首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently diverged taxa showing marked phenotypic and ecological diversity provide optimal systems to understand the genetic processes underlying speciation. We used genome‐wide markers to investigate the diversification of the Reunion grey white‐eye (Zosterops borbonicus) on the small volcanic island of Reunion (Mascarene archipelago), where this species complex exhibits four geographical forms that are parapatrically distributed across the island and differ strikingly in plumage colour. One form restricted to the highlands is separated by a steep ecological gradient from three distinct lowland forms which meet at narrow hybrid zones that are not associated with environmental variables. Analyses of genomic variation based on single nucleotide polymorphism data from genotyping‐by‐sequencing and pooled RAD‐seq approaches show that signatures of selection associated with elevation can be found at multiple regions across the genome, whereas most loci associated with the lowland forms are located on the Z sex chromosome. We identified TYRP1, a Z‐linked colour gene, as a likely candidate locus underlying colour variation among lowland forms. Tests of demographic models revealed that highland and lowland forms diverged in the presence of gene flow, and divergence has progressed as gene flow was restricted by selection at loci across the genome. This system holds promise for investigating how adaptation and reproductive isolation shape the genomic landscape of divergence at multiple stages of the speciation process.  相似文献   

2.
We investigate colour pattern and morphological variation in Chitaura grasshoppers on the Indonesian island of Sulawesi, and examine the relationship between divergence in these two sets of characters and population history, as reflected by variation in mitochondrial DNA. Analysis of colour pattern variation identifies a total of 21 distinct Operational Taxonomic Units in Sulawesi, the majority of which have parapatric distributions. Patterns of phenotypic variation at two contact zones in north Sulawesi suggest genetic independence between three of these colour forms, indicating that speciation has occurred. Despite this, colour pattern divergence is only coincident with morphological differentiation at one of these contact zones. In addition, neither type of phenotypic divergence is associated with geographical structuring in mitochondrial DNA, suggesting that historical isolation has had little influence on evolutionary diversification. Instead, divergence in colour pattern and morphology appears to have occurred rapidly or under conditions of continued gene flow, possibly in response to spatially variable natural selection. This result has implications for the identification of conservation units based solely on molecular markers.  相似文献   

3.
We analyze variation in phenotypes and mitochondrial DNA (mtDNA) haplotypes over the breeding ranges of hermit and Townsend's warblers and across two of their three hybrid zones. Within these two hybrid zones, we demonstrate that the placement, shape, and width of transitions in seven plumage characters are remarkably similar, suggesting that a balance between dispersal and sexual selection keeps these hybrid zones narrow. A consistent asymmetry in these character transition curves suggests that Townsend's warblers have a selective advantage over hermit warblers, which is presumably due to the aggressive superiority of Townsend's over hermit males (Pearson and Rohwer 2000). An association between plumage and mtDNA haplotypes shows that pure Townsend's warblers, but not pure hermit warblers, immigrate into these hybrid zones, further supporting the competitive superiority of Townsend's warblers over hermit warblers. The mitochondrial haplotype transitions across these hybrid zones are much wider than the phenotypic transitions and provide no indication that the mtDNA haplotypes representing these two warblers are selectively maintained. More importantly, the phenotypically pure populations of Townsend's warblers throughout a 2,000-km coastal strip north of the Washington hybrid zones contain a preponderance of hermit warbler mtDNA haplotypes. This result suggests massive movement of the hybrid zone between these warblers during the 5,000 years since their most recent interglacial contact. We develop a model to explain the phenotypic and genetic divergence between these warblers and the evolution of their dramatic differences in aggressiveness; we also show how differences in male aggression, in combination with biased pairing patterns, can explain the haplotype footprint recording the historical movement of this hybrid zone.  相似文献   

4.
The evolution of reproductive isolation in the presence of gene flow is supported by theoretical models but rarely by data. Empirical support might be gained from studies of parallel hybrid zones between interbreeding taxa. We analysed gene flow over two hybrid zones separating ecotypes of Littorina saxatilis to test the expectation that neutral genetic markers will show site-specific differences if barriers have evolved in situ. Distinct ecotypes found in contrasting shore habitats are separated by divergent selection and poor dispersal, but hybrid zones appear between them. Swedish islands formed by postglacial uplift 5000 years ago provide opportunities to assess genetic structure in a recently evolved system. Each island houses a discrete population containing subpopulations of different ecotypes. Hybrid zones between ecotypes may be a product of ecological divergence occurring on each island or a consequence of secondary overlap of ecotypes of allopatric origin that have spread among the islands. We used six microsatellite loci to assess gene flow and genetic profiles of hybrid zones on two islands. We found reduced gene flow over both hybrid zones, indicating the presence of local reproductive barriers between ecotypes. Nevertheless, subpopulations of different ecotypes from the same island were genetically more similar to each other than were subpopulations of the same ecotype from different islands. Moreover, neutral genetic traits separating the two ecotypes across hybrid zones were site-specific. This supports a scenario of in situ origin of ecotypes by ecological divergence and nonallopatric evolution of reproductive barriers.  相似文献   

5.
Hybrid zones are particularly valuable for understanding the evolution of partial reproductive isolation between differentiated populations. An increasing number of hybrid zones have been inferred to move over time, but in most such cases zone movement has not been tested with long‐term genomic data. The hybrid zone between Townsend's Warblers (Setophaga townsendi) and Hermit Warblers (S. occidentalis) in the Washington Cascades was previously inferred to be moving from northern S. townsendi southwards towards S. occidentalis, based on plumage and behavioural patterns as well as a 2000‐km genetic wake of hermit mitochondrial DNA (mtDNA) in coastal Townsend's Warblers. We directly tested whether hybrid zone position has changed over 2–3 decades by tracking plumage, mtDNA and nuclear genomic variation across the hybrid zone over two sampling periods (1987–94 and 2015–16). Surprisingly, there was no significant movement in genomic or plumage cline centres between the two time periods. Plumage cline widths were narrower than expected by neutral diffusion, consistent with a ‘tension zone’ model, in which selection against hybrids is balanced by movement of parental forms into the zone. Our results indicate that this hybrid zone is either stable in its location or moving at a rate that is not detectable over 2–3 decades. Despite considerable gene flow, the stable clines in multiple phenotypic and genotypic characters over decades suggest evolutionary stability of this young pair of sister species, allowing divergence to continue. We propose a novel biogeographic scenario to explain these patterns: rather than the hybrid zone having moved thousands of kilometres to its current position, inland Townsend's met coastal Hermit Warbler populations along a broad front of the British Columbia and Alaska coast and hybridization led to replacement of the Hermit Warbler plumage with Townsend's Warbler plumage patterns along this coastline. Hence, hybrid zones along British Columbia and Alaska moved only a short distance from the inland to the coast, whereas the Hermit Warbler phenotype appears stable in Washington and further south. This case provides an example of the complex biogeographic processes that have led to the distribution of current phenotypes within and among closely related species.  相似文献   

6.
In hybrid zones in which two divergent taxa come into secondary contact and interbreed, selection can maintain phenotypic diversity despite widespread genetic introgression. Red‐breasted (Sphyrapicus ruber) and red‐naped (S. nuchalis) sapsuckers meet and hybridize along a narrow contact zone that stretches from northern California to southern British Columbia. We found strong evidence for changes in the structure of this hybrid zone across time, with significant temporal shifts in allele frequencies and in the proportions of parental phenotypes across the landscape. In addition to these shifts, we found that differences in plumage predict genetic differences (R2 = 0.80), suggesting that plumage is a useful proxy for assessing ancestry. We also found a significant bimodal distribution of hybrids across the contact zone, suggesting that premating barriers may be driving reproductive isolation, perhaps as a result of assortative mating based on plumage differences. However, despite evidence of selection and strong patterns of population structure between parental samples, we found only weak patterns of genetic divergence. Using museum specimens and genomic data, this study of sapsuckers provides insight into the ways in which phenotypic and genetic structure have changed over a 40‐year period, as well as insight into the mechanisms that may contribute to the maintenance of the hybrid zone over time.  相似文献   

7.
Geographic isolation is considered essential to most speciation events, but our understanding of what controls the pace and degree of phenotypic divergence among allopatric populations remains poor. Why do some taxa exhibit phenotypic differentiation across barriers to dispersal, whereas others do not? To test factors controlling phenotypic divergence in allopatry, we employed a comparative phylogeographic approach consisting of replicates of ecologically similar Andean bird species isolated across a major biogeographic barrier, the Marañon Valley of Peru. Our study design leverages variation among codistributed taxa in their degree of plumage, morphometric, and vocal differentiation across the Marañon to examine the tempo of phenotypic evolution. We found that substantial plumage differences between populations required roughly two million years to evolve. In contrast, morphometric trait evolution showed greater idiosyncrasy and stasis. Our results demonstrate that despite a large degree of idiosyncrasy in the relationship between genetic and phenotypic divergence across taxa and environments, comparative studies within regions may reveal predictability in the pace of phenotypic divergence. Our results also suggest that social selection is important for driving differentiation of populations found in similar environments.  相似文献   

8.
Natural systems composed of closely related taxa that vary in the degree of phenotypic divergence and geographic isolation provide an opportunity to investigate the rate of phenotypic diversification and the relative roles of selection and drift in driving lineage formation. The genus Junco (Aves: Emberizidae) of North America includes parapatric northern forms that are markedly divergent in plumage pattern and colour, in contrast to geographically isolated southern populations in remote areas that show moderate phenotypic divergence. Here, we quantify patterns of phenotypic divergence in morphology and plumage colour and use mitochondrial DNA genes, a nuclear intron, and genomewide SNPs to reconstruct the demographic and evolutionary history of the genus to infer relative rates of evolutionary divergence among lineages. We found that geographically isolated populations have evolved independently for hundreds of thousands of years despite little differentiation in phenotype, in sharp contrast to phenotypically diverse northern forms, which have diversified within the last few thousand years as a result of the rapid postglacial recolonization of North America. SNP data resolved young northern lineages into reciprocally monophyletic lineages, indicating low rates of gene flow even among closely related parapatric forms, and suggesting a role for strong genetic drift or multifarious selection acting on multiple loci in driving lineage divergence. Juncos represent a compelling example of speciation in action, where the combined effects of historical and selective factors have produced one of the fastest cases of speciation known in vertebrates.  相似文献   

9.
We investigated the role of selection in generating and maintaining species distinctness in spite of ongoing gene flow, using two zones of secondary contact between large gull species in Europe (Larus argentatus and Larus cachinnans) and North America (Larus glaucescens and Larus occidentalis). We used the pattern of neutral genetic differentiation at nine microsatellite loci (F(ST)) as an indicator of expected changes under neutral processes and compared it with phenotypic differentiation (P(ST)) for a large number of traits (size, plumage melanism and coloration of bare parts). Even assuming very low heritability, interspecific divergence between L. glaucescens and L. occidentalis in plumage melanism and orbital ring colour clearly exceeded neutral differentiation. Similarly, melanism of the central primaries was highly divergent between L. argentatus and L. cachinnans. Such divergence is unlikely to have arisen randomly and is therefore attributed to spatially varying selection. Variation in plumage melanism in both transects agrees with Gloger's rule, which suggests that latitude (and associated sun and humidity gradients) could be the selective pressure shaping differentiation in plumage melanism. We suggest that strong species differentiation in orbital ring colour results from sexual selection. We conclude that these large gull species, along with other recently diverged species that hybridize after coming into secondary contact, may differ only in restricted regions of the genome that are undergoing strong disruptive selection because of their phenotypic effects.  相似文献   

10.
Hybridization has presented a challenge for taxonomists and conservation biologists, since hybridizing forms could be stable evolutionary entities or ephemeral forms that are blending together. However, hybrid zones also provide a unique opportunity for evolutionary biologists who study the interaction between gene flow and reproductive isolation in speciation. Three forms of woodpeckers (sapsuckers; genus Sphyrapicus) in North America that are mostly geographically separated but hybridize with each other where they come into contact present a remarkable system for the study of hybridization. We provide the first comprehensive analysis of phenotypic and genetic variation across a hybrid zone between two of these forms, the red‐breasted Sphyrapicus ruber and yellow‐bellied S. varius sapsuckers. The objective was to infer whether selection maintains the differences between forms. Our analysis of eight morphometric and 20 plumage traits, and two molecular markers showed clear differences between the forms and roughly concordant clinal variation across a narrow hybrid zone. Thirty percent of sampled birds in the hybrid zone had mixed west/east genotypes at the genetic markers examined. The center of the genetic cline was located 20 km west of the crest of the Rocky Mountains. The width of the zone was 122 km, narrower than would be expected under neutral blending given reasonable estimates of the age of the zone and individual dispersal distances. Heterozygote deficit and cytonuclear disequilibrium at the centre of the hybrid zone suggested nonrandom mating or limited hybridization. Given these patterns and lack of evidence for habitat segregation we conclude that this hybrid zone is maintained by selection, most likely in the form of hybrid inferiority. This study provides an illustrative example of extensive hybridization between stable entities, providing additional evidence against the historical practice of treating hybridizing forms as members of the same species.  相似文献   

11.
Categorizing individuals into discrete forms in colour polymorphic species can overlook more subtle patterns in coloration that can be of functional significance. Thus, quantifying inter-individual variation in these species at both within- and between-morph levels is critical to understand the evolution of colour polymorphisms. Here we present analyses of inter-individual colour variation in the Reunion grey white-eye (Zosterops borbonicus), a colour polymorphic wild bird endemic to the island of Reunion in which all highland populations contain two sympatric colour morphs, with birds showing predominantly grey or brown plumage, respectively. We first quantified colour variation across multiple body areas by using a continuous plumage colour score to assess variation in brown-grey coloration as well as smaller scale variation in light patches. To examine the possible causes of among-individual variation, we tested if colour variation in plumage component elements could be explained by genotypes at two markers near a major-effect locus previously related to back coloration in this species, and by other factors such as age, sex and body condition. Overall, grey-brown coloration was largely determined by genetic factors and was best described by three distinct clusters that were associated to genotypic classes (homozygotes and heterozygote), with no effect of age or sex, whereas variation in smaller light patches was primarily related to age and sex. Our results highlight the importance of characterizing subtle plumage variation beyond morph categories that are readily observable since multiple patterns of colour variation may be driven by different mechanisms, have different functions and will likely respond in different ways to selection.  相似文献   

12.
The Réunion grey white‐eye (Zosterops borbonicus), a small passerine endemic to the island of Réunion (Mascarene archipelago), constitutes an extraordinary case of phenotypic variation within a bird species, with conspicuous plumage colour differentiation at a microgeographical scale. To understand whether natural selection could explain such variability, we compared patterns of variation in morphological and plumage colour traits within and among populations. To quantify morphological variation, we used measurements obtained by Frank Gill in the 1960s from 239 individuals collected in 60 localities distributed over the entire island of Réunion. To quantify colour variation, we measured the reflectance spectra of plumage patches of 50 males from a subset of Gill's specimens belonging to the five recognized plumage colour variants and used a visual model to project these colours in an avian‐appropriate, tetrachromatic, colour space. We found that variants occupy different regions of the avian colour space and that between‐variant differences for most plumage patches could be discriminated by the birds. Differences in morphology were also detected, but these were, in general, smaller than colour differences. Overall, we found that variation in both plumage colour and morphology among variants is greater than would be expected if genetic drift alone was responsible for phenotypic divergence. As the plumage colour variants correspond to four geographical forms, our results suggest that phenotypic evolution in the Réunion grey white‐eye is at least partly explained by divergent selection in different habitats or regions. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 459–473.  相似文献   

13.
Phenotypic differentiation plays an important role in the formation and maintenance of reproductive barriers. In some cases, variation in a few key aspects of phenotype can promote and maintain divergence; hence, the identification of these traits and their associations with patterns of genomic divergence is crucial for understanding the patterns and processes of population differentiation. We studied hybridization between the alba and personata subspecies of the white wagtail (Motacilla alba), and quantified divergence and introgression of multiple morphological traits and 19,437 SNP loci on a 3,000 km transect. Our goal was to identify traits that may contribute to reproductive barriers and to assess how variation in these traits corresponds to patterns of genome‐wide divergence. Variation in only one trait—head plumage patterning—was consistent with reproductive isolation. Transitions in head plumage were steep and occurred over otherwise morphologically and genetically homogeneous populations, whereas cline centres for other traits and genomic ancestry were displaced over 100 km from the head cline. Field observational data show that social pairs mated assortatively by head plumage, suggesting that these phenotypes are maintained by divergent mating preferences. In contrast, variation in all other traits and genetic markers could be explained by neutral diffusion, although weak ecological selection cannot be ruled out. Our results emphasize that assortative mating may maintain phenotypic differences independent of other processes shaping genome‐wide variation, consistent with other recent findings that raise questions about the relative importance of mate choice, ecological selection and selectively neutral processes for divergent evolution.  相似文献   

14.
Hybrid zones, where distinct populations meet and interbreed, give insight into how differences between populations are maintained despite gene flow. Studying clines in genetic loci and adaptive traits across hybrid zones is a powerful method for understanding how selection drives differentiation within a single species, but can also be used to compare parallel divergence in different species responding to a common selective pressure. Here, we study parallel divergence of wing colouration in the butterflies Heliconius erato and H. melpomene, which are distantly related Müllerian mimics which show parallel geographic variation in both discrete variation in pigmentation, and quantitative variation in structural colour. Using geographic cline analysis, we show that clines in these traits are positioned in roughly the same geographic region for both species, which is consistent with direct selection for mimicry. However, the width of the clines varies markedly between species. This difference is explained in part by variation in the strength of selection acting on colour traits within each species, but may also be influenced by differences in the dispersal rate and total strength of selection against hybrids between the species. Genotyping‐by‐sequencing also revealed weaker population structure in H. melpomene, suggesting the hybrid zones may have evolved differently in each species, which may also contribute to the patterns of phenotypic divergence in this system. Overall, we conclude that multiple factors are needed to explain patterns of clinal variation within and between these species, although mimicry has probably played a central role.  相似文献   

15.
A fundamental issue in speciation research is to evaluate phenotypic variation and the genomics driving the evolution of reproductive isolation between sister taxa. Above all, hybrid zones are excellent study systems for researchers to examine the association of genetic differentiation, phenotypic variation and the strength of selection. We investigated two contact zones in the marine gastropod Littorina saxatilis and utilized landmark‐based geometric morphometric analysis together with amplified fragment length polymorphism (AFLP) markers to assess phenotypic and genomic divergence between ecotypes under divergent selection. From genetic markers, we calculated the cline width, linkage disequilibrium and the average effective selection on a locus. Additionally, we conducted an association analysis linking the outlier loci and phenotypic variation between ecotypes and show that a proportion of outlier loci are associated with key adaptive phenotypic traits.  相似文献   

16.
Hybrid zones of ecologically divergent populations are ideal systems to study the interaction between natural selection and gene flow during the initial stages of speciation. Here, we perform an amplified fragment length polymorphism (AFLP) genome scan in parallel hybrid zones between divergent ecotypes of the marine snail Littorina saxatilis, which is considered a model case for the study of ecological speciation. Ridged‐Banded (RB) and Smooth‐Unbanded (SU) ecotypes are adapted to different shore levels and microhabitats, although they present a sympatric distribution at the mid‐shore where they meet and mate (partially assortatively). We used shell morphology, outlier and nonoutlier AFLP loci from RB, SU and hybrid specimens captured in sympatry to determine the level of phenotypic and genetic introgression. We found different levels of introgression at parallel hybrid zones and nonoutlier loci showed more gene flow with greater phenotypic introgression. These results were independent from the phylogeography of the studied populations, but not from the local ecological conditions. Genetic variation at outlier loci was highly correlated with phenotypic variation. In addition, we used the relationship between genetic and phenotypic variation to estimate the heritability of morphological traits and to identify potential Quantitative Trait Loci to be confirmed in future crosses. These results suggest that ecology (exogenous selection) plays an important role in this hybrid zone. Thus, ecologically based divergent natural selection is responsible, simultaneously, for both ecotype divergence and hybridization. On the other hand, genetic introgression occurs only at neutral loci (nonoutliers). In the future, genome‐wide studies and controlled crosses would give more valuable information about this process of speciation in the face of gene flow.  相似文献   

17.
Hybridization can either reinforce or erode species boundaries; therefore, hybrid zones offer a natural experimental setting in which to assess the dynamics of reproductive isolation. Secondary contact zones, in particular, present a partial separation of the original divergence mechanisms and the subsequent genomic architecture of reproductive isolation (or lack thereof). The spatial context of secondary contact and its consequent effect on dispersal play vital roles on the contact’s outcome. In a hybrid complex between two towhee species in Mexico, Pipilo maculatus and Pipilo ocai, two major hybrid gradients provide natural replicates for comparison. However, genetic analyses demonstrate significant divergence between geographically separate parental populations of each species and divergence of populations within each hybrid zone. The two hybrid transects (Teziutlán and Transvolcanic) are distinct and evidence suggests allelic introgression both across the species boundary and between the two transects. Habitat corridors for dispersal represent functional connectivity hotspots where the two transects meet. Both habitat connectivity and genetic differentiation between geographically disparate parental populations appear to influence the dynamics of gene flow across the hybrid gradients. In southern sympatric populations (Mt. Orizaba and Oaxaca) where morphological evidence for hybridization is scarce, opposing species’ alleles appear to traverse through the hybrid zones rather than arising from cryptic local hybridization. These results illustrate the importance of environmentally mediated gene flow in the context of secondary contact as an important force influencing evolutionary trajectory.  相似文献   

18.
Geographic variation in phenotypes plays a key role in fundamental evolutionary processes such as local adaptation, population differentiation and speciation, but the selective forces behind it are rarely known. We found support for the hypothesis that geographic variation in plumage traits of the pied flycatcher Ficedula hypoleuca is explained by character displacement with the collared flycatcher Ficedula albicollis in the contact zone. The plumage traits of the pied flycatcher differed strongly from the more conspicuous collared flycatcher in a sympatric area but increased in conspicuousness with increasing distance to there. Phenotypic differentiation (PST) was higher than that in neutral genetic markers (FST), and the effect of geographic distance remained when statistically controlling for neutral genetic differentiation. This suggests that a cline created by character displacement and gene flow explains phenotypic variation across the distribution of this species. The different plumage traits of the pied flycatcher are strongly to moderately correlated, indicating that they evolve non‐independently from each other. The flycatchers provide an example of plumage patterns diverging in two species that differ in several aspects of appearance. The divergence in sympatry and convergence in allopatry in these birds provide a possibility to study the evolutionary mechanisms behind the highly divergent avian plumage patterns.  相似文献   

19.
Dispersal and natural selection are key evolutionary processes shaping the distribution of phenotypic and genetic diversity. For species inhabiting complex spatial environments however, it is unclear how the balance between gene flow and selection may be influenced by landscape heterogeneity and environmental variation. Here, we evaluated the effects of dendritic landscape structure and the selective forces of hydroclimatic variation on population genomic parameters for the Murray River rainbowfish, Melanotaenia fluviatilis across the Murray–Darling Basin, Australia. We genotyped 249 rainbowfish at 17,503 high‐quality SNP loci and integrated these with models of network connectivity and high‐resolution environmental data within a riverscape genomics framework. We tested competing models of gene flow before using multivariate genotype–environment association (GEA) analysis to test for signals of adaptive divergence associated with hydroclimatic variation. Patterns of neutral genetic variation were consistent with expectations based on the stream hierarchy model and M. fluviatilis’ moderate dispersal ability. Models incorporating dendritic network structure suggested that landscape heterogeneity is a more important factor determining connectivity and gene flow than waterway distance. Extending these results, we also introduce a novel approach to controlling for the unique effects of dendritic network structure in GEA analyses of populations of aquatic species. We identified 146 candidate loci potentially underlying a polygenic adaptive response to seasonal fluctuations in stream flow and variation in the relative timing of temperature and precipitation extremes. Our findings underscore an emerging predominant role for seasonal variation in hydroclimatic conditions driving local adaptation and are relevant for informing proactive conservation management.  相似文献   

20.
Sorex araneus, the Common shrew, is a species with more than 70 karyotypic races, many of which form parapatric hybrid zones, making it a model for studying chromosomal speciation. Hybrids between races have reduced fitness, but microsatellite markers have demonstrated considerable gene flow between them, calling into question whether the chromosomal barriers actually do contribute to genetic divergence. We studied phenotypic clines across two hybrid zones with especially complex heterozygotes. Hybrids between the Novosibirsk and Tomsk races produce chains of nine and three chromosomes at meiosis, and hybrids between the Moscow and Seliger races produce chains of eleven. Our goal was to determine whether phenotypes show evidence of reduced gene flow at hybrid zones. We used maximum likelihood to fit tanh cline models to geometric shape data and found that phenotypic clines in skulls and mandibles across these zones had similar centers and widths as chromosomal clines. The amount of phenotypic differentiation across the zones is greater than expected if it were dissipating due to unrestricted gene flow given the amount of time since contact, but it is less than expected to have accumulated from drift during allopatric separation in glacial refugia. Only if heritability is very low, Ne very high, and the time spent in allopatry very short, will the differences we observe be large enough to match the expectation of drift. Our results therefore suggest that phenotypic differentiation has been lost through gene flow since post-glacial secondary contact, but not as quickly as would be expected if there was free gene flow across the hybrid zones. The chromosomal tension zones are confirmed to be partial barriers that prevent differentiated races from becoming phenotypically homogenous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号