首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The accuracy of DNA replication results from both the intrinsic DNA polymerase fidelity and the DNA sequence. Although the recent structural studies on polymerases have brought new insights on polymerase fidelity, the role of DNA sequence and structure is less well understood. Here, the analysis of the crystal structures of hotspots for polymerase slippage including (CA)n and (A)n tracts in different intermolecular contexts reveals that, in the B-form, these sequences share common structural alterations which may explain the high rate of replication errors. In particular, a two-faced "Janus-like" structure with shifted base-pairs in the major groove but an apparent normal geometry in the minor groove constitutes a molecular decoy specifically suitable to mislead the polymerases. A model of the rat polymerase beta bound to this structure suggests that an altered conformation of the nascent template-primer duplex can interfere with correct nucleotide incorporation by affecting the geometry of the active site and breaking the rules of base-pairing, while at the same time escaping enzymatic mechanisms of error discrimination which scan for the correct geometry of the minor groove.In contrast, by showing that the A-form greatly attenuates the sequence-dependent structural alterations in hotspots, this study suggests that the A-conformation of the nascent template-primer duplex at the vicinity of the polymerase active site will contribute to fidelity. The A-form may play the role of a structural buffer which preserves the correct geometry of the active site for all sequences. The detailed comparison of the conformation of the nascent template-primer duplex in the available crystal structures of DNA polymerase-DNA complexes shows that polymerase beta, the least accurate enzyme, is unique in binding to a B-DNA duplex even close to its active site. This model leads to several predictions which are discussed in the light of published experimental data.  相似文献   

2.
Abstract The riboprinting technique (restriction fragment length polymorphism analysis of polymerase chain reaction amplified ribosomal DNA) was applied to 8 strains representing 7 species of amoebae from the Vahlkampfia genus (Family Vahlkampfiidae, Class Heterolobosea). The length of the 18S ribosomal gene was found to vary significantly between species. Restriction fragment length polymorphism analysis following digestion of the amplified ribosomal DNA with 18 restriction enzymes confirmed the separate identity of each species, originally based on morphological characteristics, and generated a phylogenetic tree. Two strains assigned to the same species yielded identical riboprints.  相似文献   

3.
DNA polymerases contain active sites that are structurally superimposable and conserved in amino acid sequence. To probe the biochemical and structure-function relationship of DNA polymerases, a large library (200,000 members) of mutant Thermus aquaticus DNA polymerase I (Taq pol I) was created containing random substitutions within a portion of the dNTP binding site (Motif A; amino acids 605-617), and a fraction of all selected active Taq pol I (291 out of 8000) was tested for base pairing fidelity; seven unique mutants that efficiently misincorporate bases and/or extend mismatched bases were identified and sequenced. These mutants all contain substitutions of one specific amino acid, Ile-614, which forms part of the hydrophobic pocket that binds the base and ribose portions of the incoming nucleotide. Mutant Taq pol Is containing hydrophilic substitution I614K exhibit 10-fold lower base misincorporation fidelity, as well as a high propensity to extend mispairs. In addition, these low fidelity mutants containing hydrophilic substitution for Ile-614 can bypass damaged templates that include an abasic site and vinyl chloride adduct ethenoA. During polymerase chain reaction, Taq pol I mutant I614K exhibits an error rate that is >20-fold higher relative to the wild-type enzyme and efficiently catalyzes both transition and transversion errors. These studies have generated polymerase chain reaction-proficient mutant polymerases containing substitutions within the active site that confers low base pairing fidelity and a high error rate. Considering the structural and sequence conservation of Motif A, it is likely that a similar substitution will yield active low fidelity DNA polymerases that are mutagenic.  相似文献   

4.
POLN is a nuclear A-family DNA polymerase encoded in vertebrate genomes. POLN has unusual fidelity and DNA lesion bypass properties, including strong strand displacement activity, low fidelity favoring incorporation of T for template G and accurate translesion synthesis past a 5S-thymine glycol (5S-Tg). We searched for conserved features of the polymerase domain that distinguish it from prokaryotic pol I-type DNA polymerases. A Lys residue (679 in human POLN) of particular interest was identified in the conserved ‘O-helix’ of motif 4 in the fingers sub-domain. The corresponding residue is one of the most important for controlling fidelity of prokaryotic pol I and is a nonpolar Ala or Thr in those enzymes. Kinetic measurements show that K679A or K679T POLN mutant DNA polymerases have full activity on nondamaged templates, but poorly incorporate T opposite template G and do not bypass 5S-Tg efficiently. We also found that a conserved Tyr residue in the same motif not only affects sensitivity to dideoxynucleotides, but also greatly influences enzyme activity, fidelity and bypass. Protein sequence alignment reveals that POLN has three specific insertions in the DNA polymerase domain. The results demonstrate that residues have been strictly retained during evolution that confer unique bypass and fidelity properties on POLN.  相似文献   

5.
A number of metal compounds are important environmental carcinogens; however, the molecular mechanisms of metal-induced genotoxicity are not yet understood. Chromium, for example, is substantially mutagenic in vivo and has been shown to decrease the DNA replication fidelity in vitro. But the mechanism of chromium-induced mutagenesis is unkown and the role of replication fidelity in chromium-induced carciogenesis is unclear. We have used in vitro DNA replication assays to investigate the effects of chromium ions on DNA polymerase activity preliminary to studying their role in chromium-induced mutagenesis. Biologically active M13mp2 DNA was replicated with purified DNA polymerases in the presence of micromolar amounts of chromium with or without the normal divalent cation, magnesium. Nucleotide incorporation kinetics were determined and sequence specific pausing was analyzed by primer-extension. Our results have demonstrated an unexpected polymerase activation by low (0.5–5.0 μm) concentrations of chromium(III) although higher concentrations of chromium are increasingly inhibitory. The increased incorporation seem at low chromium(III) concentrations is the result of increased enzyme processivity and is not polymerase specific. The possible relationship between processivity and metal-ion mutagenesis is discussed.  相似文献   

6.
The family B DNA polymerase gene of Thermococcus thioreducens, an archaeon recently isolated from the Rainbow hydrothermal vent field, was cloned and its protein product expressed, purified and characterized. The gene was found to encode a 1,311 amino acid chain including an intein sequence of 537 residues. Phylogenetic analysis revealed a predominantly vertical type of inheritance of the intein in the Thermococcales order. Primary sequence analysis of the mature protein (TthiPolB) showed significant sequence conservation among DNA polymerases in this family. The structural fold of TthiPolB was predicted against the known crystallographic structure of a family B DNA polymerase from Thermococcus gorgonarius, allowing regional domain assignments within the TthiPolB sequence. The recombinant TthiPolB was overexpressed in Escherichia coli and purified for biochemical characterization. Compared with other DNA polymerases from the Thermococcales order, TthiPolB was found to have moderate thermal stability and fidelity, and a high extension rate, consistent with an extremely low K m corresponding to the dNTP substrate. TthiPolB performed remarkably well in a wide range of PCR conditions, being faster, more stable and more accurate than many commonly used enzymes.  相似文献   

7.
8.
Efficiency of correct nucleotide insertion governs DNA polymerase fidelity   总被引:1,自引:0,他引:1  
DNA polymerase fidelity or specificity expresses the ability of a polymerase to select a correct nucleoside triphosphate (dNTP) from a pool of structurally similar molecules. Fidelity is quantified from the ratio of specificity constants (catalytic efficiencies) for alternate substrates (i.e. correct and incorrect dNTPs). An analysis of the efficiency of dNTP (correct and incorrect) insertion for a low fidelity mutant of DNA polymerase beta (R283A) and exonuclease-deficient DNA polymerases from five families derived from a variety of biological sources reveals that a strong correlation exists between the ability to synthesize DNA and the probability that the polymerase will make a mistake (i.e. base substitution error). Unexpectedly, this analysis indicates that the difference between low and high fidelity DNA polymerases is related to the efficiency of correct, but not incorrect, nucleotide insertion. In contrast to the loss of fidelity observed with the catalytically inefficient R283A mutant, the fidelity of another inefficient mutant of DNA polymerase beta (G274P) is not altered. Thus, although all natural low fidelity DNA polymerases are inefficient, not every inefficient DNA polymerase has low fidelity. Low fidelity polymerases appear to be an evolutionary solution to how to replicate damaged DNA or DNA repair intermediates without burdening the genome with excessive polymerase-initiated errors.  相似文献   

9.
Fidelity of mammalian DNA replication and replicative DNA polymerases.   总被引:11,自引:0,他引:11  
Current models suggest that two or more DNA polymerases may be required for high-fidelity semiconservative DNA replication in eukaryotic cells. In the present study, we directly compare the fidelity of SV40 origin-dependent DNA replication in human cell extracts to the fidelity of mammalian DNA polymerases alpha, delta, and epsilon using lacZ alpha of M13mp2 as a reporter gene. Their fidelity, in decreasing order, is replication greater than or equal to pol epsilon greater than pol delta greater than pol alpha. DNA sequence analysis of mutants derived from extract reactions suggests that replication is accurate when considering single-base substitutions, single-base frameshifts, and larger deletions. The exonuclease-containing calf thymus DNA polymerase epsilon is also highly accurate. When high concentrations of deoxynucleoside triphosphates and deoxyguanosine monophosphate are included in the pol epsilon reaction, both base substitution and frameshift error rates increase. This response suggests that exonucleolytic proofreading contributes to the high base substitution and frameshift fidelity. Exonuclease-containing calf thymus DNA polymerase delta, which requires proliferating cell nuclear antigen for efficient synthesis, is significantly less accurate than pol epsilon. In contrast to pol epsilon, pol delta generates errors during synthesis at a relatively modest concentration of deoxynucleoside triphosphates (100 microM), and the error rate did not increase upon addition of adenosine monophosphate. Thus, we are as yet unable to demonstrate that exonucleolytic proofreading contributes to accuracy during synthesis by DNA polymerase delta. The four-subunit DNA polymerase alpha-primase complex from both HeLa cells and calf thymus is the least accurate replicative polymerase. Fidelity is similar whether the enzyme is assayed immediately after purification or after being stored frozen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
DNA synthesis fidelities of two thermostable DNA polymerases, Thermus aquaticus (Taq) and Thermococcus litoralis (Tli, also known as Vent), and a non-thermostable enzyme, a modified T7 DNA polymerase (Sequenase), were determined by analyzing polymerase chain reaction (PCR) products using denaturing gradient gel electrophoresis (DGGE). The error rates were 4.4, 8.9, and 2.4 x 10(-5) errors/bp for modified T7, Taq, and Tli polymerase, respectively. Reducing the nucleotide triphosphate concentration for Tli polymerase during PCR did not alter the fidelity. The ability of DGGE to detect a mutant present at several percent in a wild type population is related to the polymerase fidelity. To examine the sensitivity of mutant detection, human genomic DNA containing a 1% fraction of a known base pair substitution mutant was PCR-amplified with the three enzymes using primers that flank the mutant sequence. The PCR products were analyzed by DGGE. The signal from the mutant present at 1% was visible in the samples amplified with modified T7 and Tli polymerase, but the higher error rate of Taq polymerase did not permit visualization of the signal in DNA amplified with Taq polymerase.  相似文献   

11.
Activity and accuracy of chromatin-directed DNA replication have been compared in young and aged Mus musculus and Peromyscus leucopus, two murine species with contrasting maximum lifespans. Chromatin isolated from livers of mature adults of both species copied efficiently exogenous DNA templates using predominantly DNA polymerase-β. The DNA synthetic activity of liver chromatin remained constant in both species throughout their lifetimes. The fidelity of chromatin-directed poly [d(A-T)] synthesis was similar for the comparatively short-lived M. musculus and the relatively long-lived P. leucopus and remained unaltered in old animals. The fidelity of poly [d(A-T)] copying catalyzed by DNA polymerase-β dissociated from liver chromatin was comparable to that of the chromatin-directed synthesis. The dissociated enzymes did not exhibit diminished fidelity of poly [d(A-T)] synthesis with age. In all ages of both species examined, the murine liver DNA polymerase-β, both chromatin-associated and solubilized, exhibited high error frequencies; approximately one dGMP was incorporated for every 500–1,000 complementary nucleotides polymerized. The relationship of these results to the accuracy of DNA replication and repair as a determinant of aging is considered.  相似文献   

12.
13.
During the recent field visits to Saurashtra regions of Western India, one of the interesting fungi i.e. Trichaleurina javanica (Rehm) M. Carbone, Agnello & P. Alvarado (Chorioactidaceae, order Pezizales) was collected from Sarkhadiya Hanuman and Sasan (Gir Forest, India). Further confirmation of the identity was carried out by using molecular methods with its DNA barcoding. Review of literature showed that this species was previously reported from India under a different name; the collection here studied is the first one molecularly confirmed. Nucleotide sequence obtained during molecular analysis is submitted into NCBI and is the first record at BOLD data system for its DNA barcode (BOLD ID KSRF-0019).  相似文献   

14.
Stephanopogon is a taxon of multiciliated protists that is now known to belong to Heterolobosea. Small subunit ribosomal DNA (SSU rDNA) phylogenies indicate that Stephanopogon is closely related to or descended from Percolomonas, a small tetraflagellate with a different feeding structure, thus these morphologically dissimilar taxa are of ongoing evolutionary interest. A new strain of Stephanopogon, KM041, was cultured, then characterized by light microscopy, electron microscopy, and SSU rDNA sequencing. KM041 is 18–35 μm (mean 26.8 μm) long, with six main ventral ciliary rows, one ventro‐lateral ciliary row, and three anterior barbs. It closely resembles Stephanopogon minuta Lei et al. 1999 in morphology, and is very closely related to an extinct culture “S. aff. minuta”, yet is markedly dissimilar in SSU rDNA sequence from a different isolate identified as S. minuta. This confirms that there are at least two distinct lineages of S. minuta‐like cells, and we describe KM041 as a new species, Stephanopogon pattersoni n. sp. The ultrastructure of KM041 resembles that of previously studied Stephanopogon species, though it has a novel paraxonemal structure in a few cilia. We note that a sub‐basal‐body pad and bulbous axosome are unlikely to be apomorphies for the StephanopogonPercolomonas clade.  相似文献   

15.
Mutants of DNA polymerase I from Thermus aquaticus (Taq) with higher fidelity compared to the wild type enzyme were identified in an earlier study by Summerer et al. (Angew Chem Int Ed 44:4712–4715, 2005). Here, one of these mutants, PLQ (consensus residues 879–881), was analysed using molecular dynamics simulations. This was done by calculating the structures of the ternary complex comprising the enzyme, the DNA primer and template as well as the incoming nucleotide before the chemical reaction for the Watson-Crick and different mismatched base pairings. The results show that the high fidelity of the mutant can be explained partly by different specific interactions between the amino acids of the enzyme and the DNA primer end as well as, in some mismatches, a displacement of the primer relative to the incoming deoxyribonucleoside triphosphate and the catalytic magnesium ion. This displacement is facilitated by reduced steric interactions between the enzyme and the DNA. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
We measured the insertion fidelity of DNA polymerases alpha and beta and yeast DNA polymerase I at a template site that was previously observed to yield a high frequency of T----G transversions when copied by DNA polymerase beta but not by the other two polymerases. The results provide direct biochemical evidence that base substitution errors by DNA polymerase beta can result from a dislocation mechanism governed by DNA template-primer misalignment. In contrast to DNA polymerase beta, neither Drosophila DNA polymerase alpha nor yeast DNA polymerase I appear to misinsert nucleotides by a dislocation mechanism in either the genetic or kinetic fidelity assays. Dislocation errors by DNA polymerase beta are characterized primarily by a substantial reduction in the apparent Km for inserting a "correct," but ultimately errant, nucleotide compared to the apparent Km governing direct misinsertion. For synthesis by DNA polymerase beta, dislocation results in a 35-fold increase in dCMP incorporation opposite template T (T----G transversion) and a 20-35-fold increase in dTMP incorporation opposite T (T----A transversion); these results are consistent with parallel genetic fidelity measurements. DNA polymerase beta also produces base substitution errors by direct misinsertion. Here nucleotide insertion fidelity results from substantial differences in both Km and Vmax for correct versus incorrect substrates and is influenced strongly by local base sequence.  相似文献   

17.
The complete macronuclear DNA polymerase α gene, previously sequenced in Oxytricha nova, has been cloned from a genomic macronuclear library and sequenced for the hypotrich O. trifallax. Macronuclear DNA clones of DNA polymerase α encoding ∼1000 amino acids, or approximately two-thirds of the open reading frame, have been obtained by PCR and sequenced for Halteria grandinella, Holosticha species, Paraurostyla viridis, Pleurotricha lanceolata, Stylonychia lemnae Teller, Sty. mytilus, Uroleptus gallina, and Urostyla grandis. Phylogenetic relationships inferred from DNA polymerase α amino acid sequences have been used to clarify taxonomic relationships previously determined by morphology of the cell cortex. Hypotrich phylogenies based on DNA polymerase α amino acid sequences are incongruent with morphological and other molecular phylogenies. Based upon these data, we assert that, contrary to morphological data, O. nova and O. trifallax are different species, and we propose that the oligotrich Halteria grandinella be reclassified as a hypotrich. This work also extends the available data base of eukaryotic DNA polymerase α sequences, and suggests new amino acid sequence targets for mutagenesis experiments to continue the functional dissection of DNA pol α biochemistry at the molecular level. Received: 7 January 1997 / Accepted: 7 April 1997  相似文献   

18.
We have determined the fidelity of DNA synthesis by DNA polymerase I (yPol I) from Saccharomyces cerevisiae. To determine whether subunits other than the polymerase catalytic subunit influence fidelity, we measured the accuracy of yPol I purified by conventional procedures, which yields DNA polymerase with a partially proteolyzed catalytic subunit and no associated primase activity, and that of yPol I purified by immunoaffinity chromatography, which yields polymerase having a single high-molecular-weight species of the catalytic subunit, as well as three additional polypeptides and DNA primase activity. In assays that score polymerase errors within the lacZ alpha-complementation gene in M13mp2 DNA, yPol I and the yPol I-primase complex produced single-base substitutions, single-base frameshifts, and larger deletions. For specific errors and template positions, the two forms of polymerase exhibited differences in fidelity that could be as large as 10-fold. Nevertheless, results for the overall error frequency and the spectrum of errors suggest that the yPol I-DNA primase complex is not highly accurate and that, just as for the polymerase alone, its fidelity is not sufficient to account for a low spontaneous mutation rate in vivo. The specificity data also suggest models to explain -1 base frameshifts in nonrepeated sequences and certain complex deletions by a direct repeat mechanism involving aberrant loop-back synthesis.  相似文献   

19.
Zhang Y  Yuan F  Xin H  Wu X  Rajpal DK  Yang D  Wang Z 《Nucleic acids research》2000,28(21):4147-4156
Escherichia coli DNA polymerase IV encoded by the dinB gene is involved in untargeted mutagenesis. Its human homologue is DNA polymerase κ (Polκ) encoded by the DINB1 gene. Our recent studies have indicated that human Polκ is capable of both error-free and error-prone translesion DNA synthesis in vitro. However, it is not known whether human Polκ also plays a role in untargeted mutagenesis. To examine this possibility, we have measured the fidelity of human Polκ during DNA synthesis from undamaged templates. Using kinetic measurements of nucleotide incorporations and a fidelity assay with gapped M13mp2 DNA, we show that human Polκ synthesizes DNA with extraordinarily low fidelity. At the lacZα target gene, human Polκ made on average one error for every 200 nucleotides synthesized, with a predominant T→G transversion mutation at a rate of 1/147. The overall error rate of human Polκ is 1.7-fold lower than human Polη, but 33-fold higher than human Polβ, a DNA polymerase with very low fidelity. Thus, human Polκ is one of the most inaccurate DNA polymerases known. These results support a role for human Polκ in untargeted mutagenesis surrounding a DNA lesion and in DNA regions without damage.  相似文献   

20.
The family B DNA polymerase gene from the archaeon Thermococcus marinus (Tma) contains a long open reading frame of 3,939 bp that encodes 1,312 amino acid residues. The gene is split by one intervening sequence that forms a continuous open reading frame with the two polymerase exteins. In this study, the Tma DNA polymerase gene both with (precursor form) and without (mature form) its intein was expressed in Escherichia coli, purified by heat treatment and HiTrap™ Heparin HP column chromatography and characterized. Primary sequence analysis of the mature Tma polymerase showed high sequence identity with DNA polymerases in the genus Thermococcus. The expressed precursor form was easily spliced during purification steps. The molecular mass of the purified Tma DNA polymerases is about 90 kDa, as estimated by SDS-PAGE. Both Tma DNA polymerases showed the same properties. PCR performed with this enzyme was found to be optimal in the presence of 50 mM Tris–HCl (pH 8.4), 40 mM KCl, 12.5 mM (NH4)2SO4, 2 mM MgCl2, 0.05% Triton X-100 and 0.0075% BSA. Furthermore, long-range PCR and time-saving PCR were performed using various specific ratios of Taq and Tma DNA polymerases (Tma plus DNA polymerase).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号