共查询到20条相似文献,搜索用时 0 毫秒
1.
Organisms are capable of an astonishing repertoire of phenotypic responses to the environment, and these often define important adaptive solutions to heterogeneous and unpredictable conditions. The terms ‘phenotypic plasticity’ and ‘canalization’ indicate whether environmental variation has a large or small effect on the phenotype. The evolution of canalization and plasticity is influenced by optimizing selection‐targeting traits within environments, but inherent fitness costs of plasticity may also be important. We present a meta‐analysis of 27 studies (of 16 species of plant and 7 animals) that have measured selection on the degree of plasticity independent of the characters expressed within environments. Costs of plasticity and canalization were equally frequent and usually mild; large costs were observed only in studies with low sample size. We tested the importance of several covariates, but only the degree of environmental stress was marginally positively related to the cost of plasticity. These findings suggest that costs of plasticity are often weak, and may influence phenotypic evolution only under stressful conditions. 相似文献
2.
Gabriel W 《Journal of evolutionary biology》2005,18(4):873-883
Stress occurring in periods shorter than life span strongly selects for reversible phenotypic plasticity, for maximum reliability of stress indicating cues and for minimal response delays. The selective advantage of genotypes that are able to produce adaptive reversible plastic phenotypes is calculated by using the concept of environmental tolerance. Analytic expressions are given for optimal values of mode and breadth of tolerance functions for stress induced and non-induced phenotypes depending on (1) length of stress periods, (2) response delay for switching into the induced phenotype, (3) response delay for rebuilding the non-induced phenotype, (4) intensity of stress, i.e. mean value of the stress inducing environment, (5) coefficient of variation of the stress environment and (6) completeness of information available to the stressed organism. Adaptively reversible phenotypic plastic traits will most probably affect fitness in a way that can be described by simultaneous reversible plasticity in mode and breadth of tolerance functions. 相似文献
3.
We model the evolution of reaction norms focusing on three aspects: frequency-dependent selection arising from resource competition, maintenance and production costs of phenotypic plasticity, and three characteristics of environmental heterogeneity (frequency of environments, their intrinsic carrying capacity and the sensitivity to phenotypic maladaptation in these environments). We show that (i) reaction norms evolve so as to trade adaptation for acquiring resources against cost avoidance; (ii) maintenance costs cause reaction norms to better adapt to frequent rather than to infrequent environments, whereas production costs do not; and (iii) evolved reaction norms confer better adaptation to environments with low rather than with high intrinsic carrying capacity. The two previous findings contradict earlier theoretical results and originate from two previously unexplored features that are included in our model. First, production costs of phenotypic plasticity are only incurred when a given phenotype is actually produced. Therefore, they are proportional to the frequency of environments, and these frequencies thus affect the selection pressure to avoid costs just as much as the selection pressure to improve adaptation. This prevents the frequency of environments from affecting the evolving reaction norm. Secondly, our model describes the evolution of plasticity for a phenotype determining an individual's capability to acquire resources, and thus its realized carrying capacity. When individuals are distributed randomly across environments, they cannot avoid experiencing environments with intrinsically low carrying capacity. As selection pressures arising from the need to improve adaptation are stronger under such extreme conditions than under mild ones, better adaptation to environments with low rather than with high intrinsic carrying capacity results. 相似文献
4.
Costs of phenotypic plasticity are important for the evolution of plasticity because they prevent organisms from shaping themselves at will to match heterogeneous environments. These costs occur when plastic genotypes have relatively low fitness regardless of the trait value expressed. We report two experiments in which we measured selection on predator-induced plasticity in the behaviour and external morphology of frog tadpoles (Rana temporaria). We assessed costs under stressful and benign conditions, measured fitness as larval growth rate or competitive ability and focused analysis on aggregate measures of whole-organism plasticity. There was little convincing evidence for a cost of phenotypic plasticity in our experiments, and costs of canalization were nearly as frequent as costs of plasticity. Neither the magnitude of the cost nor the variation around the estimate (detectability) was sensitive to environmental stress. 相似文献
5.
Organisms can respond to fluctuating environments by phenotypic plasticity and rapid evolution, both occurring on similar timescales to the environmental fluctuations. Because each adaptation mechanism has been independently studied, the effects of different adaptation mechanisms on ecological dynamics are not well understood. Here, using mathematical modeling, we compared the advantages of phenotypic plasticity and rapid evolution under conditions where the environment fluctuated between two states on various timescales. The results indicate that the advantages of phenotypic plasticity under environmental fluctuations on different timescales depend on the cost and the speed of plasticity. Both the speed of plastic adaptation and the cost of plasticity affect competition results, while the quantitative effects of them vary depending on the timescales. When the environment fluctuates on short timescales, the two populations with evolution and plasticity coexist, although the population with evolution is dominant. On moderate timescales, the two populations also coexist; however, the population with plasticity becomes dominant. On long timescales, whether the population with phenotypic plasticity or evolution is more advantageous depended on the cost of plasticity. Moreover, our results indicate that the mechanisms resulting in the dominance of the plastic population over the population with evolution are different depending on the timescales of environmental fluctuations. Therefore, the timescales of environmental fluctuations deserve more attention if we are to better understand the detailed competition results underlying phenotypic variation. 相似文献
6.
Detecting adaptation involves comparing the performance of populations evolving in different environments. This detection may be confounded by effects due to the environment experienced by organisms prior to the test. We tested whether such confounding effects occur, using spider-mite selection lines on two novel hosts and one ancestral host, after 15 generations of selection. Mites were either sampled directly from the selection lines or subjected to a common juvenile or to a common maternal environment, mimicking the most frequent environmental manipulations. These environments strongly affected all life-history traits. Moreover, the detection of adaptation and correlated responses on the ancestral host was inconsistent among environments in almost 20% of the cases. Indeed, we did not detect responses unambiguously for any life-history trait. This inconsistency was due to differential environmental effects on lines from different selection regimes. Therefore, the detection of adaptation requires a careful control of these environmental effects. 相似文献
7.
Evidence of adaptive divergence in plasticity: density- and site-dependent selection on shade-avoidance responses in Impatiens capensis 总被引:1,自引:0,他引:1
Donohue K Messiqua D Pyle EH Heschel MS Schmitt J 《Evolution; international journal of organic evolution》2000,54(6):1956-1968
We investigated the conditions under which plastic responses to density are adaptive in natural populations of Impatiens capensis and determined whether plasticity has evolved differently in different selective environments. Previous studies showed that a population that evolved in a sunny site exhibited greater plasticity in response to density than did a population that evolved in a woodland site. Using replicate inbred lines in a reciprocal transplant that included a density manipulation, we asked whether such population differentiation was consistent with the hypothesis of adaptive divergence. We hypothesized that plasticity would be more strongly favored in the sunny site than in the woodland site; consequently, we predicted that selection would be more strongly density dependent in the sunny site, favoring the phenotype that was expressed at each density. Selection on internode length and flowering date was consistent with the hypothesis of adaptive divergence in plasticity. Few costs or benefits of plasticity were detected independently from the expressed phenotype, so plasticity was selected primarily through selection on the phenotype. Correlations between phenotypes and their plasticity varied with the environment and would cause indirect selection on plasticity to be environment dependent. We showed that an appropriate plastic response even to a rare environment can greatly increase genotypic fitness when that environment is favorable. Selection on the measured characters contributed to local adaptation and fully accounted for fitness differences between populations in all treatments except the woodland site at natural density. 相似文献
8.
Plants possess a remarkable capacity to alter their phenotype in response to the highly heterogeneous light conditions they commonly encounter in natural environments. In the present study with the weedy annual plant Sinapis arvensis, we (a) tested for the adaptive value of phenotypic plasticity in morphological and life history traits in response to low light and (b) explored possible fitness costs of plasticity. Replicates of 31 half-sib families were grown individually in the greenhouse under full light and under low light (40% of ambient) imposed by neutral shade cloth. Low light resulted in a large increase in hypocotyl length and specific leaf area (SLA), a reduction in juvenile biomass and a delayed onset of flowering. Phenotypic selection analysis within each light environment revealed that selection favoured large SLA under low light, but not under high light, suggesting that the observed increase in SLA was adaptive. In contrast, plasticity in the other traits measured was maladaptive (i.e. in the opposite direction to that favoured by selection in the low light environment). We detected significant additive genetic variance in plasticity in most phenotypic traits and in fitness (number of seeds). Using genotypic selection gradient analysis, we found that families with high plasticity in SLA had a lower fitness than families with low plasticity, when the effect of SLA on fitness was statistically kept constant. This indicates that plasticity in SLA incurred a direct fitness cost. However, a cost of plasticity was only expressed under low light, but not under high light. Thus, models on the evolution of phenotypic plasticity will need to incorporate plasticity costs that vary in magnitude depending on environmental conditions. 相似文献
9.
Constraints on the evolution of adaptive plasticity: costs of plasticity to density are expressed in segregating progenies 总被引:1,自引:1,他引:1
Phenotypic plasticity, the ability of a genotype to express different phenotypes across environments, is an adaptive strategy expected to evolve in heterogeneous environments. One widely held hypothesis is that the evolutionary benefits of plasticity are reduced by its costs, but when compared with the number of traits tested, the evidence for costs is limited. Selection gradients were calculated for traits and trait plasticities to test for costs of plasticity to density in a field study using recombinant inbred lines (RILs) of Brassica rapa. Significant costs of putatively adaptive plasticity were found in three out of six measured traits. For one trait, petiole length, a cost of plasticity was detected in both environments tested; such global costs are expected to more strongly constrain the evolution of plasticity than local costs expressed in a single environment. These results, in combination with evidence from studies in segregating progenies of Arabidopsis thaliana, suggest that the potential for genetic costs of plasticity exists in natural populations. Detection of costs in previous studies may have been limited because historical selection has purged genotypes with costly plasticity, and experimental conditions often lack environmental stresses. 相似文献
10.
Emilie C. Snell‐Rood James David Van Dyken Tami Cruickshank Michael J. Wade Armin P. Moczek 《BioEssays : news and reviews in molecular, cellular and developmental biology》2010,32(1):71-81
Adaptive phenotypic plasticity allows organisms to cope with environmental variability, and yet, despite its adaptive significance, phenotypic plasticity is neither ubiquitous nor infinite. In this review, we merge developmental and population genetic perspectives to explore costs and limits on the evolution of plasticity. Specifically, we focus on the role of modularity in developmental genetic networks as a mechanism underlying phenotypic plasticity, and apply to it lessons learned from population genetic theory on the interplay between relaxed selection and mutation accumulation. We argue that the environmental specificity of gene expression and the associated reduction in pleiotropic constraints drive a fundamental tradeoff between the range of plasticity that can be accommodated and mutation accumulation in alternative developmental networks. This tradeoff has broad implications for understanding the origin and maintenance of plasticity and may contribute to a better understanding of the role of plasticity in the origin, diversification, and loss of phenotypic diversity. 相似文献
11.
The high potential fitness benefit of phenotypic plasticity tempts us to expect phenotypic plasticity as a frequent adaptation to environmental heterogeneity. Examples of proven adaptive plasticity in plants, however, are scarce and most plastic responses actually may be 'passive' rather than adaptive. This suggests that frequently requirements for the evolution of adaptive plasticity are not met or that such evolution is impeded by constraints. Here we outline requirements and potential constraints for the evolution of adaptive phenotypic plasticity, identify open questions, and propose new research approaches. Important open questions concern the genetic background of plasticity, genetic variation in plasticity, selection for plasticity in natural habitats, and the nature and occurrence of costs and limits of plasticity. Especially promising tools to address these questions are selection gradient analysis, meta-analysis of studies on genotype-by-environment interactions, QTL analysis, cDNA-microarray scanning and quantitative PCR to quantify gene expression, and two-dimensional gel electrophoresis to quantify protein expression. Studying plasticity along the pathway from gene expression to the phenotype and its relationship with fitness will help us to better understand why adaptive plasticity is not more universal, and to more realistically predict the evolution of plastic responses to environmental change. 相似文献
12.
R. Lande 《Journal of evolutionary biology》2014,27(5):866-875
Quantitative genetic models of evolution of phenotypic plasticity are used to derive environmental tolerance curves for a population in a changing environment, providing a theoretical foundation for integrating physiological and community ecology with evolutionary genetics of plasticity and norms of reaction. Plasticity is modelled for a labile quantitative character undergoing continuous reversible development and selection in a fluctuating environment. If there is no cost of plasticity, a labile character evolves expected plasticity equalling the slope of the optimal phenotype as a function of the environment. This contrasts with previous theory for plasticity influenced by the environment at a critical stage of early development determining a constant adult phenotype on which selection acts, for which the expected plasticity is reduced by the environmental predictability over the discrete time lag between development and selection. With a cost of plasticity in a labile character, the expected plasticity depends on the cost and on the environmental variance and predictability averaged over the continuous developmental time lag. Environmental tolerance curves derived from this model confirm traditional assumptions in physiological ecology and provide new insights. Tolerance curve width increases with larger environmental variance, but can only evolve within a limited range. The strength of the trade‐off between tolerance curve height and width depends on the cost of plasticity. Asymmetric tolerance curves caused by male sterility at high temperature are illustrated. A simple condition is given for a large transient increase in plasticity and tolerance curve width following a sudden change in average environment. 相似文献
13.
Adaptive phenotypic plasticity in the form of capacity to accelerate development as a response to pond drying risk is known from many amphibian species. However, very little is known about factors that might constrain the evolution of this type of plasticity, and few studies have explored to what degree plasticity might be constrained by trade-offs dictated by adaptation to different environmental conditions. We compared the ability of southern and northern Scandinavian common frog (Rana temporaria) larvae originating from 10 different populations to accelerate their development in response to simulated pond drying risk and the resulting costs in metamorphic size in a factorial laboratory experiment. We found that (i) northern larvae developed faster than the southern larvae in all treatments, (ii) a capacity to accelerate the response was present in all five southern and all five northern populations tested, but that the magnitude of the response was much larger (and less variable) in the southern than in the northern populations, and that (iii) significant plasticity costs in metamorphic size were present in the southern populations, the plastic genotypes having smaller metamorphic size in the absence of desiccation risk, but no evidence for plasticity costs was found in the northern populations. We suggest that the weaker response to pond drying risk in the northern populations is due to stronger selection on large metamorphic size as compared with southern populations. In other words, seasonal time constraints that have selected the northern larvae to be fast growing and developing, may also constrain their innate ability for adaptive phenotypic plasticity. 相似文献
14.
Plasticity allows for changes in phenotype in response to environmental cues, often facilitating local adaptation to seasonal environments. Phenotypic plasticity alone, however, may not always be sufficient to ensure adaptation to new localities. In particular, changing cues associated with shifting seasonal regimes may no longer induce appropriate phenotypic responses in new environments ( Nicotra et al. 2010 ). Plastic responses must thus evolve to avoid being maladaptive. To date, the extent to which plastic responses can change and the genetic mechanisms by which this can happen have remained elusive. In this issue of Molecular Ecology, Blackman et al. (2011a) harness natural variation in flowering time among populations of the wild sunflower, Helianthus annuus, to demonstrate that plasticity has indeed evolved in this species. Remarkably, they are able to detect changes in gene expression that are associated with both a loss of plasticity and a reversal of the plastic response. These changes occur in two separate, but integrated, regulatory pathways controlling the transition to flowering, suggesting that complex regulatory networks that incorporate multiple environmental and developmental cues may facilitate the evolution of plastic responses. This study leverages knowledge from plant genetic models to provide a surprising level of insight into the evolution of an adaptive trait in a non‐model species. Through discoveries of the roles of gene duplication and network modularity in the evolution of plastic responses, the study raises questions about the degree to which species‐specific network architectures may act as a constraint to the potential of adaptation. 相似文献
15.
16.
Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation 总被引:2,自引:0,他引:2
R. LANDE 《Journal of evolutionary biology》2009,22(7):1435-1446
Adaptation to a sudden extreme change in environment, beyond the usual range of background environmental fluctuations, is analysed using a quantitative genetic model of phenotypic plasticity. Generations are discrete, with time lag τ between a critical period for environmental influence on individual development and natural selection on adult phenotypes. The optimum phenotype, and genotypic norms of reaction, are linear functions of the environment. Reaction norm elevation and slope (plasticity) vary among genotypes. Initially, in the average background environment, the character is canalized with minimum genetic and phenotypic variance, and no correlation between reaction norm elevation and slope. The optimal plasticity is proportional to the predictability of environmental fluctuations over time lag τ. During the first generation in the new environment the mean fitness suddenly drops and the mean phenotype jumps towards the new optimum phenotype by plasticity. Subsequent adaptation occurs in two phases. Rapid evolution of increased plasticity allows the mean phenotype to closely approach the new optimum. The new phenotype then undergoes slow genetic assimilation, with reduction in plasticity compensated by genetic evolution of reaction norm elevation in the original environment. 相似文献
17.
Kattia Palacio‐López Brian Beckage Samuel Scheiner Jane Molofsky 《Ecology and evolution》2015,5(16):3389-3400
Adaptation to heterogeneous environments can occur via phenotypic plasticity, but how often this occurs is unknown. Reciprocal transplant studies provide a rich dataset to address this issue in plant populations because they allow for a determination of the prevalence of plastic versus canalized responses. From 31 reciprocal transplant studies, we quantified the frequency of five possible evolutionary patterns: (1) canalized response–no differentiation: no plasticity, the mean phenotypes of the populations are not different; (2) canalized response–population differentiation: no plasticity, the mean phenotypes of the populations are different; (3) perfect adaptive plasticity: plastic responses with similar reaction norms between populations; (4) adaptive plasticity: plastic responses with parallel, but not congruent reaction norms between populations; and (5) nonadaptive plasticity: plastic responses with differences in the slope of the reaction norms. The analysis included 362 records: 50.8% life‐history traits, 43.6% morphological traits, and 5.5% physiological traits. Across all traits, 52% of the trait records were not plastic, and either showed no difference in means across sites (17%) or differed among sites (83%). Among the 48% of trait records that showed some sort of plasticity, 49.4% showed perfect adaptive plasticity, 19.5% adaptive plasticity, and 31% nonadaptive plasticity. These results suggest that canalized responses are more common than adaptive plasticity as an evolutionary response to environmental heterogeneity. 相似文献
18.
Maternal effects and evolution at ecological time-scales 总被引:6,自引:0,他引:6
19.
Here, patterns of phenotypic plasticity and trait integration of leaf characteristics in six geographically discrete populations of the perennial herb Pelargonium australe were compared. It was hypothesized that populations would show local adaptation in trait means, but similar patterns of plasticity and trait integration. Further, it was questioned whether phenotypic plasticity was positively correlated with environmental heterogeneity and whether plasticity for water-use traits in particular was adaptive. Seedlings were grown in a glasshouse at six combinations of water and nutrient availability. Leaf anatomical, morphological and gas exchange traits were measured. High amounts of plasticity in leaf traits were found in response to changes in growth conditions and there was evidence of local adaptation among the populations. While there were significant correlations between plasticity and environmental heterogeneity, not all were positive. Notably, patterns of plasticity and trait integration varied significantly among populations. Despite that variation, some of the observed plasticity was adaptive: fitness was correlated with conservative water use when water was limiting. Pelargonium arrived in Australia approximately 5 million yr ago. It is concluded here that high amounts of plasticity, in some cases adaptive, and weak integration among traits may be key to the spread and success of this species. 相似文献
20.
An ongoing new synthesis in evolutionary theory is expanding our view of the sources of heritable variation beyond point mutations of fixed phenotypic effects to include environmentally sensitive changes in gene regulation. This expansion of the paradigm is necessary given ample evidence for a heritable ability to alter gene expression in response to environmental cues. In consequence, single genotypes are often capable of adaptively expressing different phenotypes in different environments, i.e. are adaptively plastic. We present an individual-based heuristic model to compare the adaptive dynamics of populations composed of plastic or non-plastic genotypes under a wide range of scenarios where we modify environmental variation, mutation rate and costs of plasticity. The model shows that adaptive plasticity contributes to the maintenance of genetic variation within populations, reduces bottlenecks when facing rapid environmental changes and confers an overall faster rate of adaptation. In fluctuating environments, plasticity is favoured by selection and maintained in the population. However, if the environment stabilizes and costs of plasticity are high, plasticity is reduced by selection, leading to genetic assimilation, which could result in species diversification. More broadly, our model shows that adaptive plasticity is a common consequence of selection under environmental heterogeneity, and hence a potentially common phenomenon in nature. Thus, taking adaptive plasticity into account substantially extends our view of adaptive evolution. 相似文献