首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. It was proposed [Johnson (1974) J. Neurochem. 23, 785--789] that both inhibition of neurotoxic esterase of nervous tissue and subsequent 'aging' of the inhibited esterase are necessary events in the pathogenesis of organophosphate-induced delayed neuropathy: aging has now been demonstrated with a number of neurotoxic compounds. 2. Reactivation by KF was observed for hen brain neurotoxic esterase inhibited by 14 organophosphates and phosphonates, and time-dependent loss of reactivatibility (aging) occurred in every case. 3. For five other compounds no reactivation occurred and aging could not therefore be established, but independent evidence for two compounds suggests that aging was rapid. 4. Half-lives of aging of neurotoxic esterase inhibited by phosphates ranged from less than 1 min to 10 min, and for phosphonates the range was 3--600 min. 5. The relationship of these findings to the mechanism of toxicity and to the prospects of therapy are considered. 6. Aging occurred rapidly with aryloxy and linear alkoxy groups attached to phosphorus and slowly with a highly branched alkoxy substituent: these effects seem incompatible with an SN1 (dealkylation) mechanism.  相似文献   

2.
1. Rates and rate coefficients of glucose utilization and replacement in post-absorptive rats, either conscious or under halothane anaesthesia, were determined in a thermoneutral environment by using [5-3H]- and [U-14C]glucose. Label was not injected into rats under halothane until about 0.5h after anaesthesia was initiated. 2. Comparison with the results for 24h-starved rats in the preceding paper [Heath et al. (1977) Biochem. J. 162, 643-651] showed that insulin concentrations were considerably higher but rate coefficients for glucose utilization were little altered in post-absorptive rats. Sensitivity to insulin was thus considerably increased by a 24h period of starvation in the rat. 3. Fractional recycling of glucose carbon in post-absorptive rats was under one-half of that in starved rats, reflecting the larger contribution of liver glycogenolysis to glucose production in the former. 4. In post-absorptive rats halothane decreased the mean rate of glucose utilization by about 17%. This decrease was associated with an increase in mean plasma insulin concentration, showing that halothane decreased sensitivity to insulin. 5. Recycling was slightly increased by halothane, indicating that the contribution of liver glycogen to the total glucogenic rate was decreased, probably because liver glycogen concentration were about 40% lower throughout the rate determinations in halothane. 6. Comparison of our results with earlier work shows that during and shortly after induction of halothane anaesthesia glucose turnover must have been greatly increased whereas from about 0.5h after induction it was decreased.  相似文献   

3.
1. The metabolism of mouse thioglycollate-elicited peritoneal macrophages was studied in culture for up to 96 h. 2. The rates of glycolysis, lactate formation and glutamine utilization were approximately linear with time for at least 80 h of culture. 3. The rates of glucose and glutamine utilization by cultured macrophages were approx. 500 and 90 nmol/h per mg of protein respectively. This rate of glucose utilization is at least 50% greater than that previously reported for macrophages during 60 min incubation in a shaking flask; and it is now increased by addition of glutamine to the culture medium. The rate of glutamine utilization in culture is similar to that previously reported for macrophages during 60 min incubation. The major end-product of glucose metabolism is lactate, and those of glutamine metabolism are CO2, glutamate, ammonia and alanine. 4. Oleate was utilized by these cells: 14C from [14C]oleate was incorporated into CO2 and cellular lipid. The highest rate of oleate utilization was observed when both glucose and glutamine were present in the culture medium. The presence of oleate in the culture medium did not affect the rates of utilization of either glucose or glutamine. Of the [14C]oleate incorporated into lipid, approx. 80% was incorporated into triacylglycerol and only 18% into phospholipid. 5. The turnover rate for the total ATP content of the macrophage in culture is about 10 times per minute: the value for the perfused isolated maximally working rat heart is 22. This indicates a high metabolic rate for macrophages, and consequently emphasizes the importance of the provision of fuels for their function in an immune response.  相似文献   

4.
The purpose of the present study was to determine whether streptozotocin-induced diabetes alters the rates and tissue distribution of insulin-mediated glucose uptake (IMGU) and noninsulin-mediated glucose uptake (NIMGU). In vivo glucose disposal was assessed using the tracer [U-14C]-2-deoxyglucose technique in chronically catheterized conscious rats. For nondiabetic animals, rates of NIMGU were determined during severe insulinopenia (less than 5 microU/ml), induced by the infusion of somatostatin, under both euglycemic (6 mM) and hyperglycemic (17 mM) conditions. In diabetic rats, in which a severe insulin deficiency already existed, NIMGU was determined under basal hyperglycemic conditions and during euglycemic conditions produced by inhibiting hepatic glucose output. IMGU was determined in both groups using the euglycemichyperinsulinemic clamp technique. Glucose uptake was consistently higher (50-280%) in all tissues removed from diabetic rats under basal conditions, compared with tissues from control animals in the basal state. When control animals were rendered insulinopenic, glucose uptake by the skeletal muscle, heart, and diaphragm was reduced 30-60%, indicating that the uptake by these tissues occurred by both insulin- and noninsulin-mediated mechanisms. Glucose disposal by the other tissues sampled was entirely due to NIMGU under basal conditions. When blood glucose levels were elevated from 6 to 17 mM in control animals, NIMGU increased in all tissues (60-280%) except the brain. Rates of NIMGU were essentially identical between control and diabetic animals, under either euglycemic or hyperglycemic conditions, when glucose uptake was determined under the same steady-state plasma glucose levels. In contrast to the normal rate of NIMGU by muscle, IMGU by the skeletal muscle and heart from diabetic rats were reduced under mild hyperinsulinemic conditions (100 microU/ml), compared with control animals. Furthermore, in response to a maximal, stimulating dose of insulin (500 microU/ml), IMGU was impaired in the diaphragm, liver, lung, spleen, skin, and kidney removed from diabetic animals. These results indicate that the majority of glucose disposal under basal postabsorptive conditions occurs by NIMGU in both control and diabetic rats. Furthermore, while IMGU was selectively impaired in this model of insulin-dependent diabetes, the rates and tissue distribution of NIMGU were unaltered when glucose uptake was determined under similar plasma glucose levels.  相似文献   

5.
6.
The effects of norepinephrine (NE) infusion and surgical denervation or electrical stimulation of the sympathetic nerves on 2-deoxyglucose (2-DG) uptake in interscapular brown adipose tissue (BAT) were investigated in vivo in rats to obtain direct evidence for sympathetic control of glucose utilization in this tissue. 2-DG uptake was rather low in fasted rats, but after refeeding it increased in the BAT as well as the heart, skeletal muscle, and white adipose tissue, in parallel with an increase in plasma insulin level. Cold exposure also enhanced 2-DG uptake in the BAT without the increase in plasma insulin level, while it had no appreciable effect on 2-DG uptake in other tissues. Sympathetic denervation greatly attenuated the stimulatory effect of cold exposure on 2-DG uptake in BAT, but it did not affect the increased 2-DG uptake after refeeding. Electrical stimulation of the sympathetic nerves entering BAT or NE infusion produced a marked increase in 2-DG uptake in BAT without noticeable effects in other tissues. beta-Adrenergic blockade, but not alpha-blockade, abolished the increased 2-DG uptake in BAT. It was concluded that glucose utilization in BAT is activated directly, independently of the action of insulin, by sympathetic nerves via the beta-adrenergic pathway.  相似文献   

7.
8.
9.
The local cerebral glucose utilization (LCGU) was measured in the different areas and layers of the Ammon's horn and dentate gyrus of young adult (3 to 4-month-old) rats, and of 27-month-old rats with proven cognitive deficits. The LCGU was determined by quantitative [14C]2-deoxyglucose autoradiography. Compared to young animals, in the old rats the LCGU was significantly reduced by 12% to 15% in the oriens layers of CA1 and CA2, the pyramidal layers of the CA sectors 1-3, the radiatum and lacunosum-molecular layers of CA2 and CA3 and in the lucidum layer of CA3. The LCGU values of all the other layers of the Ammon's horn and the dentate gyrus did not differ significantly between young and old rats. The pattern of the LCGU reduction found in the old rats roughly resembles changes found after fimbra-fornix lesions or systemic administration of scopolamine, suggesting a functionally important deficit in the cholinergic innervation of the old rats' hippocampi.  相似文献   

10.
Summary The local cerebral glucose utilization (LCGU) was measured in the different areas and layers of the Ammon's horn and dentate gyrus of young adult (3 to 4-month-old) rats, and of 27-month-old rats with proven cognitive deficits. The LCGU was determined by quantitative [14C]2-deoxyglucose autoradiography. Compared to young animals, in the old rats the LCGU was significantly reduced by 12% to 15% in the oriens layers of CA1 and CA2, the pyramidal layers of the CA sectors 1–3, the radiatum and lacunosum-molecular layers of CA2 and CA3 and in the lucidum layer of CA3. The LCGU values of all the other layers of the Ammon's horn and the dentate gyrus did not differ significantly between young and old rats. The pattern of the LCGU reduction found in the old rats roughly resembles changes found after fimbra-fornix lesions or systemic administration of scopolamine, suggesting a functionally important deficit in the cholinergic innervation of the old rats' hippocampi.  相似文献   

11.
1. The sc injection of 1-thyroxine (2 mg/kg bw/day) for 8 days produced a significant decrease of body weight gain in young male Wistar rats. 2. In these hyperthyroid rats there was a significant decrease in the wet weight of the extensor digitorum longus (EDL) and soleus (Sol) muscles as compared with those of control rats. 3. The basal glucose uptake by the EDL and Sol muscles was unchanged in hyperthyroid rats using the wet weight of muscle as a reference. 4. In hyperthyroid rats, the insulin-stimulated uptake of glucose by both the EDL and Sol muscles was significantly decreased. This inhibition was stronger in Sol and there was no insulin stimulation of glucose uptake by Sol.  相似文献   

12.
After priming with oestradiol, ovariectomized rats were given 6 days of progesterone treatment in which two doses of 50 ng oestradiol were given on Days 3 and 6. This basic treatment allows the oestradiol-induced (1st injection) disappearance of uterine sensitivity to decidual stimuli to occur. Cycloheximide could not mimic oestrogen action in the production of the uterine refractory state. However, a high dose (500 micrograms per animal) of this inhibitor given with the first injection of oestradiol allowed the uterus to remain in a neutral state and to respond to decidual induction after the second dose of oestradiol. By delaying the injection of cycloheximide after the first oestrogen treatment, protein synthesis requisite to the occurrence of uterine refractoriness would not take place within 12 h after the 'nidatory' oestrogen injection.  相似文献   

13.
14.
The concentrations of ATP and the ATP/AMP concentration ratios were maintained in thioglycollate-elicited mouse peritoneal macrophages incubated in vitro for 90 min in the presence or absence of added substrate: rates of glycolysis, lactate formation and glutamine utilization were approximately linear with time for at least 60 min of incubation. The rate of oxygen consumption by macrophages was only increased above the basal rate (i.e. that in the absence of added substrate) by addition of succinate or pyruvate, or by addition of the uncoupling agent carboxyl cyanide m-chlorophenylhydrazone ('CCCP'); it was decreased by 75% by the addition of KCN. These findings suggest that metabolism of endogenous substrate can provide most, if not all, of the energy requirement of these cells, at least for a short period. The rates of glucose and glutamine utilization by incubated macrophages were approx. 300 and 100 nmol/min per mg of protein respectively. A large proportion of the glutamine that is utilized is converted into glutamate and aspartate, and very little (perhaps less than 10%) is oxidized. Similarly almost all of the glucose that is utilized is converted into lactate and very little is oxidized. This characteristic is similar to that of resting lymphocytes and rapidly dividing cells; in non-proliferating macrophages it may be a mechanism to provide precision in control of the rate of biosynthetic processes that utilize intermediates of these pathways, e.g. purines and pyrimidines for mRNA for the synthesis of secretory proteins and glycerol 3-phosphate for phospholipid synthesis for membrane recycling. No utilization of acetoacetate or 3-hydroxybutyrate by macrophages was detected. In contrast, both butyrate and oleate were oxidized. The rate of [14C]oleate conversion into 14CO2 (1.3 nmol/h per mg of protein) could account for most of the oxygen consumption by incubated macrophages, suggesting that long-chain fatty acids might provide an important fuel in situ. This may be one explanation for the secretion of lipoprotein lipase by these cells, to provide fatty acids for oxidation from the degradation of local triacylglycerol.  相似文献   

15.
The utilization of mixtures of glucose and sucrose at nonlimiting concentrations was studied in batch cultures of two common thermophilic fungi, Thermomyces lanuginosus and Penicilium duponti. The sucrose-utilizing enzymes (sucrose permease and invertase) in both fungi were inducible. Both sugars were used concurrently, regardless of their relative proportion in the mixture. At the optimal growth temperature (50 degrees C), T. lanuginosus utilized sucrose earlier than it did glucose, but at a suboptimal growth temperature (30 degrees C) the two sugars were utilized at nearly comparable rates. The coutilization of the two sugars was most likely possible because (i) invertase was insensitive to catabolite repression by glucose, (ii) the activity and affinity of the glucose transport system were lowered when sucrose was included in the growth medium, and (iii) the activity of the glucose uptake system was also subject to repression by high concentrations of glucose itself. The concurrent utilization of the available carbon sources by thermophilic fungi might be an adaptive strategy for opportunistic growth in nature under conditions of low nutrient availability and thermal fluctuations in the environment.  相似文献   

16.
Previous attempts to account for the labelling in vivo of liver metabolites associated with the citrate cycle and gluconeogenesis have foundered because proper allowance was not made for the heterogeneity of the liver. In the basal state (anaesthetized after 24h starvation) this heterogeneity is minimal, and we show that labelling by [14C]bicarbonate can be interpreted unambiguously. [14C]Bicarbonate was infused to an isotopic steady state, and measurements were made of specific radioactivities of blood bicarbonate, alanine, glycerol and lactate, of liver alanine and lactate, and of individual carbon atoms in blood glucose and liver aspartate, citrate and malate. (Existing methods for several of these measurements were extensively modified.) The results were combined with published rates of gluconeogenesis, uptake of gluconeogenic precursors by the liver, and citrate-cycle flux, all measured under similar conditions, and with estimates of other rates made from published data. To interpret the results, three ancillary measurements were made: the rate of CO2 exchange by phosphoenolpyruvate carboxykinase (PEPCK; EC 4.1.1.32) under conditions that simulated those in vivo; the 14C isotope effect in the pyruvate carboxylase (EC 6.4.1.1) reaction (14C/12C = 0.992 +/- 0.008; S.E.M., n = 8); the ratio of labelling by [2-14C]- to that by [1-14C]-pyruvate of liver glutamate 1.5 min after injection. This ratio, 3.38, is a measure of the disequilibrium in the mitochondria between malate and oxaloacetate. The data were analysed with due regard to experimental variance, uncertainties in values of fluxes measured in vitro, hepatic heterogeneity and renal glucose output. The following conclusions were reached. The results could not be explained if CO2 fixation was confined to pyruvate carboxylase and there was only one, well-mixed, pool of oxaloacetate in the mitochondria. Addition of the other carboxylation reactions, those of PEPCK, isocitrate dehydrogenase (EC 1.1.1.42) and malic enzyme (EC 1.1.1.40), was not enough. Incomplete mixing of mitochondrial oxaloacetate had to be assumed, i.e. that there was metabolic channelling of oxaloacetate formed from pyruvate towards gluconeogenesis. There was some evidence that malate exchange across the mitochondrial membrane might also be channelled, with incomplete mixing with that in the citrate cycle. Calculated rates of exchange of CO2 by PEPCK were in agreement with those measured in vitro, with little or no activation by Fe2+ ions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
18.
19.
20.
Interleukin-1 induced increases in glucose utilization are insulin mediated   总被引:4,自引:0,他引:4  
C H Lang  C Dobrescu 《Life sciences》1989,45(22):2127-2134
Interleukin-1 (IL-1) is known to modulate a variety of the acute-phase responses to infection. Since an enhanced rate of whole-body glucose utilization is a consistent feature of the hypermetabolic phase of infection, the purpose of the present study was to determine whether IL-1 could increase glucose uptake and whether that increase was dependent on the concomitant elevation in plasma insulin. Glucose utilization (Rg) of different tissues was investigated in vivo by the 2-deoxyglucose tracer technique. Human purified IL-1 was administered to chronically, catheterized conscious rats and increased the plasma insulin levels and the Rg in macrophage-rich tissues, including the lung, spleen, liver and skin. IL-1 also increased Rg in skeletal muscle and diaphragm. To eliminate the insulin-stimulated increase in Rg, somatostatin (SRIF) was infused 1 h prior to IL-1. SRIF prevented the IL-1 induced increase in insulin and tissue glucose utilization. IL-1 administration to streptozotocin-induced diabetic rats also failed to increase Rg in any tissue examined. These data suggest that the administration of IL-1 increases organ glucose utilization by insulin-dependent mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号