首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Mos proto-oncogene is a critical regulator of vertebrate oocyte maturation. The maturation-dependent translation of Mos protein correlates with the cytoplasmic polyadenylation of the maternal Mos mRNA. However, the precise temporal requirements for Mos protein function differ between oocytes of model mammalian species and oocytes of the frog Xenopus laevis. Despite the advances in model organisms, it is not known if the translation of the human Mos mRNA is also regulated by cytoplasmic polyadenylation or what regulatory elements may be involved. We report that the human Mos 3' untranslated region (3' UTR) contains a functional cytoplasmic polyadenylation element (CPE) and demonstrate that the endogenous Mos mRNA undergoes maturation-dependent cytoplasmic polyadenylation in human oocytes. The human Mos 3' UTR interacts with the human CPE-binding protein and exerts translational control on a reporter mRNA in the heterologous Xenopus oocyte system. Unlike the Xenopus Mos mRNA, which is translationally activated by an early acting Musashi/polyadenylation response element (PRE)-directed control mechanism, the translational activation of the human Mos 3' UTR is dependent on a late acting CPE-dependent process. Taken together, our findings suggest a fundamental difference in the 3' UTR regulatory mechanisms controlling the temporal induction of maternal Mos mRNA polyadenylation and translational activation during Xenopus and mammalian oocyte maturation.  相似文献   

2.
Meiotic cell cycle progression during vertebrate oocyte maturation requires the correct temporal translation of maternal mRNAs encoding key regulatory proteins. The mechanism by which specific mRNAs are temporally activated is unknown, although both cytoplasmic polyadenylation elements (CPE) within the 3'-untranslated region (3'-UTR) of mRNAs and the CPE-binding protein (CPEB) have been implicated. We report that in progesterone-stimulated Xenopus oocytes, the early cytoplasmic polyadenylation and translational activation of multiple maternal mRNAs occur in a CPE- and CPEB-independent manner. We demonstrate that polyadenylation response elements, originally identified in the 3'-UTR of the mRNA encoding the Mos proto-oncogene, direct CPE- and CPEB-independent polyadenylation of an early class of Xenopus maternal mRNAs. Our findings refute the hypothesis that CPE sequences alone account for the range of temporal inductions of maternal mRNAs observed during Xenopus oocyte maturation. Rather, our data indicate that the sequential action of distinct 3'-UTR-directed translational control mechanisms coordinates the complex temporal patterns and extent of protein synthesis during vertebrate meiotic cell cycle progression.  相似文献   

3.
Cell cycle re-entry during vertebrate oocyte maturation is mediated through translational activation of select target mRNAs, culminating in the activation of mitogen-activated protein kinase and cyclin B/cyclin-dependent kinase (CDK) signaling. The temporal order of targeted mRNA translation is crucial for cell cycle progression and is determined by the timing of activation of distinct mRNA-binding proteins. We have previously shown in oocytes from Xenopus laevis that the mRNA-binding protein Musashi targets translational activation of early class mRNAs including the mRNA encoding the Mos proto-oncogene. However, the molecular mechanism by which Musashi function is activated is unknown. We report here that activation of Musashi1 is mediated by Ringo/CDK signaling, revealing a novel role for early Ringo/CDK function. Interestingly, Musashi1 activation is subsequently sustained through mitogen-activated protein kinase signaling, the downstream effector of Mos mRNA translation, thus establishing a positive feedback loop to amplify Musashi function. The identified regulatory sites are present in mammalian Musashi proteins, and our data suggest that phosphorylation may represent an evolutionarily conserved mechanism to control Musashi-dependent target mRNA translation.  相似文献   

4.
Cell cycle progression during oocyte maturation requires the strict temporal regulation of maternal mRNA translation. The intrinsic basis of this temporal control has not been fully elucidated but appears to involve distinct mRNA 3′ UTR regulatory elements. In this study, we identify a novel translational control sequence (TCS) that exerts repression of target mRNAs in immature oocytes of the frog, Xenopus laevis, and can direct early cytoplasmic polyadenylation and translational activation during oocyte maturation. The TCS is functionally distinct from the previously characterized Musashi/polyadenylation response element (PRE) and the cytoplasmic polyadenylation element (CPE). We report that TCS elements exert translational repression in both the Wee1 mRNA 3′ UTR and the pericentriolar material-1 (Pcm-1) mRNA 3′ UTR in immature oocytes. During oocyte maturation, TCS function directs the early translational activation of the Pcm-1 mRNA. By contrast, we demonstrate that CPE sequences flanking the TCS elements in the Wee1 3′ UTR suppress the ability of the TCS to direct early translational activation. Our results indicate that a functional hierarchy exists between these distinct 3′ UTR regulatory elements to control the timing of maternal mRNA translational activation during oocyte maturation.  相似文献   

5.
The mRNA translational control protein, Musashi, plays a critical role in cell fate determination through sequence‐specific interactions with select target mRNAs. In proliferating stem cells, Musashi exerts repression of target mRNAs to promote cell cycle progression. During stem cell differentiation, Musashi target mRNAs are de‐repressed and translated. Recently, we have reported an obligatory requirement for Musashi to direct translational activation of target mRNAs during Xenopus oocyte meiotic cell cycle progression. Despite the importance of Musashi in cell cycle regulation, only a few target mRNAs have been fully characterized. In this study, we report the identification and characterization of a new Musashi target mRNA in Xenopus oocytes. We demonstrate that progesterone‐stimulated translational activation of the Xenopus Musashi1 mRNA is regulated through a functional Musashi binding element (MBE) in the Musashi1 mRNA 3′ untranslated region (3′ UTR). Mutational disruption of the MBE prevented translational activation of Musashi1 mRNA and its interaction with Musashi protein. Further, elimination of Musashi function through microinjection of inhibitory antisense oligonucleotides prevented progesterone‐induced polyadenylation and translation of the endogenous Musashi1 mRNA. Thus, Xenopus Musashi proteins regulate translation of the Musashi1 mRNA during oocyte maturation. Our results indicate that the hierarchy of sequential and dependent mRNA translational control programs involved in directing progression through meiosis are reinforced by an intricate series of nested, positive feedback loops, including Musashi mRNA translational autoregulation. These autoregulatory positive feedback loops serve to amplify a weak initiating signal into a robust commitment for the oocyte to progress through the cell cycle and become competent for fertilization.Mol. Reprod. Dev. 79: 553‐563, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Meiotic cell‐cycle progression in progesterone‐stimulated Xenopus oocytes requires that the translation of pre‐existing maternal mRNAs occur in a strict temporal order. Timing of translation is regulated through elements within the mRNA 3′ untranslated region (3′ UTR), which respond to cell cycle‐dependant signalling. One element that has been previously implicated in the temporal control of mRNA translation is the cytoplasmic polyadenylation element (CPE). In this study, we show that the CPE does not direct early mRNA translation. Rather, early translation is directed through specific early factors, including the Musashi‐binding element (MBE) and the MBE‐binding protein, Musashi. Our findings indicate that although the cyclin B5 3′ UTR contains both CPEs and an MBE, the MBE is the critical regulator of early translation. The cyclin B2 3′ UTR contains CPEs, but lacks an MBE and is translationally activated late in maturation. Finally, utilizing antisense oligonucleotides to attenuate endogenous Musashi synthesis, we show that Musashi is critical for the initiation of early class mRNA translation and for the subsequent activation of CPE‐dependant mRNA translation.  相似文献   

7.
8.
Translational activation of several dormant mRNAs in vertebrate oocytes is mediated by cytoplasmic polyadenylation, a process controlled by the cytoplasmic polyadenylation element (CPE) and its binding protein CPEB. The translation of CPE-containing mRNAs does not occur en masse at any one time, but instead is temporally regulated. We show here that in Xenopus, partial destruction of CPEB controls the temporal translation of CPE-containing mRNAs. While some mRNAs, such as the one encoding Mos, are polyadenylated at prophase I, the polyadenylation of cyclin B1 mRNA requires the partial destruction of CPEB that occurs at metaphase I. CPEB destruction is mediated by a PEST box and Cdc2-catalyzed phosphorylation, and is essential for meiotic progression to metaphase II. CPEB destruction is also necessary for mitosis in the early embryo. These data indicate that a change in the CPEB:CPE ratio is necessary to activate mRNAs at metaphase I and drive the cells' entry into metaphase II.  相似文献   

9.
10.
The Mos protein kinase is a key regulator of vertebrate oocyte maturation. Oocyte-specific Mos protein expression is subject to translational control. In the frog Xenopus, the translation of Mos protein requires the progesterone-induced polyadenylation of the maternal Mos mRNA, which is present in the oocyte cytoplasm. Both the Xenopus p42 mitogen-activated protein kinase (MAPK) and maturation-promoting factor (MPF) signaling pathways have been proposed to mediate progesterone-stimulated oocyte maturation. In this study, we have determined the relative contributions of the MAPK and MPF signaling pathways to Mos mRNA polyadenylation. We report that progesterone-induced Mos mRNA polyadenylation was attenuated in oocytes expressing the MAPK phosphatase rVH6. Moreover, inhibition of MAPK signaling blocked progesterone-induced Mos protein accumulation. Activation of the MAPK pathway by injection of RNA encoding Mos was sufficient to induce both the polyadenylation of synthetic Mos mRNA substrates and the accumulation of endogenous Mos protein in the absence of MPF signaling. Activation of MPF, by injection of cyclin B1 RNA or purified cyclin B1 protein, also induced both Mos protein accumulation and Mos mRNA polyadenylation. However, this action of MPF required MAPK activity. By contrast, the cytoplasmic polyadenylation of maternal cyclin B1 mRNA was stimulated by MPF in a MAPK-independent manner, thus revealing a differential regulation of maternal mRNA polyadenylation by the MAPK and MPF signaling pathways. We propose that MAPK-stimulated Mos mRNA cytoplasmic polyadenylation is a key component of the positive-feedback loop, which contributes to the all-or-none process of oocyte maturation.  相似文献   

11.
Musashi-mediated mRNA translational control has been implicated in the promotion of physiological and pathological stem cell proliferation. During self-renewal of mammalian stem cells, Musashi has been proposed to act to repress the translation of mRNAs encoding inhibitors of cell cycle progression. By contrast, in maturing Xenopus oocytes Musashi activates translation of target mRNAs that encode proteins promoting cell cycle progression. The mechanisms directing Musashi to differentially control mRNA translation in mammalian stem cells and Xenopus oocytes is unknown. In this study, we demonstrate that the mechanisms defining Musashi function lie within the cellular context. Specifically, we show that murine Musashi acts as an activator of translation in maturing Xenopus oocytes while Xenopus Musashi functions as a repressor of target mRNA translation in mammalian cells. We further demonstrate that within the context of a primary mammalian neural stem/progenitor cell, Musashi can be converted from a repressor of mRNA translation to an activator of translation in response to extracellular stimuli. We present current models of Musashi-mediated mRNA translational control and discuss possible mechanisms for regulating Musashi function. An understanding of these mechanisms presents exciting possibilities for development of therapeutic targets to control physiological and pathological stem cell proliferation.  相似文献   

12.
H Kuge  J D Richter 《The EMBO journal》1995,14(24):6301-6310
During the early development of many animal species, the expression of new genetic information is governed by selective translation of stored maternal mRNAs. In many cases, this translational activation requires cytoplasmic poly(A) elongation. However, how this modification at the 3' end of an mRNA stimulates translation from the 5' end is unknown. Here we show that cytoplasmic polyadenylation stimulates cap ribose methylation during progesterone-induced oocyte maturation in Xenopus laevis. Translational recruitment of a chimeric reporter mRNA that is controlled by cytoplasmic polyadenylation coincides temporally with cap ribose methylation during this period. In addition, the inhibition of cap ribose methylation by S-isobutyladenosine significantly reduces translational activation of a reporter mRNA without affecting the increase of general protein synthesis or polyadenylation during maturation. These results provide evidence for a functional interaction between the termini of an mRNA molecule and suggest that 2'-O-ribose cap methylation mediates the translational recruitment of maternal mRNA.  相似文献   

13.
In Xenopus oocytes, progesterone stimulates the cytoplasmic polyadenylation and resulting translational activation of c-mos mRNA, which is necessary for the induction of oocyte maturation. Although details of the biochemistry of polyadenylation are beginning to emerge, the mechanism by which 3' poly(A) addition stimulates translation initiation is enigmatic. A previous report showed that polyadenylation induced cap-specific 2'-O-methylation, and suggested that this 5' end modification was important for translational activation. Here, we demonstrate that injected c-mos RNA undergoes polyadenylation and cap ribose methylation. Inhibition of this methylation by S-isobutylthioadenosine (SIBA), a methyltransferase inhibitor, has little effect on progesterone-induced c-mos mRNA polyadenylation or general protein synthesis, but prevents the synthesis of Mos protein as well as oocyte maturation. Maturation can be rescued, however, by the injection of factors that act downstream of Mos, such as cyclin A and B mRNAs. Most importantly, we show that the translational efficiency of injected mRNAs containing cap-specific 2'-O-methylation (cap I) is significantly enhanced compared to RNAs that do not contain the methylated ribose (cap 0). These results suggest that cap ribose methylation of c-mos mRNA is important for translational recruitment and for the progression of oocytes through meiosis.  相似文献   

14.
Progression through vertebrate oocyte maturation requires that pre-existing, maternally derived mRNAs be translated in a strict temporal order. The mechanism that controls the timing of oocyte mRNA translation is unknown. In this study we show that the early translational induction of the mRNA encoding the Mos proto-oncogene is mediated through a novel regulatory element within the 3' untranslated region of the Mos mRNA. This novel element is responsive to the MAP kinase signaling pathway and is distinct from the late acting, cdc2-responsive, cytoplasmic polyadenylation element. Our findings suggest that the timing of maternal mRNA translation is controlled through signal transduction pathways targeting distinct 3' UTR mRNA elements.  相似文献   

15.
Musashi-mediated mRNA translational control has been implicated in the promotion of physiological and pathological stem cell proliferation. During self-renewal of mammalian stem cells, Musashi has been proposed to act to repress the translation of mRNAs encoding inhibitors of cell cycle progression. By contrast, in maturing Xenopus oocytes Musashi activates translation of target mRNAs that encode proteins promoting cell cycle progression. The mechanisms directing Musashi to differentially control mRNA translation in mammalian stem cells and Xenopus oocytes is unknown. In this study, we demonstrate that the mechanisms defining Musashi function lie within the cellular context. Specifically, we show that murine Musashi acts as an activator of translation in maturing Xenopus oocytes while Xenopus Musashi functions as a repressor of target mRNA translation in mammalian cells. We further demonstrate that within the context of a primary mammalian neural stem/progenitor cell, Musashi can be converted from a repressor of mRNA translation to an activator of translation in response to extracellular stimuli. We present current models of Musashi-mediated mRNA translational control and discuss possible mechanisms for regulating Musashi function. An understanding of these mechanisms presents exciting possibilities for development of therapeutic targets to control physiological and pathological stem cell proliferation.Key words: musashi, stem cell, oocyte, mRNA translation, proliferation, differentiation, cell cycle  相似文献   

16.
Meiotic progression requires the translational activation of stored maternal mRNAs, such as those encoding cyclin B1 or mos. The translation of these mRNAs is regulated by the cytoplasmic polyadenylation element (CPE) present in their 3'UTRs, which recruits the CPE-binding protein CPEB. This RNA-binding protein not only dictates the timing and extent of translational activation by cytoplasmic polyadenylation but also participates, together with the translational repressor Maskin, in the transport and localization, in a quiescent state, of its targets to subcellular locations where their translation will take place. During the early development of Xenopus laevis, CPEB localizes at the animal pole of oocytes and later on at embryonic spindles and centrosomes. Disruption of embryonic CPEB-mediated translational regulation results in abnormalities in the mitotic apparatus and inhibits embryonic mitosis. Here we show that spindle-localized translational activation of CPE-regulated mRNAs, encoding for proteins with a known function in spindle assembly and chromosome segregation, is essential for completion of the first meiotic division and for chromosome segregation in Xenopus oocytes.  相似文献   

17.
Cytoplasmic polyadenylation controls the translation of several maternal mRNAs during Xenopus oocyte maturation and requires two sequences in the 3' untranslated region (UTR), the U-rich cytoplasmic polyadenylation element (CPE), and the hexanucleotide AAUAAA. c-mos mRNA is polyadenylated and translated soon after the induction of maturation, and this protein kinase is necessary for a kinase cascade culminating in cdc2 kinase (MPF) activation. Other mRNAs are polyadenylated later, around the time of cdc2 kinase activation. To determine whether there is a hierarchy in the cytoplasmic polyadenylation of maternal mRNAs, we ablated c-mos mRNA with an antisense oligonucleotide. This prevented histone B4 and cyclin A1 and B1 mRNA polyadenylation, indicating that the polyadenylation of these mRNAs is Mos dependent. To investigate a possible role of cdc2 kinase in this process, cyclin B was injected into oocytes lacking c-mos mRNA. cdc2 kinase was activated, but mitogen-activated protein kinase was not. However, polyadenylation of cyclin B1 and histone B4 mRNA was still observed. This demonstrates that cdc2 kinase can induce cytoplasmic polyadenylation in the absence of Mos. Our data further indicate that although phosphorylation of the CPE binding protein may be involved in the induction of Mos-dependent polyadenylation, it is not required for Mos-independent polyadenylation. We characterized the elements conferring Mos dependence (Mos response elements) in the histone B4 and cyclin B1 mRNAs by mutational analysis. For histone B4 mRNA, the Mos response elements were in the coding region or 5' UTR. For cyclin B1 mRNA, the main Mos response element was a CPE that overlaps with the AAUAAA hexanucleotide. This indicates that the position of the CPE can have a profound influence on the timing of cytoplasmic polyadenylation.  相似文献   

18.
Meiotic progression is driven by the sequential translational activation of maternal messenger RNAs stored in the cytoplasm. This activation is mainly induced by the cytoplasmic elongation of their poly(A) tails, which is mediated by the cytoplasmic polyadenylation element (CPE) present in their 3′ untranslated regions. Although polyadenylation in prophase I and metaphase I is mediated by the CPE‐binding protein 1 (CPEB1), this protein is degraded during the first meiotic division. Thus, raising the question of how the cytoplasmic polyadenylation required for the second meiotic division is achieved. In this work, we show that CPEB1 generates a positive loop by activating the translation of CPEB4 mRNA, which, in turn, replaces CPEB1 and drives the transition from metaphase I to metaphase II. We further show that CPEB1 and CPEB4 are differentially regulated by phase‐specific kinases, generating the need of two sequential CPEB activities to sustain cytoplasmic polyadenylation during all the meiotic phases. Altogether, this work defines a new element in the translational circuit that support an autonomous transition between the two meiotic divisions in the absence of DNA replication.  相似文献   

19.
The Wee1 protein tyrosine kinase is a key regulator of cell cycle progression. Wee1 activity is necessary for the control of the first embryonic cell cycle following the fertilization of meiotically mature Xenopus oocytes. Wee1 mRNA is present in immature oocytes, but Wee1 protein does not accumulate in immature oocytes or during the early stages of progesterone-stimulated maturation. This delay in Wee1 translation is critical since premature Wee1 protein accumulation has been shown to inhibit oocyte maturation. In this study we provide evidence that Wee1 protein accumulation is regulated at the level of mRNA translation. This translational control is directed by sequences within the Wee1 mRNA 3'-untranslated region (3' UTR). Specifically, cytoplasmic polyadenylation element (CPE) sequences within the Wee1 3' UTR are necessary for full translational repression in immature oocytes. Our data further indicate that while CPE-independent mechanisms may regulate the levels of Wee1 protein accumulation during progesterone-stimulated oocyte maturation, the timing of Wee1 mRNA translational induction is directed through a CPE-dependent mechanism.  相似文献   

20.
Groisman I  Jung MY  Sarkissian M  Cao Q  Richter JD 《Cell》2002,109(4):473-483
The synthesis and destruction of cyclin B drives mitosis in eukaryotic cells. Cell cycle progression is also regulated at the level of cyclin B translation. In cycling extracts from Xenopus embryos, progression into M phase requires the polyadenylation-induced translation of cyclin B1 mRNA. Polyadenylation is mediated by the phosphorylation of CPEB by Aurora, a kinase whose activity oscillates with the cell cycle. Exit from M phase seems to require deadenylation and subsequent translational silencing of cyclin B1 mRNA by Maskin, a CPEB and eIF4E binding factor, whose expression is cell cycle regulated. These observations suggest that regulated cyclin B1 mRNA translation is essential for the embryonic cell cycle. Mammalian cells also display a cell cycle-dependent cytoplasmic polyadenylation, suggesting that translational control by polyadenylation might be a general feature of mitosis in animal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号