共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
John H. Relethford 《American journal of physical anthropology》1998,105(1):1-7
In recent years, the study of mitochondrial DNA (mtDNA) variation has entered a new phase with an increasing emphasis on interpretations of demographic, rather than phylogenetic, history. Human mtDNA variation fits a “sudden expansion” model, where the human species expanded rapidly in size during the Late Pleistocene. This paper examines the sudden expansion model with the goal of partitioning total mtDNA diversity in contemporary populations into two components—diversity that existed prior to the population expansion and diversity that arose after the expansion. A method is developed for estimating these components. Analysis of mtDNA diversity within selected human populations shows that 64–80% of mtDNA diversity in contemporary populations arose after the expansion, a consequence of a high mutation rate relative to the number of generations since expansion. The basic model is extended to two components of excess diversity in sub-Saharan Africa—differences in population size before the expansion and differences in the timing of expansion. Results suggest that excess sub-Saharan African mtDNA diversity is due to the combined effects of the sub-Saharan African population being larger in size prior to the expansion and expanding earlier. Am J Phys Anthropol 105:1–7, 1998. © 1998 Wiley-Liss, Inc. 相似文献
3.
John H. Relethford 《Evolutionary anthropology》1995,4(2):53-63
The past decade has brought considerable debate on the subject of modern human origins. The nature of the transition from Homo erectus to archaic Homo sapiens to modern H. sapiens has been examined primarily in terms of the relative contribution of archaic populations to later moderns, both within and among geographic regions. The recent African origin model proposes that modern humans appeared first in Africa between 100,000 and 200,000 years ago, and then spread through the rest of the Old World, replacing preexisting populations.1–6 This model has been referred to by a variety of names, including “replacement”, “Garden of Eden”, “Noah's Ark”, and “out of Africa”. The recent African origin model contrasts with the multiregional model, which proposes a species-wide transition to modern humans throughout the Old World during the past million years or more.7–10 Indeed, some proponents of the multiregional model advocate placing Homo erectus and all subsequent species of Homo in the evolutionary species Homo sapiens.11 This contrasts with the view that there were multiple hominid species during the Middle Pleistocene. The debate continues.12,13 Although the multiregional model is often portrayed as proposing a simultaneous transition to anatomically modern humans in different geographic regions, it explicitly allows for varying degrees of continuity across time and space.10 This model, in the broad sense, does not rule out the possibility that modern human morphology appeared first in Africa and then spread through the rest of the Old World through gene flow. However, not all advocates of the multiregional model adhere to this specific subset of the general model.9 Comparison of the African and multiregional models is complicated by considering other, less extreme, hypotheses. Some versions of the recent African origin model imply a speciation event associated with the initial origin of modern humans. Another version, which suggests the possibility of some admixture between “moderns” leaving Africa and preexisting “archaics” elsewhere in the Old World,14,15 is similar to some variants of the multiregional model, which also suggest that modern morphology appeared first in Africa, but involved admixture with other Old World populations.16 The major difference between these views appears to be the extent of admixture, although the exact level is never specified. A further complication is the possibility that multiple dispersals from Africa produced a more complicated pattern of worldwide variation.17 相似文献
4.
Fu Y Xie C Xu X Li C Zhang Q Zhou H Zhu H 《American journal of physical anthropology》2009,138(1):23-29
Analysis of DNA from human archaeological remains is a powerful tool for reconstructing ancient events in human history. To help understand the origin of the inhabitants of Kublai Khan's Upper Capital in Inner Mongolia, we analyzed mitochondrial DNA (mtDNA) polymorphisms in 21 ancient individuals buried in the Zhenzishan cemetery of the Upper Capital. MtDNA coding and noncoding region polymorphisms identified in the ancient individuals were characteristic of the Asian mtDNA haplogroups A, B, N9a, C, D, Z, M7b, and M. Phylogenetic analysis of the ancient mtDNA sequences, and comparison with extant reference populations, revealed that the maternal lineages of the population buried in the Zhenzishan cemetery are of Asian origin and typical of present-day Han Chinese, despite the presence of typical European morphological features in several of the skeletons. 相似文献
5.
Rebecca R. Ackermann Michael L. Arnold Marcella D. Baiz James A. Cahill Liliana Corts‐Ortiz Ben J. Evans B. Rosemary Grant Peter R. Grant Benedikt Hallgrimsson Robyn A. Humphreys Clifford J. Jolly Joanna Malukiewicz Christopher J. Percival Terrence B. Ritzman Christian Roos Charles C. Roseman Lauren Schroeder Fred H. Smith Kerryn A. Warren Robert K. Wayne Dietmar Zinner 《Evolutionary anthropology》2019,28(4):189-209
During the late Pleistocene, isolated lineages of hominins exchanged genes thus influencing genomic variation in humans in both the past and present. However, the dynamics of this genetic exchange and associated phenotypic consequences through time remain poorly understood. Gene exchange across divergent lineages can result in myriad outcomes arising from these dynamics and the environmental conditions under which it occurs. Here we draw from our collective research across various organisms, illustrating some of the ways in which gene exchange can structure genomic/phenotypic diversity within/among species. We present a range of examples relevant to questions about the evolution of hominins. These examples are not meant to be exhaustive, but rather illustrative of the diverse evolutionary causes/consequences of hybridization, highlighting potential drivers of human evolution in the context of hybridization including: influences on adaptive evolution, climate change, developmental systems, sex‐differences in behavior, Haldane's rule and the large X‐effect, and transgressive phenotypic variation. 相似文献
6.
7.
Studies of cranial differences between modern humans and Neandertals have identified several characteristics for which the two groups differ in their mean values, the proportional relationships with other traits, or both. However, the limited number of fairly complete Neandertals has hindered investigations into patterns of integration – covariance and correlation among traits – in this fossil group. Here, we use multiple approaches specifically designed to deal with fragmentary fossils to test if metric cranial traits in Neandertals fit modern human patterns of integration. Based on 37 traits collected from a sample of 2524 modern humans from Howells’ data set and 20 Neandertals, we show that overall patterns of cranial integration are significantly different between Neandertals and modern humans. However, at the same time, Neandertals are consistent with a modern human pattern of integration for more than three-quarters of the traits. Additionally, the differences between the predicted and actual values for the deviating traits are rather small, indicating that the differences in integration are subtle. Traits for which Neandertals deviate from modern human integration patterns tend to be found in regions where Neandertals and modern humans are known to also differ in their mean values. We conclude that the evolution of patterns of cranial integration is a cause for caution but also presents an opportunity for understanding cranial differences between modern humans and Neandertals. 相似文献
8.
Mark Zlojutro Larissa A. Tarskaia Mark Sorensen J. Josh Snodgrass William R. Leonard Michael H. Crawford 《American journal of physical anthropology》2009,139(4):474-482
The Yakuts are a Turkic‐speaking population from northeastern Siberia who are believed to have originated from ancient Turkic populations in South Siberia, based on archaeological and ethnohistorical evidence. In order to better understand Yakut origins, we modeled 25 demographic scenarios and tested by coalescent simulation whether any are consistent with the patterns of mtDNA diversity observed in present‐day Yakuts. The models consist of either two simulated demes that represent Yakuts and a South Siberian ancestral population, or three demes that also include a regional Northeast Siberian population that served as a source of local gene flow into the Yakut deme. The model that produced the best fit to the observed data defined a founder group with an effective female population size of only 150 individuals that migrated northwards approximately 1,000 years BP and who experienced significant admixture with neighboring populations in Northeastern Siberia. These simulation results indicate a pronounced founder effect that was primarily kin‐structured and reconcile reported discrepancies between Yakut mtDNA and Y chromosome diversity levels. Am J Phys Anthropol, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
9.
10.
Erik Trinkaus 《Journal of human evolution》1993,24(6)
The KNM-ER 999 hominid femur, in light of improved knowledge of later Pleistocene human postcranial morphology and ongoing reassessments of the emergence of modern humans in Africa, appears morphologically aligned with early modern humans rather than with late archaic humans. This is reflected especially in its having a clear pilaster, a proximally positioned minimum diaphyseal breadth (thereby lacking a proximo-medial diaphyseal buttress) and an exceptionally high neck-shaft angle. In these features, and especially the fast, it shows affinities to the Levantine Qafzeh-Skhul early modern human sample. However, the uncertainty regarding its stratigraphic provenience (early Late Pleistocene versus early Holocene) makes its relevance to the emergence of modern humans in Africa tenuous. 相似文献
11.
Harvati K 《American journal of physical anthropology》2003,120(4):323-338
The temporal bone is the location of several traits thought to differentiate Neanderthals from modern humans, including some proposed Neanderthal-derived traits. Most of these, however, are difficult to measure and are usually described qualitatively. This study applied the techniques of geometric morphometrics to the complex morphology of the temporal bone, in order to quantify the differences observed between Neanderthal and modern human anatomy. Two hundred and seventy modern human crania were measured, representing 9 populations of 30 individuals each, and spanning the extremes of the modern human geographical range. Twelve Neanderthal specimens, as well as Reilingen, Kabwe, Skhul 5, Qafzeh 9, and 4 Late Paleolithic European specimens, were included in the fossil sample. The data were collected in the form of three-dimensional (3-D) landmark coordinates, and specimen configurations were superimposed using generalized Procrustes analysis. The fitted coordinates were then analyzed by an array of multivariate statistical methods, including principal components analysis, canonical variates analysis, and Mahalanobis D(2). The temporal bone landmark analysis was very successful in separating Neanderthals from modern humans. Neanderthals were separated from modern humans in both the principal components and canonical variates analyses. They were much further in Mahalanobis distances from all modern human populations than any two modern human groups were from each other. Most of the previously described temporal bone traits contributed to this separation. 相似文献
12.
Hughes J Baker AM Bartlett C Bunn S Goudkamp K Somerville J 《Molecular ecology》2004,13(10):3197-3212
We examined genetic structure and levels of connectivity among subpopulations within each of four cryptic species belonging to the freshwater mussel genus Velesunio. We used allozymes and a fragment of the mitochondrial cytochrome c oxidase I gene to examine genetic variation in populations from isolated waterholes, belonging to four major inland drainages in eastern Australia. Based on evidence from other invertebrates in the region we predicted that, in each species, we would find evidence of historical connectivity among populations from different drainages. This was clearly not the case, as for the two species that occurred in more than one drainage there was evidence of both current and past restriction to gene flow. Moreover, given the potential for extensive dispersal of these mussels through the river systems during flood times via their fish hosts, we predicted low levels of genetic variation among populations from waterholes in the same drainage. Contrary to our expectations, all four species showed some evidence of restricted gene flow among waterholes within drainages. This suggests that either (a) mussel larvae are not produced during flood times, when their fish hosts would be free to move between waterholes, or (b) mussel larvae are attached to their hosts at these times, but the fish movement is limited between waterholes. 相似文献
13.
Arthur C. Durband 《American journal of physical anthropology》2014,155(1):173-178
The crania from Kow Swamp and Cohuna have been important for a number of debates in Australian paleoanthropology. These crania typically have long, flat foreheads that many workers have cited as evidence of genetic continuity with archaic Indonesian populations, particularly the Ngandong sample. Other scientists have alleged that at least some of the crania from Kow Swamp and the Cohuna skull have been altered through artificial modification, and that the flat foreheads possessed by these individuals are not phylogenetically informative. In this study, several Kow Swamp crania and Cohuna are compared to known modified and unmodified comparative samples. Canonical variates analyses and Mahalanobis distances are generated, and random expectation statistics are used to calculate statistical significance for these tests. The results of this study agree with prior work indicating that a portion of this sample shows evidence for artificial modification of the cranial vault. Many Kow Swamp crania and Cohuna display shape similarities with a population of known modified individuals from New Britain. Kow Swamp 1, 5, and Cohuna show the strongest evidence for modification, but other individuals from this sample also show evidence of culturally manipulated changes in cranial shape. This project provides added support for the argument that at least some Pleistocene Australian groups were practicing artificial cranial modification, and suggests that caution should be used when including these individuals in phylogenetic studies. Am J Phys Anthropol 155:173–178, 2014. © 2014 Wiley Periodicals, Inc. 相似文献
14.
Analysis of mitochondrial DNA (mtDNA) haplotypes of Sclerotinia sclerotiorum points to a common origin of some genotypes from agricultural populations, especially when compared with two wild populations that are sharply distinguished from the agricultural sample and from each other. Five agricultural population samples from canola (Alberta, Canada and Norway), cabbage (North Carolina, USA), sunflower (Manitoba, Canada and Queensland, Australia) and two Norwegian populations from a wild plant, Ranunculus ficaria were compared. Haplotypes were determined by Southern hybridization of purified organelle DNA from S. sclerotiorum and Neurospora crassa to total genomic DNA of S. sclerotiorum. Each isolate had one haplotype. Haplotypes of S. sclerotiorum from R. ficaria were different between the two wild populations and also from all haplotypes observed in the agricultural populations. Among the wild isolates, DNA fingerprint, mtDNA haplotype and location in the sampling transect were all associated. Among the agricultural isolates, four haplotypes were observed in at least two agricultural populations and one haplotype was observed in all agricultural populations. In the Canadian canola sample some clones had one mtDNA haplotype, indicating association with DNA fingerprint, some clones had more than one haplotype, and some groups of clones shared haplotypes. Some of the haplotype diversity may be due to the presence of extra-chromosomal elements associated with the mitochondria of S. sclerotiorum. 相似文献
15.
Analyses of molecular genetic data have added a new dimension to human evolutionary research. Pioneering studies of variation in human populations were based on analyses of blood groups1 and electromorphs,2 both of which represent qualitative multistate phenotypes. With the development of recombinant DNA methods in the 1970s and 1980s, the focus shifted from gene products to a new and plentiful source of human variability, restriction fragment length polymorphisms (RFLPs).3,4 Finally, the addition of DNA sequencining survey data to the rapidly growing RFLP data base made it feasible for the first time to determine the exact number of nucleotide substitutions between different alleles, as well as to construct gene trees and reconstruct the phylogenetic history of populations.5–7 相似文献
16.
Mark Stoneking 《Evolutionary anthropology》1993,2(2):60-73
The study of recent human evolution, or the origin of modern humans, is currently dominated by two theories. The recent African origin hypothesis holds that there was a single origin of modern humans in Africa about 100,000 years ago, after which these humans dispersed throughout the rest of the world, mixing little or not at all with nonmodern populations. The multiregional evolution hypothesis holds that there was no single origin of modern humans but, instead, that the mutations and other traits that led to modern humans were spread in concert throughout the old world by gene flow, leading to genetic continuity among old world populations during the past million years. Although both of these theories are based on observations stemming from the fossil record, much discussion and controversy during the past six years has focused on the application and interpretation of studies of DNA variation, particularly mitochondrial DNA (mtDNA). The past year, especially, has brought new data, interpretations, and controversies. Indeed, I initially resisted writing this review, on the grounds that new information would be likely to render it obsolete by the time it was published. However, now that the dust is starting to settle, it seems timely to review various investigations and interpretations and where they are likely to lead. While the focus of this review is the mtDNA story, brief mention is made of studies of nuclear DNA variation (both autosomal and Y-chromosome DNA) and the implications of the genetic data with regard to the fossil record and our understanding of recent human evolution. 相似文献
17.
18.
19.
Genetic studies of waterfowl (Anatidae) have observed the full spectrum of mitochondrial (mt) DNA population divergence, from apparent panmixia to deep, reciprocally monophyletic lineages. Yet, these studies often found weak or no nuclear (nu) DNA structure, which was often attributed to male‐biased gene flow, a common behaviour within this family. An alternative explanation for this ‘conflict’ is that the smaller effective population size and faster sorting rate of mtDNA relative to nuDNA lead to different signals of population structure. We tested these alternatives by sequencing 12 nuDNA introns for a Holarctic pair of waterfowl subspecies, the European goosander (Mergus merganser merganser) and the North American common merganser (M. m. americanus), which exhibit strong population structure in mtDNA. We inferred effective population sizes, gene flow and divergence times from published mtDNA sequences and simulated expected differentiation for nuDNA based on those histories. Between Europe and North America, nuDNA ФST was 3.4‐fold lower than mtDNA ФST, a result consistent with differences in sorting rates. However, despite geographically structured and monophyletic mtDNA lineages within continents, nuDNA ФST values were generally zero and significantly lower than predicted. This between‐ and within‐continent contrast held when comparing mtDNA and nuDNA among published studies of ducks. Thus, male‐mediated gene flow is a better explanation than slower sorting rates for limited nuDNA differentiation within continents, which is also supported by nonmolecular data. This study illustrates the value of quantitatively testing discrepancies between mtDNA and nuDNA to reject the null hypothesis that conflict simply reflects different sorting rates. 相似文献
20.
Seppä P Gyllenstrand N Corander J Pamilo P 《Evolution; international journal of organic evolution》2004,58(11):2462-2471
The ant Formica exsecta has two types of colonies that exist in sympatry but usually as separate subpopulations: colonies with simple social organization and single queens (M type) or colonial networks with multiple queens (P type). We used both nuclear (DNA microsatellites) and mitochondrial markers to study the transition between the social types, and the contribution of males and females in gene flow within and between the types. Our results showed that the social types had different spatial genetic structures. The M subpopulations formed a fairly uniform population, whereas the P subpopulations were, on average, more differentiated from each other than from the nearby M subpopulations and could have been locally established from the M-type colonies, followed by philopatric behavior and restricted emigration of females. Thus, the relationship between the two social types resembles that of source (M type) and sink (P type) populations. The comparison of mitochondrial (phiST) and nuclear (FST) differentiation indicates that the dispersal rate of males is four to five times larger than that of females both among the P-type subpopulations and between the social types. Our results suggest that evolution toward complex social organization can have an important effect on genetic population structure through changes in dispersal behavior associated with different sociogenetic organizations. 相似文献