首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The PUT1 and PUT2 genes encoding the enzymes of the proline utilization pathway of Saccharomyces cerevisiae are induced by proline and activated by the product of the PUT3 gene. Two upstream activation sequences (UASs) in the PUT1 promoter were identified by homology to the PUT2 UAS. Deletion analysis of the two PUT1 UASs showed that they were functionally independent and additive in producing maximal levels of gene expression. The consensus PUT UAS is a 21-base-pair partially palindromic sequence required in vivo for induction of both genes. The results of a gel mobility shift assay demonstrated that the proline-specific UAS is the binding site of a protein factor. In vitro complex formation was observed in crude extracts of yeast strains carrying either a single genomic copy of the PUT3 gene or the cloned PUT3 gene on a 2 microns plasmid, and the binding was dosage dependent. DNA-binding activity was not observed in extracts of strains carrying either a put3 mutation that caused a noninducible (Put-) phenotype or a deletion of the gene. Wild-type levels of complex formation were observed in an extract of a strain carrying an allele of PUT3 that resulted in a constitutive (Put+) phenotype. Extracts from a strain carrying a PUT3-lacZ gene fusion formed two complexes of slower mobility than the wild-type complex. We conclude that the PUT3 product is either a DNA-binding protein or part of a DNA-binding complex that recognizes the UASs of both PUT1 and PUT2. Binding was observed in extracts of a strain grown in the presence or absence of proline, demonstrating the constitutive nature of the DNA-protein interaction.  相似文献   

2.
3.
4.
Seedlings of Indian mustard (Brassica juncea L.cv. RH-30) grown in controlled condition (irradiance 75 Wm(-2), RH 60-70% and temp. 25 +/- 2 degrees C) for 7d and watered with Hoagland's solution containing different level of NaCL (50-250 mmol/L NaCl) with or without putrescine (PUT, 0.1 mmol/L) were examined for PUT amelioration of NaCl induced inhibition in seedling growth by altering activity of antioxygenic enzymes and level of free radicals in the leaves. Salinity caused reduction in seedling growth and biomass accumulation was parallel to increased superoxide (*O2-), hydrogen peroxide (H2O2) levels, lipid peroxidation (MDA content) and electrolyte leakage in leaf tissues which were reversed significantly by PUT. The antioxygenic enzymes viz superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX) and glutathione reductase (GR) were differentially altered, depending on salt level. PUT induction of enzyme was in the following order APX>GR>CAT>SOD>POD in leaf tissues of salt stressed seedlings. PUT increased the level of glutathione and carotenoids in leaf tissues. This finding suggests that PUT might be activating antioxygenic enzymes and elevating antioxidants there by controlling free radical generation, hence preventing membrane peroxidation and denaturation of biomolecules resulting into improved seedling growth under salinity.  相似文献   

5.
A mutation has been identified that prevents Saccharomyces cerevisiae cells from growing on proline as the sole source of nitrogen, causes noninducible expression of the PUT1 and PUT2 genes, and is completely recessive. In the put3-75 mutant, the basal level of expression (ammonia as nitrogen source) of PUT1-lacZ and PUT2-lacZ gene fusions as measured by beta-galactosidase activity is reduced 4- and 7-fold, respectively, compared with the wild-type strain. Normal regulation is not restored when the cells are grown on arginine as the sole nitrogen source and put3-75 cells remain sensitive to the proline analog, L-azetidine-2-carboxylic acid, indicating that the block is not at the level of transport of the inducer, proline. In a cross between the put3-75 strain and the semidominant, constitutive mutation PUT3c-68, only parental ditype tetrads were found, indicating allelism of the two mutations. Further support for allelism derives from the comparison of enzyme levels in heteroallelic and heterozygous diploid strains. The constitutive allele appears to be fully dominant to the noninducible allele but only partially dominant to the wild type, suggesting an interaction between the wild-type and PUT3c-68 gene products. The PUT3 gene maps on chromosome XI, about 5.7 cM from the centromere. The phenotypes of alleles of the PUT3 gene, either recessive and noninducible (the put3-75 phenotype) or semidominant and constitutive (the PUT3c-68 phenotype), and their pleiotropy suggest that the PUT3 gene product is a positive activator of the proline utilization pathway.  相似文献   

6.
Spermine and putrescine enhance oxidative stress tolerance in maize leaves   总被引:3,自引:0,他引:3  
The protective effects of spermine (SPM) and putrescine (PUT) against paraquat (PQ), a herbicide in agriculture and oxidative stress inducer, were investigated in the leaves of maize. Maize leaves were pretreated to SPM and PUT at concentrations of 0.2 and 1 mM and treated with PQ afterwards. Pretreatment with 1 mM of SPM and PUT significantly prevented the losses in chlorophyll and carotenoid levels induced by PQ. Ascorbic acid content in the leaves pretreated with both polyamines was found to be higher than those of the leaves pretreated with water. Also, pretreatment with SPM and PUT was determined to have some effects on the activities of superoxide dismutase (SOD) and peroxidase (POD). 1 mM of SPM increased SOD activity, but PUT has no significant effect on SOD activity. On the other hand, POD activity was recorded to increase slightly in response to both concentrations of SPM and 1 mM of PUT. The results showed that such polyamine pretreated plants may become more tolerant to oxidative stress due to increases in the antioxidative enzymes and antioxidants.  相似文献   

7.
8.
9.
The activities of the proline-specific permease (PUT4) and the general amino acid permease (GAP1) of Saccharomyces cerevisiae vary 70- to 140-fold in response to the nitrogen source of the growth medium. The PUT4 and GAP1 permease activities are regulated by control of synthesis and control of activity. These permeases are irreversibly inactivated by addition of ammonia or glutamine, lowering the activity to that found during steady-state growth on these nitrogen sources. Mutants altered in the regulation of the PUT4 permease (Per-) have been isolated. The mutations in these strains are pleiotropic and affect many other permeases, but have no direct effect on various cytoplasmic enzymes involved in nitrogen assimilation. In strains having one class of mutations (per1), ammonia inactivation of the PUT4 and GAP1 permeases did not occur, whereas glutamate and glutamine inactivation did. Thus, there appear to be two independent inactivation systems, one responding to ammonia and one responding to glutamate (or a metabolite of glutamate). The mutations were found to be nuclear and recessive. The inactivation systems are constitutive and do not require transport of the effector molecules per se, apparently operating on the inside of the cytoplasmic membrane. The ammonia inactivation was found not to require a functional glutamate dehydrogenase (NADP). These mutants were used to show that ammonia exerts control of arginase synthesis largely by inducer exclusion. This may be the primary mode of nitrogen regulation for most nitrogen-regulated enzymes of S. cerevisiae.  相似文献   

10.
11.
We demonstrate that expression of the UGA1, CAN1, GAP1, PUT1, PUT2, PUT4, and DAL4 genes is sensitive to nitrogen catabolite repression. The expression of all these genes, with the exception of UGA1 and PUT2, also required a functional GLN3 protein. In addition, GLN3 protein was required for expression of the DAL1, DAL2, DAL7, GDH1, and GDH2 genes. The UGA1, CAN1, GAP1, and DAL4 genes markedly increased their expression when the DAL80 locus, encoding a negative regulatory element, was disrupted. Expression of the GDH1, PUT1, PUT2, and PUT4 genes also responded to DAL80 disruption, but much more modestly. Expression of GLN1 and GDH2 exhibited parallel responses to the provision of asparagine and glutamine as nitrogen sources but did not follow the regulatory responses noted above for the nitrogen catabolic genes such as DAL5. Steady-state mRNA levels of both genes did not significantly decrease when glutamine was provided as nitrogen source but were lowered by the provision of asparagine. They also did not respond to disruption of DAL80.  相似文献   

12.
13.
The expression of a truncated 61K mu chain in the Burkitt lymphoma lien P3HR-1 and a derived ouabain and TG-resistant subline, PUT, and in various somatic cell hybrids with PUT as one of their parents is described. Both PUT and P3HR-1 contain intracellular mu and kappa chains, but express no membrane immunoglobulin. Immunoprecipitation of 14C-labeled amino acid or [3H]glucosamine-labeled P3HR-1 extracts with anti-mu serum brought down the same 61K mu chain. Anti-light-chain sera did not precipitate the truncated mu chain. P3HR-1 is a clonal derivative of the Burkitt lymphoma (BL) line Jijoye. The parental Jijoye line is membrane-IgM positive and contains two normal-sized mu chains. Both are precipitable by anti-mu and anti-kappa sera. In addition, anti-mu also precipitated a 61K mu chain. A 61K mu chain was also identified in the following somatic hybrids: PICATPO, an autohybrid of two different P3HR-1 sublines, PUTRAL and PUT/ARH-77, derived from the fusion of PUT with the membrane-IgG-positive BL line Rael and the lymphoblastoid cell line (LCL) ARH-77, respectively, and the HP-1 (PUT/HL-60) hybrid, derived from the fusion of PUT with the granulocytic leukemia line, HL-60. The 61K mu chain could not be detected in some other BL/BL hybrid combinations, namely RAMPUT (PUT/Ramos) and NAMPUT (PUT/Namalva). The anti-light-chain serum (lambda or kappa) had no detectable effect on the truncated 61K mu chain in any of the cases tested, suggesting a lack of assembly between the 61K mu chain and the light chain.  相似文献   

14.
Pseudomonas aeruginosa PAO1 grows on a variety of polyamines as the sole source of carbon and nitrogen. Catabolism of polyamines is mediated by the γ-glutamylation pathway, which is complicated by the existence of multiple homologous enzymes with redundant specificities toward different polyamines for a more diverse metabolic capacity in this organism. Through a series of markerless gene knockout mutants and complementation tests, specific combinations of pauABCD (polyamine utilization) genes were deciphered for catabolism of different polyamines. Among six pauA genes, expression of pauA1, pauA2, pauA4, and pauA5 was found to be inducible by diamines putrescine (PUT) and cadaverine (CAD) but not by diaminopropane. Activation of these promoters was regulated by the PauR repressor, as evidenced by constitutively active promoters in the pauR mutant. The activities of these promoters were further enhanced by exogenous PUT or CAD in the mutant devoid of all six pauA genes. The recombinant PauR protein with a hexahistidine tag at its N terminus was purified, and specific bindings of PauR to the promoter regions of most pau operons were demonstrated by electromobility shift assays. Potential interactions of PUT and CAD with PauR were also suggested by chemical cross-linkage analysis with glutaraldehyde. In comparison, growth on PUT was more proficient than that on CAD, and this observed growth phenotype was reflected in a strong catabolite repression of pauA promoter activation by CAD but was completely absent as reflected by activation by PUT. In summary, this study clearly establishes the function of PauR in control of pau promoters in response to PUT and CAD for their catabolism through the γ-glutamylation pathway.  相似文献   

15.
PUT cells were selected from the XD line of cultured tobacco cells (Nicotiana tabacum L. cv. Xanthi-nc) for the ability to utilize putrescine as sole nitrogen source. Previous work had indicated that hydroxycinnamoylputrescines (principally caffeoylputrescine) and 4-amino-n-butyric acid (GABA) are obligatory intermediates in the assimilation of putrescine by PUT cells. The apparent absence in these cells of diamine or polyamine oxidase and pyrroline dehydrogenase, enzymes which catalyze putrescine oxidation in some plant species, led us to propose the following pathway for putrescine oxidation in PUT cells: putrescine----hydroxycinnamoylputrescine----hydroxycinnamoyl - 4-aminobutyraldehyde----hydroxycinnamoyl-GABA----GABA. We tested the hypothesis by looking for the predicted compound, caffeoyl-GABA. A chemical synthesis was developed, and chromatographic and mass spectroscopic procedures were devised for identifying the compound in extracts of cells and plant tissues. Caffeoyl-GABA was found in extracts of PUT cells in micromolar concentrations but was not present in XD cells. Thus, its occurrence in PUT cells appears to be a direct result of selection for the ability to catabolize putrescine. Caffeoyl-GABA has the same distribution in tobacco plants as caffeoylputrescine, i.e. flower buds greater than open flowers greater than floral leaves, green fruit; absent in vegetative tissues.  相似文献   

16.
17.
Previously we reported that administration of lipopolysaccharide (LPS) to mice increased the hepatic levels of putrescine (PUT) and N1-acetylspermidine (N1-acetyl-SPD). In the current study, we examined the in vivo effects of some steroid hormones on the LPS-induced increase in PUT and N1-acetyl-SPD. Corticosterone, hydrocortisone and dexamethasone suppressed the LPS-induced increase in PUT and N1-acetyl-SPD in mouse liver in a dose-dependent manner, dexamethasone being the most effective among them. On the other hand, oesterone and oestradiol-17β enhanced the LPS-induced increase in PUT and N1-acetyl-SPD in a dose-dependent manner. Oestradiol-17 and 16β-ethyl-oestradiol, as an inactive oestradiol isomer and an antioestrogen, respectively, likewise enhanced the increase in PUT and N1-acetyl-SPD concentrations induced by LPS. 16-hydroxy-oestradiol (oestriol), 16-hydroxyestrone, 2-hydroxyoestradiol, 2-hydroxyoestrone, progesterone, testosterone, diethylstilboestrol and nonsteroidal antioestrogen such as tamoxifen and nafoxidine had no effect on the increase. Oestradiol-17β enhanced and corticosterone had little on the carbon tetrachloride-induced increase in PUT and N1-acetyl-SPD. These results suggest that glucocorticoids suppress the increase by preventing the immunological injury by Kupffer cells on hepatocytes and that the stimulatory effect of oestrogens may not be associated with their oestrogenic activities mediated by the oestrogen receptor system.  相似文献   

18.
The PUT2 gene was isolated on a 6.5-kilobase insert of a recombinant DNA plasmid by functional complementation of a put2 (delta 1-pyrroline-5-carboxylate dehydrogenase-deficient) mutation in Saccharomyces cerevisiae. Its identity was confirmed by a gene disruption technique in which the chromosomal PUT2+ gene was replaced by plasmid DNA carrying the put2 gene into which the S. cerevisiae HIS3+ gene had been inserted. The cloned PUT2 gene was used to probe specific mRNA levels: full induction of the PUT2 gene resulted in a 15-fold increase over the uninduced level. The PUT2-specific mRNA was approximately 2 kilobases in length and was used in S1 nuclease protection experiments to locate the gene to a 3-kilobase HindIII fragment. When delta 1-pyrroline-5-carboxylate dehydrogenase activity levels were measured in strains carrying the original plasmid, as well as in subclones, similar induction ratios were found as compared with enzyme levels in haploid yeast strains. Effects due to increased copy number or position were also seen. The cloned gene on a 2 mu-containing vector was used to map the PUT2 gene to chromosome VIII.  相似文献   

19.
It is generally accepted that ultraviolet (UV) radiation can have adverse affects on phototrophic organisms, independent of ozone depletion. The red intertidal seaweed Pyropia cinnamomea W.A. Nelson (previously Porphyra cinnamomea Sutherland et al. 2011), similar to many other intertidal macrophytes, is exposed to high levels of UV radiation on a daily basis due to emersion in the upper littoral zone. It has been shown that seaweeds, like higher plants, respond to an increased activity of antioxidative enzymes when exposed to stress. However, earlier investigations have shown that P. cinnamomea also compensates for stress due to UV radiation by increasing polyamine (PA) levels, especially bound‐soluble and bound‐insoluble PAs. The PA precursor putrescine (PUT) can be synthesized via two enzymatic pathways: arginine decarboxylase (ADC) and ornithine decarboxylase (ODC). Both of these enzymes showed increased activity in P. cinnamomea under UV stress. In higher plants, ADC is the enzyme responsible for increased PA levels during stress exposure, while ODC is correlated with cell division and reproduction. However, there are contrary findings in the literature. Using two irreversible inhibitors, we identified the enzyme most likely responsible for increased PUT synthesis and therefore increased stress tolerance in P. cinnamomea. Our results show that changes in the PA synthesis pathway in P. cinnamomea under UV stress are based on an increased activity of ADC. When either inhibitor was added, lipid hydroperoxide levels increased even under photosynthetically active radiation, suggesting that PAs are involved in protection mechanisms under normal light conditions as well. We also show that under optimum or low‐stress conditions, ODC activity is correlated with PUT synthesis.  相似文献   

20.
Polyamines and the Cell Cycle of Catharanthus roseus Cells in Culture   总被引:1,自引:0,他引:1  
Maki H  Ando S  Kodama H  Komamine A 《Plant physiology》1991,96(4):1008-1013
Investigation was made on the effect of partial depletion of polyamines (PAs), induced by treatment with inhibitors of the biosynthesis of PAs, on the distribution of cells at each phase of the cell cycle in Catharanthus roseus (L.) G. Don. cells in suspension cultures, using flow cytometry. More cells treated with inhibitors of arginine decarboxylase (ADC) and ornithine decarboxylase (ODC) were accumulated in the G1 phase than those in the control, while the treatment with an inhibitor of spermidine (SPD) synthase showed no effect on the distribution of cells. The endogenous levels of the PAs, putrescine (PUT), SPD, and spermine (SPM), were determined during the cell cycle in synchronous cultures of C. roseus. Two peaks of endogenous level of PAs, in particular, of PUT and SPD, were observed during the cell cycle. Levels of PAs increased markedly prior to synthesis of DNA in the S phase and prior to cytokinesis. Activities of ADC and ODC were also assayed during the cell cycle. Activities of ADC was much higher than that of ODC throughout the cell cycle, but both activities of ODC and ADC changed in concert with changes in levels of PAs. Therefore, it is suggested that these enzymes may regulate PA levels during the cell cycle. These results indicate that inhibitors of PUT biosynthesis caused the suppression of cell proliferation by prevention of the progression of the cell cycle, probably from the G1 to the S phase, and PUT may play more important roles in the progression of the cell cycle than other PAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号