首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heterocyclic amines (HCAs), a group of genotoxic compounds formed during the heating of proteinaceous food items, have been known since the late 1970s. However, the genotoxic effect of these compounds in the low dose region has not yet been thoroughly studied. Here we used a sensitive flow cytometer-based micronucleus assay in mice to determine the frequency of micronucleated erythrocytes (fMPCE) of the three common HCAs, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), and 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), in the low dose region. We especially looked for any deviation from linearity of the dose-response curves. Male Balb/C mice were intra peritoneally injected with different doses of either PhIP (0-36 mg/kg b.w.), MeIQx (0-90 mg/kg b.w.) or IQ (0-40 mg/kg b.w.). In the case of PhIP, we found a significant dose-response relationship, while MeIQx and IQ did not display an increased fMPCE level. This flow cytometer method allows for determination of the DNA content of micronuclei. All three HCAs tested here yielded a low DNA content of micronuclei, indicating that they do not possess aneugenic effects. A comparison between the HCAs and acrylamide (AA), another heat induced genotoxic compound, revealed that the slope of the dose-response curve is about 10 times steeper for PhIP than AA. In spite of this, AA probably constitutes a higher human risk than HCAs since the intake is about a 100- to 1000-fold higher than the intake of HCAs.  相似文献   

2.
Anti-mutagenic and anti-carcinogenic effects of beer on heterocyclic amine (HCA)-induced carcinogenesis were studied in vitro and in vivo. Four commercial beers (two pilsner-type, black, and stout) showed inhibitory effects against five HCAs, 2-amino-3,8-dimethylimidazo [4,5-f]quinoxaline (MeIQx), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), 2-amino-6-methyldipyrido[1,2-a:3',2'-d]imidazole (Glu-P-1) and 2-amino-3-methylimidazo[4,5-f]-quinoline (IQ), in the Ames assay using Salmonella typhimurium TA98 in the presence of rat S9 mix. The inhibitory effects of dark-colored beers (stout and black beer) were greater than those of pilsner-type beers. Dark-colored beers suppressed CYP1A2 activity in a dose-dependent manner, suggesting that inhibition of HCA activation is partly responsible for their strong anti-mutagenic effects. Anti-mutagenic effects were also observed when the pooled human S9 mix or activated IQ was used in the assay. The micronucleus test using Chinese hamster lung CHL/IU cells showed that the addition of freeze-dried samples of pilsner-type and stout beer to the culture medium significantly reduced the number of cells with micronuclei induced with PhIP or Trp-P-2. Single-cell gel electrophoresis assay (comet assay) revealed that oral ingestion of pilsner-type and stout beers for 1 week significantly inhibited DNA damage in the liver cells of male ICR mice exposed to MeIQx (13 mg/kg, i.p.). A decrease in the formation of DNA adducts was also observed using a 32P-postlabeling method. Male Fischer 344 rats orally received PhIP (75 mg/kg, five times a week for 2 weeks) and aberrant crypt foci (ACF) formation in the colon was analyzed after 5 weeks. The number of ACF was significantly reduced in rats fed a diet containing freeze-dried beer. These results suggest that beer inhibits the genotoxic effects of HCAs and may reduce the risk of carcinogenesis caused by food borne carcinogens.  相似文献   

3.
Hepatic microsomal fractions (microsomes) were prepared from male Sprague-Dawley rats. The effect of arachidonic acid on the conversion of the heterocyclic aromatic amine 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) to its genotoxic metabolites was investigated using a modified bacterial mutation assay (indicator: Salmonella typhimurium TA98). Arachidonic acid inhibited the mutagenicity of IQ without effect on the uptake of the active metabolites and/or on the DNA-repair processes within the bacterial cell. The activation of 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and aflatoxin B1 (AFB1) was also inhibited by this polyunsaturated fatty acid.  相似文献   

4.
Mutagenic and carcinogenic heterocyclic amines in Chinese cooked foods   总被引:7,自引:0,他引:7  
Samples of 7 foods commonly eaten in the Northeast of China (i.e. fried and broiled fishes and broiled meat) were tested for mutagenicity on Salmonella typhimurium TA98 with S9 mix. The basic fractions of the samples were mutagenic, inducing 33-2930 revertants/g of cooked food. Fried walleye pollack (a kind of cod fish heated on a stainless steel pan) showed the highest mutagenicity, so attempts were made to isolate mutagens from the basic fraction of this food. The mutagens were purified by treatment with blue cotton and HPLC on a semi-preparative ODS column and analytical cation exchange and ODS columns. 5 mutagens were isolated and identified as 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). 1 g of fried fish was estimated to contain 0.16 ng of IQ, 0.03 ng of MeIQ, 6.44 ng of MeIQx, 0.10 ng of 4,8-DiMeIQx and 69.2 ng of PhIP. MeIQx and PhIP accounted for 24% and 4.7%, respectively, of the total mutagenicity. The other 3 heterocyclic amines were each responsible for only 0.3-1.2% of the total mutagenicity.  相似文献   

5.
In vivo cytogenetic effects of cooked food mutagens   总被引:3,自引:0,他引:3  
Using a variety of in vivo cytogenetic endpoints, we have investigated the effects of several compounds formed during the cooking of meat. C57Bl/6 mice were used to test for an increase in the frequency of sister-chromatid exchanges (SCEs), chromosomal aberrations, and micronucleated erythrocytes by 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx). 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (DiMeIQx), and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). MeIQx and DiMeIQx did not induce SCEs in mouse bone marrow cells. PhIP induced sister-chromatid exchanges, but not chromosomal aberrations in bone marrow. In peripheral blood lymphocytes, PhIP did induce aberrations at 100 mg/kg, the highest dose tested. PhIP induced a low but significantly increased frequency of micronuclei in normochromatic but not polychromatic erythrocytes in bone marrow and peripheral blood. However, dose responses were not observed. With the exception of the SCEs induced by PhIP, these results contrast with observations made in vitro, where these compounds were found to have significant genotoxicity in mammalian cells and a very high mutation frequency in prokaryotic systems.  相似文献   

6.
Helicobacter pylori (H. pylori) infection plays an important role in gastric carcinogenesis. This bacterium may induce cancer transformation and change the susceptibility of gastric mucosa cells to various exogenous dietary irritants. The aim of the study was to evaluate the influence of H. pylori infection on the reaction of the stomach cells to a genotoxic effect of heterocyclic amines (HCAs). These well-known mutagens are formed during cooking of protein-rich foods, primarily meat. Taking into account that persons consuming a mixed-western diet are exposed to these compound nearly an entire lifetime and more than half of human population is infected with H. pylori, it is important to assess the combined effect of H. pylori infection and HCAs in the context of DNA damage in gastric mucosa cells, which is a prerequisite to cancer transformation. We employed 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,8-dimethyl-imidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) because these substances are present in a great amount in cooked and fried meat. Using alkaline comet assay, we showed that the extent of the DNA damage induced by HCAs was significantly higher in H. pylori infected gastric mucosa cells than in non-infected counterparts. We did not observed any difference in the efficiency of repair of DNA lesions induced by HCAs in both type of cells. Vitamin C reduced the genotoxic effects of HCAs in H. pylori infected and non-infected gastric mucosa cells. Melatonin more effectively decreased DNA damage caused by HCAs in H. pylori infected gastric mucosa cells as compared with control. Our results suggest that H. pylori infection may influence the susceptibility of gastric mucosa cells to HCAs and dietary antioxidative substances, including vitamin C and melatonin may inhibit the genotoxic effects of HCAs on gastric mucosa cells and may reduce the risk of carcinogenesis caused by food borne mutagens and H. pylori infection.  相似文献   

7.
Gu YS  Kim IS  Ahn JK  Park DC  Yeum DM  Ji CI  Kim SB 《Mutation research》2002,515(1-2):189-195
The dependence on muscle types/skin and on degrees of cooking in the formation of heterocyclic amines (HCAs) of pan-roasted mackerel was studied. High levels of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) were found in very well done skin and ordinary muscle, being 4.2 and 5.3 ng/g, followed by 2-amino-3,4-dimethylimidazo[4,5-f] quinoxaline (MeIQx), being 1.8 and 2.1 ng/g and 2-amino-9H-pyrido[2,3-b]indole (AalphaC), being 1.2 and 2.8 ng/g, respectively. In pan-roasted mackerel, ordinary muscles contributed much more greatly to the formation of HCAs than skins due to its higher HCA contents and composition (76.1%).  相似文献   

8.
Most heterocyclic amines formed during the cooking of meat and fish have been shown to form adducts in the livers of rats. Recently, however, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), administered in the diet to Fischer 344 (F344) rats for 4 weeks, was shown to produce the highest levels of adducts in the heart. In the present study 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,8-dimethylimidazo [4,5-f]quinoxaline (MeIQx), 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) and 2-amino-6-methyldipyrido[1,2-a:1',2'-d]imidazole (Glu-P-1) were given to F344 rats at carcinogenic dose levels (IQ 0.03%, MeIQx 0.04%, Trp-P-1 0.015%, Glu-P-1 0.05%) in the diet for 4 weeks. DNA adducts in the liver and heart were analyzed by 32P-postlabeling. DNA adducts were demonstrated to appear in the hearts of all animals exposed to heterocyclic amines at the following levels: IQ, 1.8 adducts/10(7) nucleotides, MeIQx, 3.8/10(7) ntd, Trp-P-1, 20/10(7) ntd and Glu-P-1, 7.2/10(7) ntd. Values for the heart were 10-20% of the respective liver adduct levels. Heart adducts increased linearly throughout the observed period when MeIQx was administered for up to 40 weeks. When MeIQx feeding was discontinued after 20 weeks and the animals subsequently given the basal diet, the adduct level at 20 weeks did not change during the following 20 weeks. A possible role for heart DNA alterations caused by food-borne heterocyclic amines in the development of age-related myopathies and cardiovascular disease is not inconceivable.  相似文献   

9.
Sulforaphane, a constituent of broccoli was investigated for its antimutagenic potential against different classes of cooked food mutagens (heterocyclic amines). These include imidazoazaarenes such as 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP); pyridoindole derivatives such as 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2); and, dipyridoimidazole derivative such as 2-amino-6-methyldipyrido[1,2-a:3',2'-d]imidazole (Glu-P-1). Tests were carried out by Ames Salmonella/reversion assay using Salmonella typhimurium TA98 (frame shift mutation sensitive) and TA100 (base pair mutation sensitive) bacterial strains in the presence of Aroclor 1254-induced rat liver S9. Results of these in vitro antimutagenicity studies strongly suggest that sulforaphane is a potent inhibitor of the mutagenicity induced by imidazoazaarenes such as IQ, MeIQ and MeIQx (approximately 60% inhibition) and moderately active against pyridoindole derivatives such as Trp-P-1 and Trp-P-2 (32-48% inhibition), but ineffective against dipyridoimidazole derivative (Glu-P-1) in TA 100.  相似文献   

10.
Transgenic mouse assays have revealed that the mouse intestine, despite its resistance to carcinogenesis, is sensitive to the mutagenicity of some heterocyclic amines (HCAs). Little is known, however, about the level and localization of that sensitivity. We assessed the mutagenicity of four orally administered (20 mg/kg per day for 5 days) HCAs-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) hydrochloride, 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) acetate-in the intestine of male MutaMice. Two weeks after the last administration, we isolated epithelium from the small intestine, cecum, and colon and analyzed lacZ and cII transgene mutations. PhIP increased the lacZ mutant frequency (MF) in all the samples, and in the small intestine, cII and lacZ MFs were comparable. In the cII gene, G:C to T:A and G:C to C:G transversions were characteristic PhIP-induced mutations (which has also been reported for the rat colon, where PhIP is carcinogenic). In the small intestine, PhIP increased the cII MF to four-fold that of the control, but IQ, MeIQ, and Trp-P-2 did not have a significant mutagenic effect. In the cecum, cII MFs induced by IQ and MeIQ were 1.9 and 2.7 times those in the control, respectively. The MF induced by MeIQ in the colon was 3.1 times the control value. Mutagenic potency was in the order PhIP>MeIQ>IQ; Trp-P-2 did not significantly increase the MF in any tissue. The cecum was the most susceptible organ to HCA mutagenicity.  相似文献   

11.
Mutagenicity of food pellets from human diets in The Netherlands   总被引:1,自引:0,他引:1  
Food pellets from human diets, prepared according to mean consumption figures in The Netherlands, were assessed on mutagenicity and mutagens were identified. Three types of human meals were compared: raw (C), heated (D) and heated with vegetables and fruit (E, a complete meal). In addition 2 animal diets were tested: commercial control diet (A), and a control diet to which vegetables and fruit had been added (B). All human diets contained: 40.6 energy (E)% fat, 13.2 E% protein, 46.2 E% carbohydrate and 5.2% (w/w) fibre. For animal diets these figures were 21.6, 26.0, 52.4 and 10.7% respectively. After extraction samples were tested in the Salmonella-microsome test, tester strains TA1538, TA98 and TA100. Human diets with heated products (D, E) were both clearly mutagenic with approximately 300-500 revertants per gram. Food pellets from animal diets (A, B) displayed no mutagenic activity. HPLC-derived chromatographic fractions of diets D and E showed 3 large mutagenic areas identified as IQ (2-amino-3 methyl-imidazo-[4,5-f]quinoline) and MeIQx (2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, DiMeIQx (2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline and PhIP (2-amino-6-phenylimidazo[4,5-b]pyridine) and other mutagens not completely defined. This mutagen profile was similar to that found previously for fried beef. Mass estimates for these potent mutagens amounted to 15-20 micrograms/kg. Health implications of these findings are discussed. As IQ, MeIOx and DiMeIQx have been found to be weakly carcinogenic in rodents and many other initiating and modulating factors may be present in a complex human diet, a chronic toxicity study is indicated.  相似文献   

12.
Mutagenic activation of the 3 cooked food mutagens 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ) and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) was compared in liver and lung enzyme preparations from oxen, pigs and rats. Liver preparations from oxen were the most efficient in activating the mutagens, while the rat enzymes were more active than those from pigs. The different cooking mutagens showed different mutagenic potential. MeIQ was the most potent mutagen, followed by IQ and MeIQx in descending order. In oxen, MeIQx was as potent as IQ. The activation with the lung enzymes was 2-3 orders of magnitude lower than with liver. Furthermore, species differences in mutagenic activation with lung enzymes were small compared with liver enzymes. In lung preparations the differences between IQ and MeIQ were small, but in all 3 animal species the mutagenicity of MeIQx was 1 order of magnitude lower than that of the other 2 mutagens.  相似文献   

13.
Identification of causative agents for human cancers is the goal of our studies. We analyzed ordinary foods for mutagenicity, using the well-established Salmonella test. Heating fish and meat yielded mutagens that require metabolic activation for exhibition of mutagenicity. Structural determination revealed these mutagens to be heterocyclic amines (HCAs), their precursors in some cases being creatin(in)e, sugars and amino acids. Ten HCAs so far examined have all proved carcinogenic in mice and rats, inducing cancers in various organs such as in the mammary glands, prostate, lung, colon, skin, bladder and liver. Human exposure to HCAs is 0.1-12 microg/day, predominantly to 2-amino-1-methyl-6-phenyl-imidazo[4,5-b]pyridine (PhIP) and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx). For these types of genotoxic carcinogens, DNA-adduct formation is crucially important and PhIP-DNA adducts have been detected in human tissues. However, the amounts of individual HCAs ingested by humans may not be sufficient to induce cancers by themselves and many environmental factors have also been implicated in neoplasia in man, with other considerable inter-individual variation in susceptibility, e.g., to colon carcinogenesis. This is in line with results obtained by feeding different strains of rats with HCA. Studies using lacI transgenic mice and rats have revealed that DNA adducts do not directly correlate with mutant frequencies at the organ level, or cancer incidence. However, sequencing of the Apc gene of rat colon tumors induced by PhIP revealed that it induces a signature mutation of G deletion from the GGGA sequence. This type of mutation is found in the p53 gene of 0.3% human cancers having p53-somatic mutations, and it has been calculated that 3%-10% of the p53 mutations detected in human cancers could be ascribable to PhIP. Although there remains the possibility that other carcinogens involved in human carcinogenesis cause the same signature mutation, the available data point to an important role for PhIP.  相似文献   

14.
Aminoazaarene content was investigated in 10 meat samples (including pork, beef, turey and chicken) thermally processed at home according to common recipes used by residents of Upper Silesia region in Poland. The clean-up procedure included tandem solid-phase extraction (SPE) using Extrelut-type columns filled with diatomaceous earth, propylsulphonic acid and chemically bounded phase-C18. Identification and quantitative analysis of HAs fraction was carried out using a HPLC system with DAD-type detector. Separation was achieved using TSK-gel ODS 80-TM column and a mixture of 5% acetonitrile and 95% triethylamine phosphate buffer (pH 3.3) as a mobile phase. The results of qualitative determinations were confirmed by GC-MS method. To achieve this, HAs fractions were derivatized to pentafluoropropionic acid (PFPA) amide derivatives. The summary content of five aminoazaarenes determined in investigated meat samples, i.e. 2-amino-3-methylimidazo [4,5-f]quinoline (IQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx), 2-amino-1-methyl-6-phenyl-imidazo[4,5-b]pyridine (PhIP) falls within the range of 1.9-77.4 ng/g of sample. The calculated values of theoretically daily human exposure to five determined HAs were in the range of 0.2-7.7 microg per day per person.  相似文献   

15.
Heterocyclic aromatic amines (HCAs) are compounds formed when meat or fish are cooked at high temperatures for a long time or over an open fire. To determine which pathways of toxicity are activated by HCAs, nine out of the ten HCAs known to be carcinogenic in rodents (2-amino-9H-pyrido[2,3-b]indole (AαC), 2-aminodipyrido[1,2-a:3′,2-d]imidazole (Glu-P-2), 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3-methyl-9H-pyrido[2,3-b]indole (MeAαC), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2)) were tested in the estrogen receptor α (ERα), androgen receptor (AR), glucocorticoid receptor (GR), peroxisome proliferator-activated receptor γ2 (PPARγ2), polycyclic aromatic hydrocarbons (PAH), Nrf2, and p53 CALUX® reporter gene assays. Trp-P-1 was the only HCA that led to a positive response in the ERα, PPARγ2, and Nrf2 CALUX® assays. In the PAH CALUX® assay, Trp-P-2, MeAαC, and AαC induced luciferase activity to a greater extent than MeIQ and PhIP. In the p53 CALUX® assay without a coupled metabolic activation, only Trp-P-1 and Trp-P-2 enhanced luciferase expression; when a metabolic activation step was coupled to the p53 CALUX® assay, Trp-P-1, Glu-P-2, MeIQ, MeIQx, and PhIP induced a positive response. No HCA was positive in the AR and GR CALUX® assays. Taken together, the results obtained show that the battery of CALUX® assays performed in the present study can successfully be used to screen for molecular cell targets of carcinogenic compounds such as HCAs.  相似文献   

16.
Shishu  A.K. Singla  I.P. Kaur 《Phytomedicine》2003,10(6-7):575-582
Dibenzoylmethane (DBM), a structural analogue of curcumin (a bioactive phytochemical present in a widely used spice turmeric) was screened for its inhibitory effect against seven cooked food mutagens (heterocyclic amines): 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-amino-6-methyldipyrido[1,2-a:3',2'-d]imidazole (Glu-P-1), in both TA98 and TA100 strains of Salmonella typhimurium using Ames Salmonella/reversion assay in the presence of Aroclor1254-induced rat liver S9 homogenate. DBM has been reported to antagonize the mutagenicity of several chemical carcinogens in vitro and has recently been shown to be even more effective than curcumin in suppressing the 7,12-dimethylbenz[a]anthracene (DMBA)-induced mammary tumors in rats. But there are no reports regarding its antimutagenic properties against cooked food mutagens. Results of the present investigations clearly indicate that dibenzoylmethane is a very potent antimutagenic agent, that could effectively inhibit mutagenicity induced by all the tested cooked food mutagens in both the frame shift (TA98) as well as the base pair mutation sensitive (TA100) strains of S. typhimurium. These highly potent inhibitory effects of dibenzoylmethane against heterocyclic amines observed in our preliminary investigations strongly warrant further studies of its efficacy as a cancer chemopreventive agent.  相似文献   

17.
A gas chromatographic—mass spectrometric assay has been developed for the measurement of 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (DiMeIQx) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in food. Stable isotope-labelled analogues of MeIQx and PhIP are used as internal standards and the synthesis of deuterated PhIP is described. The mass spectrometer is operated in the electron-capture negative ion chemical ionisation mode and the amines are chromatographed as their di-3,5-bistrifluoromethylbenzyl derivatives. All three compounds can be measured in a single chromatographic run and detection limits of 0.05, 0.1 and 0.2 ng/g for MeIQx, DiMeIQx and PhIP, respectively, in food are obtained. Various home-cooked and commercially prepared foodstuffs were analysed with this assay and several were found to contain measurable amounts of one or more of the three amines. These results are presented and discussed.  相似文献   

18.
There is growing interest in the potential health benefits of tea, including the antimutagenic properties. Four varieties of white tea, which represent the least processed form of tea, were shown to have marked antimutagenic activity in the Salmonella assay, particularly in the presence of S9. The most active of these teas, Exotica China white tea, was significantly more effective than Premium green tea (Dragonwell special grade) against 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and four other heterocyclic amine mutagens, namely 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-3,4,8-trimethyl-3H-imidazo[4,5-f]quinoxaline (4,8-DiMeIQx), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2). Mechanism studies were performed using rat liver S9 in assays for methoxyresorufin O-demethylase (MROD), a marker for the enzyme cytochrome P4501A2 that activates heterocyclic amines, as well as Salmonella assays with the direct-acting mutagen 2-hydroxyamino-3-methylimidazo[4,5-f]quinoline (N-hydroxy-IQ). White tea at low concentrations in the assay inhibited MROD activity, and attenuated the mutagenic activity of N-hydroxy-IQ in the absence of S9. Nine of the major constituents found in green tea also were detected in white tea, including high levels of epigallocatechin-3-gallate (EGCG) and several other polyphenols. When these major constituents were mixed to produce "artificial" teas, according to their relative levels in white and green teas, the complete tea exhibited higher antimutagenic potency compared with the corresponding artificial tea. The results suggest that the greater inhibitory potency of white versus green tea in the Salmonella assay might be related to the relative levels of the nine major constituents, perhaps acting synergistically with other (minor) constituents, to inhibit mutagen activation as well as "scavenging" the reactive intermediate(s).  相似文献   

19.
Possible antimutagenic activity of 26 vitamins and related compounds - ascorbic acid, beta-carotene, cyanocobalamin, folic acid, nicotinic acid, nicotinamide, pantothenic acid, pyridoxale, pyridoxamine, pyridoxine, retinal, retinol, retinoic acid, retinyl acetate, retinyl palmitate, riboflavin, riboflavin 5'-phosphate, flavin adenine dinucleotide (FAD), alpha-tocopherol, alpha-tocopherol acetate, vitamins K(1), K(3), K(4), 1, 4-naphthoquinone, and coenzyme Q(10) - was tested against six heterocyclic amine (HCA) mutagens, i.e., 2-amino-3-methyl-imidazo[4, 5-f]quinoline (IQ), 2-amino-3,4-dimethyl-imidazo[4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethyl-imidazo[4,5-f]quinoxaline (MeIQx), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-6-methyl-dipyrido[1,2-a:3',2'-d]imidazole (Glu-P-1) and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) in the Salmonella/reversion assay using tester strains Salmonella typhimurium TA 98 and TA 100. Retinol, retinal, riboflavin, riboflavin 5'-phosphate, FAD, vitamins K(1), K(3), K(4), 1, 4-naphthoquinone, and coenzyme Q(10) caused a concentration-dependent decrease in the mutagenicity of all six mutagens in both tester strains. Quantification of antimutagenic potencies by calculating ID(50)1000; vitamin K(1): 401-740; vitamin K(3) (menadione): 85-590; vitamin K(4): 45-313; 1,4-naphthoquinone: 170-290; coenzyme Q(10): 490-860. In general, there were no major differences between HCAs tested except in part with Trp-P-2 nor between the two tester strains. In enzyme kinetic experiments with Salmonella, retinol, vitamins K(3), and K(4) behaved as competitive inhibitors of IQ induced mutagenesis. However, at the highest concentration of menadione (200 nmol/plate) and of riboflavin 5'-phosphate (2000 nmol/plate), non-competitive inhibition was observed. At other concentrations of riboflavin 5'-phosphate and at all concentrations of FAD, meaningful interpretation of enzyme kinetics were not possible. Reduction of the activity of 7-ethoxy- and 7-methoxyresorufin-O-dealkylases with IC(50) values of 2.03-30.8 microM indicated strong inhibition of 1A1 and 1A2 dependent monooxygenases by menadione and retinol. Riboflavin 5'-phosphate and FAD were less effective (IC(50): 110-803.7 microM). Nicotinamide-adenine-dinucleotidephosphate (NADPH) cytochrome P-450 reductase was not affected by retinoids but stimulated by naphthoquinones and both riboflavin derivatives up to about 50 and 80%, respectively. Again, the mutagenic activity of N-hydroxy-2-amino-3-methyl-imidazo[4,5-f]quinoline (N-OH-IQ) in Salmonella was not suppressed by K-vitamins but marginally reduced by retinol, retinal, and FAD but distinctly by riboflavin 5'-phosphate. In various experiments designed for modulation of the mutagenic response, inhibition of metabolic activation of IQ to N-OH-IQ was found to be the only relevant mechanism of antimutagenesis of menadione while a weak contribution of an other way seemed possible for retinol and FAD.  相似文献   

20.
The fermented food, whole meal Natto, viscous polymeric material from Natto, Natto bean, cooked soya bean, and 28 bacterial isolates from Natto were studied for their binding capacity to foodborne mutagenic-carcinogenic heterocyclic amines. The mutagenic heterocyclic amines used were Trp-P-1 (3-amino-1,4-dimethyl-5H-pyrido(4,3-b)indole); Trp-P-2 (3-amino-1-methyl-5H-pyrido(4,3-b)indole); Glu-P-1 (2-amino-6-methyldipyrido(1,2-a:3'2'-d)imidazole); PhIP (2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine); IQ (2-amino-3-methylimidazo(4,5-f)quinoline); MeIQ (2-amino-3,4-dimethylimidazo(4,5-f)quinoxaline); MeIQx (2-amino-3,8-dimethylimidazo(4,5-f)quinoxaline); and MeAalphaC (2-amino-3-methyl-9H-pyrido(2,3)indole). The lyophilized Natto and other fractions of Natto exhibited high binding activity towards Trp-P-1, Trp-P-2, PhIP, and MeAalphaC, while Glu-P-1, IQ, and MeIQ were not effectively bound. The binding capacity of bacterial isolates (Bacillus natto) were isolate-mutagen dependent. Heat treated lyophilized cells, cell wall, and cytoplasmic contents of the bacterial isolate with the highest binding capacity were analyzed for their ability to bind different heterocyclic amines. The results indicate the importance of the cell wall in binding to heterocyclic amines, whereas the cytoplasmic contents were less effective. Heat-treated cells were not much different from that of viable cells in their binding. The impact of different factors, such as pH, incubation time, metal ions, different concentrations of sodium chloride and alcohol, various enzymes, and acetylation of mutagens on binding of Trp-P-1 and IQ, were discussed. The significance of the present results is also discussed from the viewpoint that Natto, a fermented food, is able to scavenge dietary mutagenic heterocyclic amines through binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号