首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding properties of 14 beta-(bromoacetamido)morphine (BAM) and the ability of BAM to irreversibly inhibit opioid binding to rat brain membranes were examined to characterize the affinity and selectivity of BAM as an irreversible affinity ligand for opioid receptors. BAM had the same receptor selectivity as morphine, with a 3-5-fold decrease in affinity for the different types of opioid receptors. When brain membranes were incubated with BAM, followed by extensive washing, opioid binding was restored to control levels. However, when membranes were incubated with dithiothreitol (DTT), followed by BAM, and subsequently washed, 90% of the 0.25 nM [3H] [D-Ala2,(Me)Phe4,Gly(ol)5]enkephalin (DAGO) binding was irreversibly inhibited as a result of the specific alkylation of a sulfhydryl group at the mu binding site. This inhibition was dependent on the concentrations of both DTT and BAM. The mu receptor specificity of BAM alkylation was demonstrated by the ability of BAM alkylated membranes to still bind the delta-selective peptide [3H] [D-penicillamine2,D-penicillamine5]enkephalin (DPDPE) and (-)-[3H]bremazocine in the presence of mu and delta blockers, selective for kappa binding sites. Under conditions where 90% of the 0.25 nM [3H]DAGO binding sites were blocked, 80% of the 0.8 nM [3H]naloxone binding and 50% of the 0.25 nM 125I-labeled beta h-endorphin binding were inhibited by BAM alkylation. Morphine and naloxone partially protected the binding site from alkylation with BAM, while ligands that did not bind to the mu site did not afford protection.2+hese studies have demonstrated that when a disulfide bond  相似文献   

2.
Several hydrazone, oxime, carbazone and semicarbazone derivatives of 14-alkoxycodeinones and 14-alkoxydihydrocodeinones were synthesised [1] and characterised in in vitro radioligand binding assays in rat brain membrane preparations. The tested compounds show the highest affinity for the mu opioid binding sites and most of them have agonist character. Subtype analysis of the binding shows mu2 specificity. However, some of these ligands are able to block partially (40-60%) the high affinity (putative mu1) opioid binding sites while all of them act as reversible ligands at the low affinity (putative mu2) sites.  相似文献   

3.
The binding of labelled naloxone, morphine and (D-Ala2,D-Leu5)enkephalin (DADL) to oocyte membranes of the toad Bufo viridis was investigated. The opiate antagonist naloxone binds to the membranes much more effectively than morphine or DADL. The binding of [3H]naloxone is reversible and saturating. The bound [3H]naloxone is readily replaced by unlabelled naloxone or bremazocine (kappa-agonist), far less effectively by morphine (mu-agonist) and SKF 10.047 (sigma-agonist) and is not practically replaced by DADL (delta-agonist), beta-endorphin (epsilon-agonist) and other neuropeptides. Analysis of experimental results in Scatchard plots revealed two types of binding sites with a high (Kd = 15 nM) and low (Kd = 10(3) nM) affinity for naloxone. The number of sites responsible for the binding of naloxone possessing a high affinity is 16 pmol-/mg of oocyte homogenate protein, i.e., 20-50 times as great as in the toad or rat brain. Trypsin and p-chloromercurybenzoate decrease the binding of [3H]naloxone. The oocyte extract is capable of replacing the membrane-bound [3H]naloxone, on the one hand, and of inhibiting the smooth muscle contracture of the rabbit vas deferens, on the other. This inhibition is reversed by naloxone and can also be induced by bremazocine, but not by morphine, DADL and SKF 10.047. In all probability oocytes contain compounds that are similar to opiate kappa-agonists. It may also be possible that these compounds mediate their effects via specific receptors and are involved in the control over maturation of oocytes and early development of toad eggs.  相似文献   

4.
6,3'-dibromoflavone and 6-nitro-3'-bromoflavone inhibited [(3)H]flunitrazepam binding to the benzodiazepine binding site of the gamma amino butyric acid receptor complex with K(i) values between 17 and 36 nM in different brain regions. Their gamma amino butyric acid ratio for [(3)H]flunitrazepam binding to cerebral cortex membranes indicated partial agonistic properties. Both compounds had similar pharmacological effects: they produced anxiolytic-like effects at low doses but did not alter locomotor activity or muscle tonicity; sedation was caused only at doses higher than 30 mg/kg in mice. These synthetic flavone derivatives join an existing family of 6,3'-disubstituted flavone compounds with high affinity for the benzodiazepine binding site and partial agonistic profiles.  相似文献   

5.
In search of an affinity label of the opioid receptor, the nitrogen mustard melphalan, Mel, was built into the peptide chain of D-Ala2-Leu5-enkephalin (DALE) methyl ester in different positions. We report now that in contrast to the previous observations that an intact Tyr in position 1 is essential for opioid activity [(1980) Annu. Rev. Pharmacol. Toxicol. 20, 81-110], substitution of Tyr by Mel did not result in a loss of the binding affinity. Mel1, Leu5-enkephalin-OMe competed for the binding sites of [3H]naloxone as potently as DALE did; IC50 values for both compounds were 50 nM. Mel substitution has led to one order potency decrease in binding to the delta-sites. 0.5-1 microM of the compound irreversibly inactivates 50% of the binding sites of [3H]naloxone, and 5-10 microM of that of [3H]DALE. These results shed new light on the structural requirements established for opioid peptides. In addition, the new derivative can be used as an affinity label of the opioid receptor.  相似文献   

6.
Abstract

The binding characteristics of radiolabeled N6-(cyclohexyl)adenosine ([3H]CHA), N6-(R-phenylisopropyl)adenosine ([3H]R-PIA), 5′-N-ethylcarboxamidoadenosine ([3H]NECA), and 2-[4-(2-carboxyethyl)phenyl]ethyl-amino-5′-N-ethylcarboxamidoadenosine ([3H]CGS 21680), to rat testis membranes were investigated. Specific binding of [3H]CGS 21680, a selective agonist for the A2a adenosine receptor, was very modest whilst the nonselective agonist [3H]NECA bound to rat testis membranes showing high binding capacity. At least two types of binding sites for [3H]NECA could be identified in rat testis membranes: high affinity sites and high capacity sites. Selective agonists for the At adenosine receptor, [3H]CHA and [3H]R-PIA bound with high affinity to a single class of binding sites. This high affinity binding site showed the typical pharmacological specificity of the A1 adenosine receptor with a potency order for agonists of CHA R-PIA > NECA > N6-(S-phenylisopropyl)adenosine (S-PIA). In order to detect the presence of the A3 adenosine receptor in these membranes we selectively blocked the A1 receptor with a large molar excess of a xanthine antagonist, either 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) or xanthine amine congener (XAC). In the presence of an antagonist a low affinity binding site for [3H]CHA and [3H]R-PIA was detected. This low affinity binding site showed a different pharmacological specificity than the high affinity binding site. In fact the potency order for agonists was CHA NECA = R-PIA > S-PIA. This finding suggests that the low affinity binding site represents the A3 adenosine receptor.  相似文献   

7.
Imaging the progression of Alzheimer's disease would greatly facilitate the discovery of therapeutics, and a wide range of ligands are currently under development for the detection of beta-amyloid peptide (Abeta)-containing plaques by using positron emission tomography. Here we report an in-depth characterization of the binding of seven previously described ligands to in vitro generated Abeta-(1-40) polymers. All of the compounds were derived from the benzothiazole compound thioflavin T and include 2-[4'-(methylamino)phenyl]benzothiazole and 2-(4'-dimethylamino-)phenyl-imidazo[1,2-a]-pyridine derivatives, 2-[4'-(dimethylamino)phenyl]-6-iodobenzothiazole and 2-[4'-(4'-methylpiperazin-1-yl)phenyl]-6-iodobenzothiazole, and a benzofuran compound (5-bromo-2-(4-dimethylaminophenyl)benzofuran). By using a range of fluorescent and radioligand binding assays, we find that these compounds display a more complex binding pattern than described previously and are consistent with three classes of binding sites on the Abeta fibrils. All of the compounds bound with very high affinity (low nm K(d)) to a low capacity site (BS3) (1 ligand-binding site per approximately 300 Abeta-(1-40) monomers) consistent with the previously recognized binding site for these compounds on the fibrils. However, the compounds also bound with high affinity (K(d) approximately 100 nm) to either one of two additional binding sites on the Abeta-(1-40) polymer. The properties of these sites, BS1 and BS2, suggest they are adjacent or partially overlapping and have a higher capacity than BS3, occurring every approximately 35 or every approximately 4 monomers of Abeta-(1-40)-peptide, respectively. Compounds appear to display selectivity for BS2 based on the presence of a halogen substitution (2-[4'-(dimethylamino)phenyl]-6-iodobenzothiazole, 2-[4'-(4'-methylpiperazin-1-yl)phenyl]-6-iodobenzothiazole, and 5-bromo-2-(4-dimethylaminophenyl)benzofuran) on their aromatic ring system. The presence of additional ligand-binding sites presents potential new targets for ligand development and may allow a more complete modeling of the current positron emission tomography data.  相似文献   

8.
Virtual drug screening using protein-ligand docking techniques is a time-consuming process, which requires high computational power for binding affinity calculation. There are millions of chemical compounds available for docking. Eliminating compounds that are unlikely to exhibit high binding affinity from the screening set should speed-up the virtual drug screening procedure. We performed docking of 6353 ligands against twenty-one protein X-ray crystal structures. The docked ligands were ranked according to their calculated binding affinities, from which the top five hundred and the bottom five hundred were selected. We found that the volume and number of rotatable bonds of the top five hundred docked ligands are similar to those found in the crystal structures and corresponded with the volume of the binding sites. In contrast, the bottom five hundred set contains ligands that are either too large to enter the binding site, or too small to bind with high specificity and affinity to the binding site. A pre-docking filter that takes into account shapes and volumes of the binding sites as well as ligand volumes and flexibilities can filter out low binding affinity ligands from the screening sets. Thus, the virtual drug screening procedure speed is increased.  相似文献   

9.
Opiate binding sites and endogenous opioids in Bufo viridis oocytes   总被引:1,自引:0,他引:1  
Binding sites with high affinity for [3H]naloxone, but not for [3H]morphine and [3H] (D-Ala2, D-Leu5) enkephalin, have been found in membranes of Bufo viridis oocytes. The binding is reversible and saturable. Bound [3H]naloxone is easily displaced both by unlabeled naloxone and bremazocine, much worse by morphine and SKF 10,047; (D-Ala2, D-Leu5) enkephalin and beta-endorphin practically fail to displace [3H]naloxone. Scatchard analysis is consistent with the existence of two classes of binding sites with Kd 15 nM and 10(3) nM. The number of binding sites with high affinity for naloxone is 16 pmol/mg protein of homogenized oocytes which is 20-50-fold higher than in, toad or rat brain. Oocyte extract displaces [3H]naloxone bound with oocytes' membranes and inhibits electrically evoked contractions of the rabbit vas deferens. This inhibition is reversed by naloxone. It is suggested that compounds similar to opiate kappa-agonists exist in oocytes. It cannot be ruled out that they participate via specific receptors in the regulation of oocyte maturation and egg development.  相似文献   

10.
The recently discovered natural heptadecapeptide nociceptin (orphanin FQ) shares some homology with the opioid peptides but it binds to a distinct receptor type, termed nociceptin receptor. This study demonstrates the presence of specific nociceptin recognition sites in brain membrane fractions of an amphibian, Rana esculenta. Para-iodo-Phe(1)-nociceptin-amide was radiolabelled by catalytic dehalotritiation, resulting in p[(3)H]Phe(1)-nociceptin-amide of 25 Ci/mmol specific radioactivity. Specific binding of [(3)H]nociceptin-amide to frog brain membranes was found to be saturable and of high affinity with equilibrium K(d) values in the low nanomolar range. A single set of binding sites with about 180 fmol/mg protein maximal binding capacity was obtained in saturation and competition experiments. [(3)H]Nociceptin-amide binding could easily be inhibited by synthetic nociceptin compounds but not by opioid ligands. Both sodium ions and 5'-guanylylimidodiphosphate decreased the binding of the radioligand by transferring the receptor to a lower affinity state. Nociceptin dose-dependently stimulated the binding of the nonhydrolysable, radiolabeled GTP-analogue guanosine-5'-O-(3-thio)triphosphate ([(35)S]GTPgammaS) to G-proteins in frog brain membranes. Addition of 1 microM naloxone caused no significant change in the curves, indicating that nociceptin-mediated activation of G-proteins occurred through nonopioid mechanism.  相似文献   

11.
On the mechanism of opioid-oestradiol interactions   总被引:2,自引:0,他引:2  
Characteristics of opioid binding and possible relationships between oestradiol and opioid binding sites were studied in rat oestrogen sensitive tissues(uterus, preoptic area-anterior hypothalamus, median eminence-basal hypothalamus). Naloxone (Nal) and oestradiol (Oe) bindings were assessed by in vitro saturation analyses. In 800 g supernatants of both uterine and hypothalamic tissues homogenates high affinity (Kd: 2-4 X 10(-9) M) and low capacity [3H]Nal binding sites were found. These binding sites were sedimented from 800 g supernatant by further centrifugation at 10(5) g for 1 h. In competition studies [3H]Nal binding was completely prevented by morphine, while met-enkephalin and leu-enkephalin caused only a partial inhibition. [3H]Nal binding was increased by ovariectomy and decreased by Oe treatment (10 micrograms/100 g b.wt) in both tissues. The cytoplasmic [3H]Oe binding in the studied tissues seems to be affected by the naloxone binding system. After in vitro saturation of naloxone binding sites by naloxone the [3H]Oe binding to low affinity sites (type II) in hypothalamus as well as in uterus has been increased by 8- and 2-fold, respectively. These results indicate the presence of specific [3H]Nal binding in rat uterus with similar properties to those found in the hypothalamus. Furthermore an interaction between opioid and oestradiol receptor systems could be also suggested.  相似文献   

12.
Using [3H]naloxone at a concentration of 4.5 nm , the potent opiate agonist etorphine as well as the potent antagonist diprenorphine displace only about 75% of specific naloxone binding P2 fractions from rat whole forebrain, without additive effect. Several other opiates and antagonists completely displace specific naloxone binding. This indicates that etorphine and diprenorphine specifically bind to one and the same naloxone binding site (type I) while leaving another naloxone binding site (type II) unaffected. Type I binding sites are much more thermo-labile than type II. [3H]Naloxone binding to type I sites is unaffected by incubation temperature in the range 10 to 25°C. while binding type II sites decreases rapidly with increasing incubation temperature, no specific type II binding being detectable at or above 20°C. The two naloxone receptor types also differ with respect to pH dependence, and affinity for naloxone with types I and II having affinity constants (Kd) of 2 and 16 nm , respectively, at 0°C. The two binding sites have different regional distributions with high relative levels of type II receptors in cerebellum and low relative levels in pons-medulla and striatum. In whole rat brain there are about 4 times as many type II receptors as type I. These results suggest that naloxone and several other opiate agonists and antagonists bind to two distinct receptor types which are probably not agonist/antagonist aspects of the same receptor.  相似文献   

13.
The binding of (±)-[3H]isoproterenol and (—)-[3H]dihydroalprenolol to intact turkey erythrocytes was studied using a rapid centrifugation technique. The binding of both ligands is rapid, dissociable, stereospecific and inhibited by (—)-propranolol. The total number of isoproterenol binding sites is 2800 sites/ cell. This consists of a low and high affinity site both of which show stereospecific binding. The high affinity isoproterenol site has a Kd of 15.5—19.5 nM and has 600 sites/cell. The low affinity isoproterenol site has a Kd of 195 nM and has 2200 sites/cell. The binding of (—)-[3H]dihydroalprenolol shows one type of site with a Kd of 7.8 nM and has 2500 sites/cell. The agonists epinephrine, norepinephrine, soterenol and p-hydroxyphenylisoproterenol which were tested by competition for binding showed a 6—25-fold greater affinity for the high affinity site determined by (±)-[3H]isoproterenol as compared to the (—)-[3H]dihydroalprenolol binding site. However, the antagonists propranolol, practolol and metrapolol showed similar affinities for the binding sites as determined by competition of binding of either labeled isoproterenol or dihydroalprenolol. These studies indicate that isoproterenol binding can recognize two independent stereospecific β-adrenergic receptors or can recognize two different conformational states of a single receptor. Provisional calculations are made on the turnover number of adenylate cyclase under physiological conditions using intact erythrocytes. The turnover number is 4000 molecules of cyclic AMP/10 min per high affinity receptor.  相似文献   

14.
Membranes from rat telencephalon contain a single class of strychnine-insensitive glycine sites. That these sites are associated with N-methyl-D-aspartic acid (NMDA) receptors is indicated by the observations that [3H]glycine binding is selectively modulated by NMDA receptor ligands and, conversely, that several amino acids interacting with the glycine sites increase [3H]N-[1-(2-thienyl)cyclohexyl]piperidine ([3H]TCP) binding to the phencyclidine site of the NMDA receptor. The endogenous compound kynurenate and several related quinoline and quinoxaline derivatives inhibit glycine binding with affinities that are much higher than their affinities for glutamate binding sites. In contrast to glycine, kynurenate-type compounds inhibit [3H]TCP binding and thus are suggested to form a novel class of antagonists of the NMDA receptor acting through the glycine site. These results suggest the existence of a dual and opposite modulation of NMDA receptors by endogenous ligands.  相似文献   

15.
A series of derivatives of estrone with fluorescent dyes (dansyl or coumarin) coupled at different positions on the steroid molecule, have been synthesized. These derivatives were tested for their quantum yields and their binding properties were determined with respect to rat alpha 1 fetoprotein. Derivatives at C-3 (estrone-3-hemisuccinate-dansyl-cadaverine and estrone-3-dansyl) compete with estrone for binding to the fetal protein; however derivates of estrone at C-6 (estrone-6-carboxymethyloxime-dansyl-cadaverine) and at C-17 (estrone-17-carboxymethyloxime-coumarine, estrone-17-carboxymethyloxime-dansyl-cadaverine and estrone-17-dansyl-hydrazine) compete poorly or not at all. The association constant of the radioactive derivative estrone-3-dansyl [3H] with rat alpha 1 fetoprotein was measured directly: the same number of high affinity binding sites (0.6) as that for estrone was found with an apparent association constant of 3.7 X 10(6) M-1. In addition to the high affinity binding sites, a low affinity class of binding sites was found which corresponds to the binding of the dansyl fraction of the fluorescent steroid derivative.  相似文献   

16.
1. Partially purified brain membranes obtained from male rough-skinned newts (Taricha granulosa) were used to determine the effects of NaCl and temperature on the specific binding of the opioid receptor antagonist [3H]naloxone. 2. The addition of NaCl to the incubation medium at concentrations up to 400 mM produced a dose-related increase of the specific binding of [3H]naloxone. 3. The addition of other salts to the incubation medium had less pronounced effects: KCl and MgCl2 slightly increased and decreased, respectively, the specific binding of naloxone, and CaCl2 had no effect. 4. Results of an equilibrium saturation experiment showed that the addition of 200 mM NaCl resulted in over a 10-fold increase in the number of high affinity (KD = 0.61 nM) binding sites for naloxone, with no changes in the number of low affinity (KD = 21.8 nM) binding sites. 5. Changes in NaCl concentrations did not significantly affect either dissociation constant. 6. The binding of [3H]naloxone was temperature-dependent; it increased when the incubation temperatures were elevated from 0 degree C to 37 degrees C. 7. Results obtained for this urodele amphibian are compared with those available for other vertebrate species.  相似文献   

17.
The effects of mono- and di-valent cations and the nonhydrolyzable guanyl nucleotide derivative 5'-guanylimidodiphosphate (Gpp(NH)p) on the binding of the selective, high affinity mu-opiate receptor agonist, [3H]DAGO ([3H]Tyr-D-Ala-Gly-Mephe-Gly-ol), to rat brain membranes were studied in a low ionic strength 5 mM Tris-HCl buffer. Na+ and Li+ (50 mM) maximally increased [3H]DAGO binding (EC50 values for Na+, 2.9 mM and Li+, 6.2 mM) by revealing a population of low affinity binding sites. The density of high affinity [3H]DAGO binding sites was unaffected by Na+ and Li+, but was maximally increased by 50 mM K+ and Rb+ (EC50 values for K+, 8.5 mM and Rb+, 12.9 mM). Divalent cations (Ca2+, Mg2+; 50 mM) inhibited [3H]DAGO binding. Gpp(NH)p decreased the affinity of [3H]DAGO binding, an effect that was enhanced by Na+ but not by K+. The binding of the mu-agonist [3H]dihydromorphine was unaffected by 50 mM Na+ in 5 mM Tris-HCl. In 50 mM Tris-HCl, Na+ (50 mM) inhibited [3H]DAGO binding by decreasing the density of high affinity binding sites and promoting low affinity binding. The effects of Na+ in 5 mM and 50 mM Tris-HCl were also investigated on the binding of other opiate receptor agonists and antagonists. [3H]D-Ala-D-Leu-enkephalin binding was increased and inhibited. [3H]etorphine binding increased and was unchanged, and both [3H]bremazocine and [3H]naloxone binding increased by 50 mM Na+ in 5 mM and 50 mM Tris-HCl, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Two families of compounds with affinity towards the I(2) imidazoline binding sites are reported. The first is a family of compounds structurally related to agmatine with two guanidine or 2-aminoimidazoline groups at each end of an aliphatic chain of six, eight, nine or 12 methylene groups. Second, and following the model of clonidine, we propose another family of compounds also with two guanidine or 2-aminoimidazoline groups at each end of a chain consisting of two phenyl rings connected by groups such as CH(2), CO, NH and SO(2). The affinity of the compounds towards the I(2) imidazoline binding sites was then evaluated in human brain tissues. In order to determine their pharmacological selectivity versus alpha(2)-adrenoceptors, the affinity for these receptors was also evaluated for the compounds with the highest affinities at I(2) imidazoline binding sites. The results obtained show that many of the compounds exhibit a considerable affinity towards the I(2) imidazoline binding sites. The aliphatic derivatives, in particular, present a very interesting selectivity for the I(2) imidazoline binding sites versus the alpha(2) adrenoceptors. To better understand these findings, mono-guanidinium analogues of the aliphatic derivatives were synthesised and tested showing poor affinity for I(2) imidazoline binding sites. The importance of these results lies in the novelty of the chemical structures studied (dicationic aliphatic compounds particularly) because they are significantly different to those of the I(2) imidazoline binding site ligands reported to date.  相似文献   

19.
Kim KW  Woo RS  Kim CJ  Cheong YP  Kim JK  Kwun J  Cho KP 《Life sciences》2000,67(1):61-71
This study was undertaken to examine the receptor selectivity of Met-enkephalin-Arg6-Phe7 (MERF) employing radioreceptor binding assays in human cerebral cortex membranes, and to elucidate the responsible receptors that mediate the regulatory action of MERF on high (20 mM) K+-stimulated release of [3H]norepinephrine ([3H]-NE) in rat cortex slices. Specific binding of [3H]MERF was inhibited by DAMGO, Tyr-D-Arg-Phe-Sar(TAPS), bremazocine and ethylketocyclazocine (EKC), but not by U69,593 (U69) and DPDPE. MERF showed high affinity for specific binding sites of [3H]DAMGO. However, MERF had little influence on the specific binding of [3H]DPDPE, [3H]U69 and [3H]diprenorphine ([3H]DIP) in the presence of 1 microM each of DAMGO, DPDPE and U69. In [3H]NE release experiments using rat cortex slices, DAMGO, MERF and EKC, in order of their potency, inhibited K+-stimulated release of [3H]NE. The inhibitory effects of MERF and DAMGO were more sensitive than that of EKC to antagonism by CTAP, nor-binaltorphimine (nor-BNI) and naloxone. These results suggested that MERF possesses high affinity for mu-receptors, but not for delta-, kappa1-, and very low affinity for kappa2-receptors in human cerebral cortex membranes. Also, the inhibitory effect of MERF on the K+-stimulated release of [3H]NE appears to be mediated by mu-receptors in rat cerebral cortex slices.  相似文献   

20.
The selectivity of 3-nitrosoboldine and different halogenated derivatives of boldine (3-bromoboldine, 3,8-dibromoboldine and 3-chloroboldine) for alpha1-adrenoceptor subtypes was studied by examining [3H]-prazosin competition binding in rat cerebral cortex. In the competition experiments [3H]-prazosin binding was inhibited completely by all the compounds tested. The inhibition curves displayed shallow slopes which could be subdivided into high and low affinity components. The relative order of affinity and selectivity for alpha1A-adrenoceptors was 3-bromoboldine = 3,8-dibromoboldine = 3-chloroboldine > boldine > 3-nitrosoboldine. The competition curves for 3-bromoboldine remained shallow and biphasic following chloroethylclonidine treatment. Whereas the relative contribution of the high affinity sites increased, the 3-bromoboldine affinities at its high and low affinity sites remained similar to those obtained in untreated membranes. 3-Bromoboldine, 3,8-dibromoboldine, 3-chloroboldine and 3-nitrosoboldine did not significantly displace [3H]-(+)-cis-diltiazem binding to rat cerebral cortex membranes. This activity was lower than that shown by boldine. Compared to boldine, halogen (bromine or chlorine) substitution at position 3 increases the alpha1A-adrenoceptor subtype selectivity and decreases the affinity for the benzothiazepine binding site at the calcium channel. Further halogen substitution at position 8 did not significantly improve this activity with respect to 3-bromoboldine. In contrast, the NO substitution at position 3 of boldine (3-nitrosoboldine) gives a loss of affinity and selectivity for alpha1-adrenoceptor subtypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号