inhibition) of 1.3-1.6 microM. By contrast, the IC50 value for inhibition of the kidney or adult liver enzyme was 0.08-0.1 microM. CPT1 in near-term foetal liver differed from that in adult liver in that the IC50 for inhibition by 2-bromopalmitoyl-CoA was 0.57 microM. It is suggested that there may be tissue-specific forms of the catalytic entity of CPT1 and that foetal liver may contain a mixture of adult liver- and muscle-type enzymes. In rats made hypothyroid by administration of propylthiouracil and an iodine-deficient diet, hepatic CPT1 activity was decreased by 83%. However, CPT1 activity in extrahepatic tissues showed no adaptive decrease in hypothyroidism.  相似文献   

2.
An antibody against acetoacetyl-CoA synthetase purified from rat liver was raised in rabbits. Utilizing the binding of antibody-antigen complexes to a nitrocellulose membrane, a sensitive enzyme-linked immunosorbent assay was developed to estimate the enzyme concentration in rat tissues. The enzyme concentration (microgram immunoreactive protein/mg protein) in rat liver cytosol was increased about 3-, 1.8- and 7-fold by feeding rats diets containing 5% cholestyramine, 0.2% ML-236B (compactin), and 5% cholestyramine plus 0.2% ML-236B for 4 days, respectively, and decreased about 1.8-fold by fasting the animals or 1.3-fold by feeding them a diet containing 5% cholesterol. Changes in the enzyme activity were almost parallel to those in the enzyme concentration, suggesting the physiological role of this enzyme in cholesterol biosynthesis. Immunoblotting of the hepatic cytosol also confirmed that the increase in enzyme concentration on cholestyramine and/or ML-236B feeding was due to an increase in an enzyme protein the same as the purified enzyme and not the isozymic protein. Among various rat tissues examined, the concentrations of immunologically crossreactive enzyme were higher in lipogenic tissues, such as brain, adipose tissue and liver, than in other tissues. The enzymes in these three tissues were identical in molecular weight determined by gel filtration and immunoblotting.  相似文献   

3.
A simple procedure has been developed for the purification of mouse liver and kidney fructose-1,6-bisphosphatase. In addition to the conventional method, including substrate elution from phosphocellulose, Blue Sepharose column chromatography made the purification procedure highly reproducible. The enzyme from rabbit liver was also purified by this method with a small modification. The isolated preparation was electrophoretically homogeneous. The mouse liver enzyme was identical with the kidney enzyme, and different from the rabbit liver enzyme electrophoretically. The structural properties and the amino acid composition were similar to those of this enzyme from other mammalian livers; the molecular weight was 143,000, subunit size was 37,500, S20, w was 7.0, and partial specific volume was 0.74. Cysteine and methionine residues amounted to 5-6 mol per subunit. Tryptophan was not detected. The Km value for fructose-1,6-bisphosphate was 1.3 microM. The Ki value for AMP was 19 microM. EDTA strongly activated the activity of the mouse liver enzyme at neutral pH. A partial proteolytic digestion of the mouse liver enzyme decreased the activity at neutral pH, and increased it at alkaline pH.  相似文献   

4.
Induction of cytosolic aspartate aminotransferase (glutamic oxaloacetic transaminase) was observed in rat liver on administration of a high-protein diet. The enzyme activity in the liver of rats given 60% and 80% protein diet increased to 1.8- and 1.9-fold that in the liver of rats maintained on 20% protein diet, with about 2-fold increases in the levels of functional sGOT mRNA, measured by in vitro translation. Whereas the activity of mitochondrial aspartate aminotransferase did not increase. Induction of cytosolic aspartate aminotransferase was also detected immunocytochemically.  相似文献   

5.
The presence of 3 beta-hydroxysteroid dehydrogenase in the maturing rabbit ovary was demonstrated biochemically and histochemically. Enzyme activity was negligible to absent in ovaries from rabbits less than 44 days old. The greatest activity was located in the microsomal fraction of ovaries from mature rabbits. The enzyme characteristics were: Vmax = 33.1 +/- 9.6 nmol/min/mg protein and Km = 2.16 +/- 0.28 microM. Ovaries from pregnant hyperglycemic rabbits had enzyme which showed a Vmax of 51.4 +/- 8.2 nmol/min/mg protein and Km = 2.41 +/- 0.31 microM. These results indicate that rabbit ovarian tissue becomes steroidogenically active at a time when gonadotropin levels are elevated.  相似文献   

6.
7.
Mechanism of action of GII (100 mg/kg body weight, po for 15 days) purified from fenugreek (T. foenum-graecum) seeds was studied in the sub-diabetic and moderately diabetic rabbits. In the sub-diabetic rabbits it did not change much the content of total lipids, glycogen and proteins in the liver, muscle and heart (glycogen was not studied in the heart). However, in the moderately diabetic rabbits same treatment decreased total lipids more in the liver (21%) than those in the heart and muscle. Total protein content increased (14%) in the liver but negligible change (5-7%) was observed in heart and muscle. Glycogen increased (17%) in the liver but not in the muscle of the moderately diabetic rabbits (glycogen was not estimated in the heart). Among the enzymes of glycolysis, activity of glucokinase was not affected in the liver of both the sub-diabetic and moderately diabetic rabbits. Phosphofructokinase and pyruvate kinase activity in both sub-diabetic and moderately diabetic rabbits increased (13-50%) indicating stimulation of glycolysis. The activity of gluconeogenic enzymes glucose-6-phosphatase and fructose-1,6-diphosphatase of the sub-diabetic rabbits decreased in the liver (15-20%) but not in the kidneys. In the moderately diabetic rabbits after treatment with GII, glucokinase in the liver was not affected much (-9%) but increased well in the muscle (40%). Phosphofructokinase and pyruvate kinase were moderately increased both in the liver and the muscle (18-23%). The gluconeogenic enzyme glucose-6-phosphatase decreased reasonably well in the liver and kidneys (22, 32%). Fructose-1,6-diphosphatase decreased only slightly (10, 9%) in the moderately diabetic rabbits. Thus GII seems to decrease lipid content of liver and stimulate the enzymes of glycolysis (except glucokinase) and inhibit enzymes of gluconeogenesis in the liver of the diabetic especially moderately diabetic rabbits.  相似文献   

8.
Induction of cytosolic aspartate aminotransferase (cAspAT) was observed in rat liver on administration of a high-protein diet, or glucagon and during fasting. The enzyme activity in the liver of rats given 80% protein diet or glucagon injection during starvation increased to 2- to 2.4-fold that in the liver of rats maintained on 20% protein diet, with about 2-fold increases in the levels of hybridizable cAspAT mRNA, measured by blot analysis using the cloned rat cAspAT cDNA as a probe. No increase in the enzyme was detected in kidney, heart, brain, or skeletal muscle. The activity of mitochondrial aspartate aminotransferase (mAspAT) did not increase. Induction of cAspAT was observed when glucose metabolism tended toward gluconeogenesis. The physiological function of the induction of cAspAT is considered to be to increase the supply of oxaloacetate as a substrate for cytosolic phosphoenolpyruvate carboxykinase (PEPCK) [EC 4.1.1.32] for gluconeogenesis.  相似文献   

9.
The influence that fructose 2,6-bisphosphate (Fru-2,6-BP) has on the aggregation properties of rat liver phosphofructokinase has been studied by observing the fluorescence polarization of the enzyme covalently bound to the fluorescent probe pyrenebutyric acid. Fru-2,6-BP dramatically slows the dissociation of the high molecular weight aggregate forms of the enzyme when the enzyme is diluted to 3.2 micrograms/ml (4 X 10(-8) M subunits). Furthermore, Fru-2,6-BP is a strong promoter of reassociation to tetramer and larger forms if the enzyme has been previously allowed to dissociate to the dimer in its absence. Unlike many other positive effectors of liver phosphofructokinase, Fru-2,6-BP is also able to overcome the tendency of MgATP to promote tetramer formation and instead stabilize a very high degree of high molecular weight aggregate formation even in the presence of MgATP. The apparent affinity of liver phosphofructokinase for Fru-2,6-BP was measured by its ability to promote reassociation and compared to that for Fru-1,6-BP. The apparent dissociation constant for Fru-2,6-BP under these conditions is 36 microM, about 40-fold lower than the value of 1.4 mM measured for Fru-1,6-BP. Both ligands demonstrate synergism with the substrate Fru-6-P, which can lower the dissociation constant for Fru-2,6-BP 9-fold to 4 microM and that for Fru-1,6-BP 5-fold to 0.28 mM. These data are interpreted to suggest that influencing the aggregation state of rat liver phosphofructokinase may be one way in which Fru-2,6-BP achieves its effects on the enzyme in vivo.  相似文献   

10.
Inhibition of gluconeogenesis and glycogenolysis by 2,5-anhydro-D-mannitol   总被引:1,自引:0,他引:1  
2,5-Anhydro-D-mannitol (100 to 200 mg/kg) decreased blood glucose by 17 to 58% in fasting mice, rats, streptozotocin-diabetic mice, and genetically diabetic db/db mice. Serum lactate in rats was elevated 56% by 2,5-anhydro-D-mannitol, but this could be prevented by dichloroacetate (200 mg/kg) or thiamin (200 mg/kg). In hepatocytes from fasted rats, 1 mM 2,5-anhydro-D-mannitol inhibited gluconeogenesis from a mixture of alanine, lactate, and pyruvate. It also inhibited glucose production and stimulated lactate formation from glycerol or dihydroxyacetone. Glycogenolysis in hepatocytes from fed rats was markedly inhibited by 1 mM 2,5-anhydro-D-mannitol both in the presence or absence of 1 microM glucagon. 2,5-Anhydro-D-mannitol can be phosphorylated by fructokinase or hexokinase to the 1-phosphate and then by phosphofructokinase to the 1,6-bisphosphate. Rat liver glycogen phosphorylase was inhibited by 2,5-anhydro-D-mannitol 1-phosphate (apparent Ki = 0.66 +/- 0.09 mM) but was little affected by 2,5-anhydro-D-mannitol 1,6-bisphosphate. Rat liver phosphoglucomutase was inhibited by 2,5-anhydro-D-mannitol 1-phosphate (apparent Ki = 2.8 +/- 0.2 mM), whereas 2,5-anhydro-D-mannitol 1,6-bisphosphate served as an alternative activator (apparent K alpha = 7.0 +/- 0.5 microM). Rabbit liver pyruvate kinase was activated by 2,5-anhydro-D-mannitol 1,6-bisphosphate (apparent K alpha = 9.5 +/- 0.9 microM), whereas rabbit liver fructose 1,6-bisphosphatase was inhibited by 2,5-anhydro-D-mannitol 1,6-bisphosphate (apparent Ki = 3.6 +/- 0.3 microM). The phosphate esters of 2,5-anhydro-D-mannitol would, therefore, be expected to inhibit glycogenolysis and gluconeogenesis and stimulate glycolysis in liver.  相似文献   

11.
J E Scheffler  H J Fromm 《Biochemistry》1986,25(21):6659-6665
The fluorescent nucleotide analogue formycin 5'-monophosphate (FMP) inhibits rabbit liver fructose-1,6-bisphosphatase (I50 = 17 microM, Hill coefficient = 1.2), as does the natural regulator AMP (I50 = 13 microM, Hill coefficient = 2.3), but exhibits little or no cooperativity of inhibition. Binding of FMP to fructose-1,6-bisphosphatase can be monitored by the increased fluorescence emission intensity (a 2.7-fold enhancement) or the increased fluorescence polarization of the probe. A single dissociation constant for FMP binding of 6.6 microM (4 sites per tetramer) was determined by monitoring fluorescence intensity. AMP displaces FMP from the enzyme as evidenced by a decrease in FMP fluorescence and polarization. The substrates, fructose 6-phosphate and fructose 1,6-bisphosphate, and inhibitors, methyl alpha-D-fructofuranoside 1,6-bisphosphate and fructose 2,6-bisphosphate, all increase the maximal fluorescence of enzyme-bound FMP but have little or no effect on FMP binding. Weak metal binding sites on rabbit liver fructose-1,6-bisphosphatase have been detected by the effect of Zn2+, Mn2+, and Mg2+ in displacing FMP from the enzyme. This is observed as a decrease in FMP fluorescence intensity and polarization in the presence of enzyme as a function of divalent cation concentration. The order of binding by divalent cations is Zn2+ = Mn2+ greater than Mg2+, and the Kd for Mn2+ displacement of FMP is 91 microM. Methyl alpha-D-fructofuranoside 1,6-bisphosphate, as well as fructose 6-phosphate and inorganic phosphate, enhances metal-mediated FMP displacement from rabbit liver fructose-1,6-bisphosphatase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Recent data from our laboratory have indicated that the rabbit is a suitable animal model for the study of enzyme activities of the tryptophan-nicotinic acid pathway. We report here the pattern of tryptophan metabolism in rabbits made diabetic with alloxan treatment, and hypercholesterolemic with a high-cholesterol diet. A group of rabbits with only hypercholesterolemia was also considered. The enzymes assayed were: liver tryptophan 2,3-dioxygenase (TDO), intestine indoleamine 2,3-dioxygenase (IDO), liver and kidney kynurenine 3-monooxygenase, kynurenine-oxoglutarate transaminase, kynureninase, 3-hydroxyanthranilate 3,4-dioxygenase and aminocarboxymuconate-semialdehyde decarboxylase.TDO showed a reduction of specific activity in liver of diabetic-hyperlipidemic and hyperlipidemic rabbits compared to controls. Intestine IDO activities and liver and kidney kynurenine monooxygenase were unchanged with respect to controls.Kynurenine-oxoglutarate transaminase and kynureninase activities were reduced in the kidneys, but not in the liver, of diabetic-hyperlipidemic rabbits.The main finding was the reduction of 3-hydroxyanthranilate 3,4-dioxygenase activity (expressed as activity per g of fresh tissue) in the liver and kidneys of diabetic-hypercholesterolemic and hyperlipidemic rabbits compared to controls. Conversely, aminocarboxymuconate-semialdehyde decarboxylase activity was significantly higher in diabetic hypercholesterolemic rabbits in comparison with control and hypercholesterolemic rabbits.These data demonstrate that also in diabetic rabbits there is an alteration of tryptophan metabolism at the level of 3-hydroxyanthranilic acid-->nicotinic acid step. Also dyslipidemia seems to be involved in enzyme activity variations of the tryptophan metabolism along the kynurenine pathway.  相似文献   

13.
Histamine N-methyltransferase (HMT, EC 2.1.1.8) was purified 8,420-fold in 44% yield from rat kidney. The basic steps in the purification included differential centrifugation, calcium phosphate adsorption, DEAE cellulose chromatography, and affinity chromatography on an S-adenosylhomocysteine-agarose matrix. The resulting protein was homogeneous as determined by gel electrophoresis and was stable for at least five months at -80 degrees C. The apparent molecular weight of the enzyme was found to be 31,500 as determined by gel filtration through Sephadex G-100 and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isoelectric point of the enzyme was determined to be 5.4. The Km's for histamine and S-adenosyl-L-methionine were 12.4 +/- 1.3 microM and 10.2 +/- 0.5 microM, respectively. When S-adenosyl-L-methionine was the variable substrate, the Ki's for S-adenosyl-L-homocysteine and S-adenosyl-D-homocysteine were 31.9 +/- 3.4 microM and 32.0 +/- 3.5 microM, respectively. When histamine was the variable substrate, the Ki for S-adenosyl-L-homocysteine was 11.8 +/- 0.6 microM. Comparison of physico-chemical and catalytic properties of the rat kidney and the guinea pig enzymes suggest that these proteins have similar structural and catalytic characteristics.  相似文献   

14.
Fructose 1,6-bisphosphatase was observed in a thymic lymphoma cell line, WEH17.1 (11.5 +/- 0.8 munits/mg cytosol protein). Only a trace amount of the enzyme activity was observed in normal thymus tissue. The WEH17.1 enzyme had a pH optimum at around 7.5. The AMP-concentration giving 50% inhibition of the activity was about 73 microM. That of the crude mouse liver enzyme was 35 microM. The antibodies against the liver and intestinal enzymes cross-reacted with the WEH17.1 enzyme with a lower affinity than the liver enzyme. Immunoblot showed that the subunit molecular weight of the WEH17.1 enzyme was the same as that of the liver enzyme.  相似文献   

15.
The thyroid hormones metabolism is considerably altered in many pathological processes including fever. Experiments performed on rabbits (n=62) showed that increase in the rectal temperature by 1 degrees C (after turpentine oil sc injections) decreased 5'-monodeiodinase activity, the enzyme responsible for deiodination of thyroxine to the most active thyroid hormone 3,3',5-triiodothyronine (T3), in the liver by 25% and in the kidney by 20%. Triiodothyronines concentration in serum decreased during fever from 1.57+/-0.12 to 0.52+/-0.02 nmolT3/l and from 0.17+/-0.01 to 0.07+/-0.02 nmol rT3/l. The increase in the body temperature intensified lipid peroxidation processes (malondialdehyde level increased from 1.2 times in kidney, and 1.4 times in the liver homogenates to 1.6 times in serum). The antioxidants (vitamin E and selenium) supplementation decreased lipid peroxidation processes during fever and partly restored the 5'-monodeiodinase activity. The present study confirmed our previous observations in vitro that lipid peroxidation (free radical formation) influences the 5'-monodeiodinase activity in tissues and alters the thyroid hormones metabolism.  相似文献   

16.
To evaluate the possible role of somatomedin-C, insulin-like growth factor I, in renal hypertrophy in early diabetes, kidney tissue SmC concentrations were measured in streptozotocin-induced (80 mg/kg ip) diabetic rats. Body weight, liver weight, plasma SmC concentration, and SmC concentration in the liver of diabetic rats were significantly lower than those of controls. Seven days after induction of diabetes, the kidney weight (898 +/- 95 mg) in diabetic rats was significantly greater than that in controls (755 +/- 69 mg), while SmC concentration in the kidney of diabetic rats (1.7 +/- 0.3 U/g kidney) was significantly lower than that of control rats (5.4 +/- 0.6 U/g kidney). These results suggest that renal SmC may not have an important role in renal hypertrophy in early stages of diabetes and that renal production of SmC may be impaired by insulin deficiency in rats.  相似文献   

17.
Alloxan-diabetic rabbits develop hypercholesterolemia and hypertriglyceridemia in response to cholesterol feeding. To determine whether alterations in apolipoprotein composition of plasma lipoproteins were due to changes in apolipoprotein gene expression, we measured the steady state apoE mRNA levels in several tissues from both control and diabetic rabbits. Control rabbits were fed either chow or chow plus 1.5% cholesterol (chow-fed or cholesterol-fed groups) and diabetic rabbits were fed either chow or chow plus 0.5% cholesterol for dietary periods of 5, 21, and 42 days. The tissues examined were liver, small intestine, brain, adrenals, and aorta. ApoE mRNA levels were measured by Northern and dot blot analysis with a human apoE cDNA probe. In control rabbits fed either chow or cholesterol diets for up to 42 days, the steady state apoE mRNA levels remained relatively constant in all of the tissues examined. In contrast, in alloxan-diabetic rabbits fed a 0.5% cholesterol diet, apoE mRNA was reduced in liver, brain, and adrenals (46 +/- 19%, 56 +/- 5%, and 39 +/- 18% of chow-fed control, respectively), but showed little change in the aorta (91 +/- 22% of chow-fed control). Despite a similar increase in plasma cholesterol, the cholesterol content of the liver and adrenals of cholesterol-fed diabetic rabbits were 20% and 50%, respectively, of that of the liver and adrenals in cholesterol-fed control rabbits. The result that apoE mRNA levels and tissue cholesterol content are altered in the diabetic cholesterol-fed rabbit suggests that insulin deficiency in the rabbit may influence apoE gene expression and tissue cholesterol homeostasis.  相似文献   

18.
目的运用高热量高蛋白饮食诱导GK大鼠2型糖尿病肾病模型的建立,并探讨其可能的作用机制。方法 28周龄GK大鼠24只,随机分成对照组、模型组,每组各12只,模型组给予高热量高蛋白饮食,对照组给予正常饮食,共8周。于第0、4、8周观察24 h尿微量白蛋白、24 h尿蛋白、尿肌酐、尿微量白蛋白/尿肌酐比值水平;于第0、8周观察空腹血糖和血清肌酐、尿素氮、总胆固醇、甘油三脂、一氧化氮水平;实验结束时取双肾称重并计算肾肥大指数,取肾组织观察病理形态学变化,检测肾组织钠钾ATP酶活性。结果与对照组比,模型组大鼠24 h尿微量白蛋白、24 h尿蛋白、尿微量白蛋白/尿肌酐比值、空腹血糖、总胆固醇、甘油三脂、一氧化氮、肾肥大指数水平和肾组织钠钾ATP酶活性显著提高,模型组肾小球体积增大,系膜基质增生,基底膜增厚明显。结论运用高热量高蛋白饮食诱导GK大鼠可成功建立2型糖尿病肾病模型。血糖血脂的上升是糖尿病肾病形成的重要因素,同时钠钾ATP酶活性增强进一步损伤肾小管功能,一氧化氮升高促使肾小球高灌注、高滤过,也是加速GK大鼠肾病形成的原因。  相似文献   

19.
The present work was undertaken to study the effect of nutritional obesity induced by a high fat diet on the consumption of glycogen and glycerides in rat liver and diaphragm. Groups of rats were fed for five weeks from weaning either a fat-rich-carbohydrate (CHO)-poor diet, or a CHO-rich-fat-poor diet. Basal plasma glucose and free fatty acids (FFA) were significantly increased in the animals adapted to the fat-rich diet. Half of the rats were submitted to a 48-h fast. After fast, basal plasma glucose and immunoreactive insulin (IRI) fell significantly, whereas plasma FFA levels were higher than in the group fed the CHO-rich-fat-poor diet. In the liver, glycogen concentration fell in both groups after fast, with a glycogen breakdown of 1930 +/- 244 mumole glycogen glucose/liver in the fat-fed group vs 4636 +/- 216 mumole/liver in the CHO-fed group. Glycerides fell by 750 +/- 68 mumole glyceride glycerol/liver in the fat-fed rats while remaining unchanged (increased by 82 +/- 57 mumole/liver) in the CHO-fed group. In the diaphragm glycogen concentration also fell in both groups, with a glycogen breakdown of 6.0 +/- 0.3 mumole glycogen glucose/g wet tissue in the fat-fed rats vs 15.2 +/- 1.4 mumole/g wet tissue in the CHO-fed animals. Glycerides fell by 23.1 +/- 4.0 mumole/g wet diaphragm in the CHO-fed animals. The lower breakdown of glycogen in both liver and diaphragm of fat-fed rats demonstrates a decreased utilization of glycogen during fast, with energy consumption originating in larger part from triglycerides.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Extracts of rat kidney contain an enzyme (gastrinase) that is highly specific for degradation of the 34 amino acid gastrin (G34). The Michaelis constant (Km) for kidney is 0.36 +/- 0.04 microM and the Vmax is 9.5 +/- 2.4 nmol X g-1 X min-1. Extracts of liver and brain also have gastrin degrading activity but the enzymes responsible appear to be different from the kidney gastrinase. Km for the liver enzyme is 0.08 +/- 0.02 microM but its Vmax (0.10 +/- 0.02 nmol X g-1 X min-1) is only 1% of the kidney gastrinase; Km for the brain enzyme is 0.10 +/- 0.03 microM but its Vmax (0.023 +/- 0.007 nmol X g-1 X min-1) is even lower than for the liver enzyme. The liver and brain enzymes appear to be less specific than the kidney enzyme with respect to competitive inhibition by insulin and glucagon. Cholecystokinin octapeptide is less inhibitory than the other peptides even though it shares a common C-terminal pentapeptide with G34. These findings are consistent with in vivo studies which have demonstrated that the dog kidney is an important site for extraction and degradation of endogenous dog gastrin but there is little or no hepatic removal of G34.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号