首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
While many studies demonstrate that herbivores alter selection on plant reproductive traits, little is known about whether antiherbivore defenses affect selection on these traits. We hypothesized that antiherbivore defenses could alter selection on reproductive traits by altering trait expression through allocation trade‐offs, or by altering interactions with mutualists and/or antagonists. To test our hypothesis, we used white clover, Trifolium repens, which has a Mendelian polymorphism for the production of hydrogen cyanide—a potent antiherbivore defense. We conducted a common garden experiment with 185 clonal families of T. repens that included cyanogenic and acyanogenic genotypes. We quantified resistance to herbivores, and selection on six floral traits and phenology via male and female fitness. Cyanogenesis reduced herbivory but did not alter the expression of reproductive traits through allocation trade‐offs. However, the presence of cyanogenic defenses altered natural selection on petal morphology and the number of flowers within inflorescences via female fitness. Herbivory influenced selection on flowers and phenology via female fitness independently of cyanogenesis. Our results demonstrate that both herbivory and antiherbivore defenses alter natural selection on plant reproductive traits. We discuss the significance of these results for understanding how antiherbivore defenses interact with herbivores and pollinators to shape floral evolution.  相似文献   

2.
Pollinators and herbivores can both affect the evolutionary diversification of plant reproductive traits. However, plant defences frequently alter antagonistic and mutualistic interactions, and therefore, variation in plant defences may alter patterns of herbivore‐ and pollinator‐mediated selection on plant traits. We tested this hypothesis by conducting a common garden field experiment using 50 clonal genotypes of white clover (Trifolium repens) that varied in a Mendelian‐inherited chemical antiherbivore defence—the production of hydrogen cyanide (HCN). To evaluate whether plant defences alter herbivore‐ and/or pollinator‐mediated selection, we factorially crossed chemical defence (25 cyanogenic and 25 acyanogenic genotypes), herbivore damage (herbivore suppression) and pollination (hand pollination). We found that herbivores weakened selection for increased inflorescence production, suggesting that large displays are costly in the presence of herbivores. In addition, herbivores weakened selection on flower size but only among acyanogenic plants, suggesting that plant defences reduce the strength of herbivore‐mediated selection. Pollinators did not independently affect selection on any trait, although pollinators weakened selection for later flowering among cyanogenic plants. Overall, cyanogenic plant defences consistently increased the strength of positive directional selection on reproductive traits. Herbivores and pollinators both strengthened and weakened the strength of selection on reproductive traits, although herbivores imposed ~2.7× stronger selection than pollinators across all traits. Contrary to the view that pollinators are the most important agents of selection on reproductive traits, our data show that selection on reproductive traits is driven primarily by variation in herbivory and plant defences in this system.  相似文献   

3.
Plants and herbivores are thought to be engaged in a coevolutionary arms race: rising frequencies of plants with anti-herbivore defences exert pressure on herbivores to resist or circumvent these defences and vice versa. Owing to its frequency-dependent character, the arms race hypothesis predicts that herbivores exhibit genetic variation for traits that determine how they deal with the defences of a given host plant phenotype. Here, we show the existence of distinct variation within a single herbivore species, the spider mite Tetranychus urticae, in traits that lead to resistance or susceptibility to jasmonate (JA)-dependent defences of a host plant but also in traits responsible for induction or repression of JA defences. We characterized three distinct lines of T. urticae that differentially induced JA-related defence genes and metabolites while feeding on tomato plants (Solanum lycopersicum). These lines were also differently affected by induced JA defences. The first line, which induced JA-dependent tomato defences, was susceptible to those defences; the second line also induced JA defences but was resistant to them; and the third, although susceptible to JA defences, repressed induction. We hypothesize that such intraspecific variation is common among herbivores living in environments with a diversity of plants that impose diverse selection pressure.  相似文献   

4.
Elevated jasmonic acid (JA) concentrations in response to herbivory can induce wounded plants to produce defences against herbivores. In laboratory and field experiments we compared the effects of exogenous JA treatment to two closely related cabbage species on the host‐searching and oviposition preference of the diamondback moth (DBM), Plutella xylostella. JA‐treated Chinese cabbage (Brassica campestris) was less attractive than untreated Chinese cabbage to ovipositing DBM, while JA‐treatment of common cabbage (B. oleracea) made plants more attractive than untreated controls for oviposition by this insect. Similar effects were observed when plants of the two species were damaged by DBM larvae. In the absence of insect‐feeding, or JA application, Chinese cabbage is much more attractive to DBM than common cabbage. Inducible resistance therefore appears to occur in a more susceptible plant and induced susceptibility appears to occur in a more resistant plant, suggesting a possible balance mechanism between constitutive and inducible defences to a specialist herbivore.  相似文献   

5.
Plants produce nectar in their flowers as a reward for their pollinators and most of our crops depend on insect pollination, but little is known on the physiological control of nectar secretion. Jasmonates are well-known for their effects on senescence, the development and opening of flowers and on plant defences such as extrafloral nectar. Their role in floral nectar secretion has, however, not been explored so far. We investigated whether jasmonates have an influence on floral nectar secretion in oil-seed rape, Brassica napus. The floral tissues of this plant produced jasmonic acid (JA) endogenously, and JA concentrations peaked shortly before nectar secretion was highest. Exogenous application of JA to flowers induced nectar secretion, which was suppressed by treatment with phenidone, an inhibitor of JA synthesis. This effect could be reversed by additional application of JA. Jasmonoyl-isoleucine and its structural mimic coronalon also increased nectar secretion. Herbivory or addition of JA to the leaves did not have an effect on floral nectar secretion, demonstrating a functional separation of systemic defence signalling from reproductive nectar secretion. Jasmonates, which have been intensively studied in the context of herbivore defences and flower development, have a profound effect on floral nectar secretion and, thus, pollination efficiency in B. napus. Our results link floral nectar secretion to jasmonate signalling and thereby integrate the floral nectar secretion into the complex network of oxylipid-mediated developmental processes of plants.  相似文献   

6.
Pollination is a requisite for sexual reproduction in plants and its success may determine the reproductive output of individuals. Pollinator preference for some floral designs or displays that are lacking or poorly developed in focal plants may constrain the pollination process. Foliar herbivory may affect the expression of floral traits, thus reducing pollinator attraction. Natural populations of the Andean species Alstroemeria exerens (Alstromeriaceae) in central Chile show high levels of foliar herbivory, and floral traits show phenotypic variation. In the present field study, we addressed the attractive role of floral traits in A. exerens and the effect of foliar damage on them. Particularly, we posed the following questions: (1) Is there an association between floral display and design traits and the number and duration of pollinator visits? and (2) Does foliar damage affect the floral traits associated with pollinator visitation? To assess the attractiveness of floral traits for pollinators, we recorded the number and duration of visits in 101 focal plants. To evaluate the effects of foliar damage on floral traits, 100 plants of similar size were randomly assigned to control or damage groups during early bud development. Damaged plants were clipped using scissors (50% of leaf area) and control plants were manually excluded from natural herbivores (<5% of leaf area eaten). During the peak of flowering, we recorded the number of open flowers, and estimated corolla and nectar guide areas. The number and duration of pollinator visits was statistically associated with floral design and display traits. Plants with larger displays, corollas and nectar guide areas received more visits. Visits lasted longer as display increases. In addition, foliar damage affected attractive traits. Damaged plants had fewer open flowers and smaller nectar guide areas. We conclude that foliar damage affects plant attractiveness for pollinators and hence may indirectly affect plant fitness.  相似文献   

7.
Root herbivory induces an above-ground indirect defence   总被引:5,自引:0,他引:5  
Indirect plant defences have largely been studied within the scope of above‐ground interactions. Here we provide novel evidence that root herbivory can induce an above‐ground indirect defence. Cotton plants (Gossypium herbaceum) exposed to root‐feeding wireworms (Agriotes lineatus) increased their foliar extrafloral nectar production ten‐fold in comparison to undamaged control plants. Mechanical root damage also yielded an increase in nectar production. In nature, extrafloral nectar production allows plants to recruit predators, which in turn protect the plant against above‐ground insect herbivores. Our results show that root‐feeding herbivores may alter such above‐ground defensive interactions.  相似文献   

8.
Although slugs and snails play important roles in terrestrial ecosystems and cause considerable damage on a variety of crop plants, knowledge about the mechanisms of plant immunity to molluscs is limited. We found slugs to be natural herbivores of Arabidopsis thaliana and therefore investigated possible resistance mechanisms of this species against several molluscan herbivores. Treating wounded leaves with the mucus residue (‘slime trail’) of the Spanish slug Arion lusitanicus increased wound‐induced jasmonate levels, suggesting the presence of defence elicitors in the mucus. Plants deficient in jasmonate biosynthesis and signalling suffered more damage by molluscan herbivores in the laboratory and in the field, demonstrating that JA‐mediated defences protect A. thaliana against slugs and snails. Furthermore, experiments using A. thaliana mutants with altered levels of specific glucosinolate classes revealed the importance of aliphatic glucosinolates in defending leaves and reproductive structures against molluscs. The presence in mollusc faeces of known and novel metabolites arising from glutathione conjugation with glucosinolate hydrolysis products suggests that molluscan herbivores actively detoxify glucosinolates. Higher levels of aliphatic glucosinolates were found in plants during the night compared to the day, which correlated well with the nocturnal activity rhythms of slugs and snails. Our data highlight the function of well‐known antiherbivore defence pathways in resistance against slugs and snails and suggest an important role for the diurnal regulation of defence metabolites against nocturnal molluscan herbivores.  相似文献   

9.
The process of selecting certain desirable traits for plant breeding may compromise other potentially important traits, such as defences against pests; however, specific phenotypic changes occurring over the course of domestication are unknown for most domesticated plants. Cranberry (Vaccinium macrocarpon) offers a unique opportunity to study such changes: its domestication occurred recently, and we have access to the wild ancestors and intermediate varieties used in past crosses. In order to investigate whether breeding for increased yield and fruit quality traits may indirectly affect anti-herbivore defences, the chemical defences have been examined of five related cranberry varieties that span the history of domestication against a common folivore, the gypsy moth (Lymantria dispar). Direct defences were assessed by measuring the performance of gypsy moth caterpillars and levels of phenolic compounds in leaves, and indirect defences by assaying induced leaf volatile emissions. Our results suggest that breeding in cranberry has compromised plant defences: caterpillars performed best on the derived NJS98-23 (the highest-yielding variety) and its parent Ben Lear. Moreover, NJS98-23 showed reduced induction of volatile sesquiterpenes, and had lower concentrations of the defence-related hormone cis-jasmonic acid (JA) than ancestral varieties. However, induced direct defences were not obviously affected by breeding, as exogenous JA applications reduced caterpillar growth and increased the amounts of phenolics independent of variety. Our results suggest that compromised chemical defences in high-yielding cranberry varieties may lead to greater herbivore damage which, in turn, may require more intensive pesticide control measures. This finding should inform the direction of future breeding programmes.  相似文献   

10.
While plant responses to herbivores and pathogens are well characterized, responses to attack by other plants remain largely unexplored. We measured phytohormones and C18 fatty acids in tomato attacked by the parasitic plant Cuscuta pentagona, and used transgenic and mutant plants to explore the roles of the defence‐related phytohormones salicylic acid (SA) and jasmonic acid (JA). Parasite attachment to 10‐day‐old tomato plants elicited few biochemical changes, but a second attachment 10 d later elicited a 60‐fold increase in JA, a 30‐fold increase in SA and a hypersensitive‐like response (HLR). Host age also influenced the response: neither Cuscuta seedlings nor established vines elicited a HLR in 10‐day‐old hosts, but both did in 20‐day‐old hosts. Parasites grew larger on hosts deficient in SA (NahG) or insensitive to JA [jasmonic acid‐insensitive1 (jai1) ], suggesting that both phytohormones mediate effective defences. Moreover, amounts of JA peaked 12 h before SA, indicating that defences may be coordinated via sequential induction of these hormones. Parasitism also induced increases in free linolenic and linoleic acids and abscisic acid. These findings provide the first documentation of plant hormonal signalling induced by a parasitic plant and show that tomato responses to C. pentagona display characteristics similar to both herbivore‐ and pathogen‐induced responses.  相似文献   

11.
In plant–arthropod associations, the first herbivores to colonise a plant may directly or indirectly affect community assembly on that particular plant. Whether the order of arrival of different arthropod species further modulates community assembly and affects plant fitness remains unclear. Using wild Brassica oleracea plants in the field, we manipulated the order of arrival of early‐season herbivores that belong to different feeding guilds, namely the aphid Brevicoryne brassicae and caterpillars of Plutella xylostella. We investigated the effect of herbivore identity and order of arrival on community assembly on two B. oleracea plant populations during two growth seasons. For this perennial plant, we evaluated whether foliar herbivory also affected herbivore communities on the flowers and if these interactions affected plant seed production. Aphid infestation caused an increase in parasitoid abundance, but caterpillars modulated these effects, depending on the order of herbivore infestation and plant population. In the second growth season, when plants flowered, the order of infestation of leaves with aphids and caterpillars more strongly affected abundance of herbivores feeding on the flowers than those feeding on leaves. Infestation with caterpillars followed by aphids caused an increase in flower‐feeding herbivores compared to the reversed order of infestation in one plant population, whereas the opposite effects were observed for the other plant population. The impact on plant seed set in the first reproductive year was limited. Our work shows that the identity and arrival order of early season herbivores may have long‐term consequences for community composition on individual plants and that these patterns may vary among plant populations. We discuss how these community processes may affect plant fitness and speculate on the implications for evolution of plant defences.  相似文献   

12.
The reserve ovary model is a key hypothesis proposed to explain why plants produce surplus flowers and posits that plants may utilize surplus flowers to compensate for losses from floral herbivory. We tested this hypothesis in the prairie plant Eryngium yuccifolium and its floral herbivore Coleotechnites eryngiella. At five Illinois tallgrass prairie sites, we collected central, primary lateral, and secondary lateral inflorescences from E. yuccifolium to determine whether damage by the larvae of C. eryngiella to the flowers in earlier developing inflorescences would be compensated for in later developing inflorescences. Coleotechnites eryngiella does extensive damage to the central and primary inflorescences and little damage to the secondary inflorescences. Later maturing inflorescences did not compensate for early damage by increasing seed production in later inflorescences. The secondary inflorescences of E. yuccifolium may only compensate for catastrophic damage done to the central and primary inflorescences early on in development, serve as additional advertisements for pollinators, act as pollen donors, or allow the plant to take advantage of “ecological windows” of high pollinator and low herbivore abundance. Our findings were spatially and temporally consistent and did not support the predictions of the reserve ovary model in the E. yuccifoliumC. eryngiella system suggesting that in this system, alternate, proximate, and ultimate causes need to be explored for the production of surplus flowers.  相似文献   

13.
Thousands of plant species throughout tropical and temperate zones secrete extrafloral nectar to attract ants, whose presence provides an indirect defense against herbivores. Extrafloral nectaries are located close to flowers and may modify competition between ants and pollinators. Here, we used Lima bean (Phaseolus lunatus L.) to study the plants interaction between ants and flower visitors and its consequences for plant fitness. To test these objectives, we carried out two field experiments in which we manipulated the presence of ants and nectar production via induction with jasmonic acid (JA). We then measured floral and extrafloral nectar production, the number of patrolling ants and flower visitors as well as specific plant fitness traits. Lima bean plants under JA induction produced more nectar in both extrafloral nectaries and flowers, attracted more ants and produced more flowers and seeds than non‐induced plants. Despite an increase in floral nectar in JA plants, application of this hormone had no significant effects on flower visitor attraction. Finally, ant presence did not result in a decrease in the number of visits, but our results suggest that ants could negatively affect pollination efficiency. In particular, JA‐induced plants without ants produced a greater number of seeds compared with the JA‐treated plants with ants.  相似文献   

14.
We used tomato genotypes deficient in the jasmonic acid (JA) pathway to study the interaction between the production of herbivore‐induced plant volatiles (HIPVs) that serve as information cues for herbivores as well as natural enemies of herbivores, and the production of foliar trichomes as defence barriers. We found that jasmonic acid‐insensitive1 (jai1) mutant plants with both reduced HIPVs and trichome production received higher oviposition of adult leafminers, which were more likely to be parasitized by the leafminer parasitoids than JA biosynthesis spr2 mutant plants deficient in HIPVs but not trichomes. We also showed that the preference and acceptance of leafminers and parasitoids to trichome‐removed plants from either spr2 or wild‐type (WT) genotypes over trichome‐intact genotypes can be ascribed to the reduced trichomes on treated plants, but not to altered direct and indirect defence traits such as JA, proteinase inhibitor (PI)‐II and HIPVs levels. Although the HIPVs of WT plants were more attractive to adult insects, the insects preferred trichome‐free jai1 plants for oviposition and also had greater reproductive success on these plants. Our results provide strong evidence that antagonism between HIPV emission and trichome production affects tritrophic interactions. The interactions among defence traits are discussed.  相似文献   

15.
Jasmonates such as jasmonic acid (JA) are plant‐signaling compounds that trigger induced resistance (IR) to a broad range of arthropod herbivores. JA‐dependent defenses are known to reduce the growth and survivorship of many chewing insects, but their impact on piercing–sucking insects such as aphids has not been extensively investigated. In this study, induced resistance was activated in tomato (Lycopersicon esculentum Mill) (Solanaceae) using a foliar application of synthetic JA, and control plants were treated with carrier solution. The life parameters of individual potato aphids and their progeny (Macrosiphum euphorbiae Thomas) (Hemiptera: Aphididae) were evaluated on the unsprayed leaves of plants in order to access the systemic effects of the foliar treatments. IR significantly reduced the longevity and net reproduction of adult aphids, as well as the percentage of juveniles to survive to maturity. These results indicate that JA application induces systemic defenses in tomato that have a direct negative impact on aphid survivorship. This study also examined aphid honeydew excretion, in order to evaluate the potential influence of induced resistance on aphid feeding behavior. The average honeydew production per aphid was comparable on plants with or without JA treatment, indicating that JA‐dependent defenses did not deter feeding. This suggests that the observed effects of JA on aphid survivorship were due to antibiotic rather than antixenotic factors. In addition to studying the effects of JA treatment on a tomato cultivar that is susceptible to aphids, this study also examined the effects of exogenous application of JA on tomato plants that carry the aphid resistance gene, Mi‐1.2. JA application did not significantly enhance or inhibit aphid control on resistant tomato. These findings expand our understanding of the effects of JA‐dependent defenses on piercing–sucking insects, and of the potential interactions between induced resistance and R‐gene mediated aphid resistance in tomato.  相似文献   

16.
Elin Boalt  Kari Lehtilä 《Oikos》2007,116(12):2071-2081
To study mechanisms underlying plant tolerance to herbivore damage, we used apical and foliar damage as experimental treatments to study whether there are similar tolerance mechanisms to different types of damage. We also studied whether tolerance to different types of damage are associated, and whether there is a cost involved in plant tolerance to different types of herbivore damage. Our greenhouse experiment involved 480 plants from 30 full-sib families of an annual weed Raphanus raphanistrum , wild radish, which were subjected to control and two different simulated herbivore damage treatments, apex removal and foliar damage of 30% of leaf area. Apical damage significantly decreased seed production, whereas foliar damage had no effect. There was a significant genetic variation for tolerance to foliar, but not apical damage. No costs were observed in terms of negative correlation between tolerance to either damage type and fitness of undamaged plants. Tolerances to apical and foliar damage were not significantly correlated with each other. We observed a larger number of significant associations between tolerance and reproductive traits than between tolerance and vegetative traits. Plant height and leaf size of damaged plants interacted in their association to tolerance to foliar damage. Inflorescence number and pollen quantity per flower of damaged plants were positively associated with tolerance to apical damage. In late-flowering genotypes, petal size of undamaged plants and pollen quantity of damaged plants were positively associated with tolerance to foliar damage. In summary, traits involved in floral display and male fitness were associated with plant tolerance to herbivore damage.  相似文献   

17.
Abstract  Although exogenous treatment of plants with jasmonic acid (JA) may result in induced responses similar to plant defences induced by herbivory, few studies have compared the details of insect herbivory and JA-mimicked responses. We compared volatiles of two crucifer species, Cardamine impatiens and Lepidium virginicum , in response to Plutella xylostella larval feeding and exogenous application of JA, over the entire period of time when induced changes were detectable. Significant differences in the composition and timing of volatiles occurred between herbivory and JA treatments in both plants. The quantity of nitrile and isothiocyanate released in response to herbivory was significantly larger than that upon JA treatment. In each of the two plant species, most volatile components were emitted immediately upon larval feeding and their quantity dropped rapidly once feeding ceased. In contrast, the emission of volatiles in response to JA treatment lasted for a longer period of time, and the maximum emission rate was recorded 2 and 3 days after JA treatment in L. virginicum and C. impatiens respectively. These findings are discussed in the context of signal-transduction pathways and mechanisms involved in induced emissions of plant volatiles, as well as induced defences mediated by plant volatiles.  相似文献   

18.
Edaphic factors can lead to differences in plant morphology and tissue chemistry. However, whether these differences result in altered plant–insect interactions for soil-generalist plants is less understood. We present evidence that soil chemistry can alter plant–insect interactions both directly, through chemical composition of plant tissue, and indirectly, through plant morphology, for serpentine-tolerant Mimulus guttatus (Phrymaceae). First, we scored floral display (corolla width, number of open flowers per inflorescence, and inflorescence height), flower chemistry, pollinator visitation and florivory of M. guttatus growing on natural serpentine and non-serpentine soil over 2 years. Second, we conducted a common garden reciprocal soil transplant experiment to isolate the effect of serpentine soil on floral display traits and flower chemistry. And last, we observed arrays of field-collected inflorescences and potted plants to determine the effect of soil environment in the field on pollinator visitation and florivore damage, respectively. For both natural and experimental plants, serpentine soil caused reductions in floral display and directly altered flower tissue chemistry. Plants in natural serpentine populations received fewer pollinator visits and less damage by florivores relative to non-serpentine plants. In experimental arrays, soil environment did not influence pollinator visitation (though larger flowers were visited more frequently), but did alter florivore damage, with serpentine-grown plants receiving less damage. Our results demonstrate that the soil environment can directly and indirectly affect plant–mutualist and plant–antagonist interactions of serpentine-tolerant plants by altering flower chemistry and floral display.  相似文献   

19.
Krupnick  Gary A.  Weis  Arthur E. 《Plant Ecology》1998,134(2):151-162
Flower-feeding insects may influence the reproductive behavior of their host plant. In plants with labile sex expression, the ratio of maternal to paternal investment may change in response to damage, an effect that goes beyond the direct reduction of plant gametes. We examined the effects of floral herbivory by the beetle Meligethes rufimanus (Nitidulidae) on the ratio of hermaphroditic flowers to male flowers in an andromonoecious shrub, Isomeris arborea (Capparaceae) in southern California. Plants exposed to herbivory had a greater rate of flower bud abortion than those protected from herbivory. Exposed plants produced a greater proportion of hermaphroditic flowers to male flowers, although damaged inflorescences still produced fewer fruit. An additional manipulative experiment showed that the removal of pistils on inflorescences led to an increase in the proportion of hermaphroditic flowers. This suggests that the presence of fruit may lead to pistil suppression in developing flowers. Adaptive responses to herbivory which favor andromonoecy thus include the continued production of hermaphroditic flowers when floral damage is high (and hence low fruit set), and a switch to male flower production when floral damage is low (and fruit production increases). The consequences of an altered six ratio induced by insect herbivores may lead to indirect effects on both the male and female reproductive success of this plant.  相似文献   

20.
ABSTRACT.
  • 1 Foraging routes of worker and queen bumble bees (Bombus kirbyellus Curtis) collecting nectar from flowers of the alpine sky pilot, Polemonium viscosum Nutt., were followed and the corolla tube length, corolla diameter, floral scent, and number of flowers on plants visited or bypassed by bees were monitored. Additionally, the number and proportion of flowers visited per inflorescence and distance flown from each to the next were recorded. Queens and workers differed significantly in choice of flowers. However, intra-inflorescence visitation rates and departure distances were similar between castes. Castes differed in the extent to which visitation reflected patch quality versus individual floral traits.
  • 2 Both queens and workers failed to visit skunky-flowered plants more often than they failed to visit sweet-flowered ones, and preferred large over small inflorescences. However, queens visited large-flowered plants more often than small-flowered ones, while workers preferred flowers with shorter corolla tubes, regardless of their diameter. Although a number of studies have documented caste specialization on alternate species of host plants, ours is one of the first to show that morphological preferences promote comparable foraging differences between castes on monospecific plant resources.
  • 3 Queens, once on a plant, responded to floral traits by probing more flowers on large inflorescences, as well as on those with broader floral form. Workers did not alter intra-inflorescence visitation rate in response to floral traits.
  • 4 For workers, no significant relationship was demonstrated between the likelihood of passing by a plant and the number of flowers probed on the previous inflorescence visited. Thus, workers appeared to accept or reject each plant of P. viscosum independently. However, queens passed by fewer plants when leaving rich inflorescences than poor ones. These results suggest that workers use only individual plant acceptability in choosing which plants to visit, whereas queens base plant choice on patch and individual attributes. Such differences between castes in foraging rules when exploiting the same floral resource have received little attention, and provide insights into the heterogeneity of harvestable reward distributions from the perspective of the forager population.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号