首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
    
Aims Crofton weed, with a subtropical origin, has successfully invaded in diverse habitats that belong to different climate zones in Southwest China. We tested whether local adaptation plays an important role in the successful invasion of crofton weed in heterogeneous environments.Methods Five populations from different habitats with an altitude ranging from 678 to 2356 m were selected. Plant height, biomass, seed yield and seed germination capability of these populations were investigated in the field. Greenhouse and reciprocal transplant experiments with the five populations were conducted, and all the above characters were measured and compared among these populations.Important findings Plant height, biomass, seed yield and seed germination rate were each significantly different among the five populations in field. However, there was no difference among these populations in the greenhouse experiment. In the reciprocal transplant experiment, plants from the five populations responded similarly to different habitats in the field, indicating lack of local adaptation. Instead, phenotypic plasticity likely plays a key role in the invasion success of crofton weed in different habitats.  相似文献   

3.
1. Salinity is a strong selective force for many aquatic organisms, affecting both ecological and evolutionary processes. Most of our knowledge on the effects of salinity on rotifers in the Brachionus plicatilis species complex is based mainly on populations from waterbodies that experience broad environmental changes both seasonally and annually. We tested the hypothesis that, despite the supposedly high potential for gene flow among rotifers inhabiting neighbouring environments, constant salinity has promoted local adaptation, genetic population divergence and even cryptic speciation in B. plicatilis complex populations from three deep maar lakes of distinct salinities [1.1, 6.5 and 9.0 g L?1 total dissolved solids (TDS)] in Central Mexico. 2. To look for local adaptation, we performed common garden experiments to test the effect of different salinities on population density and intrinsic growth rate (r). Then, we evaluated the genetic divergence by sequencing the cytochrome c oxidase subunit I (COI) gene and performed reproductive trials to assess the potential gene flow among the three populations and with other closely related B. plicatilis complex species. 3. We confirmed that the rotifer populations have phenotypic plasticity in tolerance of salinity, but only rotifers from the least saline lake are adapted to low salinity. Among the populations, sequence divergence at COI was very low (just a single haplotype was found), suggesting a persistent founder effect from a relatively recent single colonisation event and a subsequent dispersal from one lake to the others, and a very restricted immigration rate. In the phylogenetic analysis, rotifers from this area of Mexico clustered in the same clade with the middle‐sized species Brachionus ibericus and B. sp. ‘Almenara’. Mexican rotifers showed successful recognition, copulation and formation of hybrids among them, but interpopulation breeding with the Spanish B. ibericus and B. sp. ‘Almenara’ was unsuccessful. 4. We conclude that the B. plicatilis complex populations from these three lakes belong to a new biological species not yet described (presently named B. sp. ‘Mexico’). To our knowledge, this is the first report of local adaptation of a natural B. plicatilis complex population living in freshwater conditions (1.1 g L?1 TDS).  相似文献   

4.
    
The connectivity of marine populations is often surprisingly lower than predicted by the dispersal capabilities of propagules alone. Estimates of connectivity, moreover, do not always scale with distance and are sometimes counterintuitive. Population connectivity requires more than just the simple exchange of settlers among populations: it also requires the successful establishment and reproduction of exogenous colonizers. Marine organisms often disperse over large spatial scales, encountering very different environments and suffering extremely high levels of post-colonization mortality. Given the growing evidence that such selection pressures often vary over spatial scales that are much smaller than those of dispersal, we argue that selection will bias survival against exogenous colonizers. We call this selection against exogenous colonizers a phenotype–environment mismatch and argue that phenotype–environment mismatches represent an important barrier to connectivity in the sea. Crucially, these mismatches may operate independently of distance and thereby have the potential to explain the counterintuitive patterns of connectivity often seen in marine environments. We discuss how such mismatches might alter our understanding and management of marine populations.
Ecology Letters (2010) 13: 128–140  相似文献   

5.
不同地理种源紫茎泽兰的生态适应性比较   总被引:2,自引:0,他引:2  
采用交互移植法,对移栽在6种不同生境中的5个不同种源紫茎泽兰幼苗的存活率、株高、分枝数、生物量、单株花序数、产种量和种子萌发率进行了为期1年的对比研究.结果表明:各种源紫茎泽兰的幼苗生长和繁殖特性对样地环境条件变化均表现出很强的可塑性.试验样地因素对幼苗株高、分枝数、生物量、单株花序数和产种量的影响均达到极显著水平(P<0.001).随着样地纬度和海拔的升高,各种源的幼苗株高、分枝数量、单株生物量、每株花序数量和单株产种量均呈下降趋势,且各样地间的差异均达到显著水平(P<0.05).但种源因素对幼苗株高、分枝数、生物量、单株花序数和产种量的影响均不显著(P>0.05).除单株产种量外,种源与试验样地的交互作用对上述各指标的影响均不显著.在各样地内,当地种源幼苗的存活率、生长能力和繁殖能力均未表现出显著的优势.说明紫茎泽兰在我国西南地区入侵成功主要依靠其较高的表型可塑性,而局域适应的作用相对较小.  相似文献   

6.
  总被引:1,自引:0,他引:1  
We investigated the conditions under which plastic responses to density are adaptive in natural populations of Impatiens capensis and determined whether plasticity has evolved differently in different selective environments. Previous studies showed that a population that evolved in a sunny site exhibited greater plasticity in response to density than did a population that evolved in a woodland site. Using replicate inbred lines in a reciprocal transplant that included a density manipulation, we asked whether such population differentiation was consistent with the hypothesis of adaptive divergence. We hypothesized that plasticity would be more strongly favored in the sunny site than in the woodland site; consequently, we predicted that selection would be more strongly density dependent in the sunny site, favoring the phenotype that was expressed at each density. Selection on internode length and flowering date was consistent with the hypothesis of adaptive divergence in plasticity. Few costs or benefits of plasticity were detected independently from the expressed phenotype, so plasticity was selected primarily through selection on the phenotype. Correlations between phenotypes and their plasticity varied with the environment and would cause indirect selection on plasticity to be environment dependent. We showed that an appropriate plastic response even to a rare environment can greatly increase genotypic fitness when that environment is favorable. Selection on the measured characters contributed to local adaptation and fully accounted for fitness differences between populations in all treatments except the woodland site at natural density.  相似文献   

7.
    
It is not clear which forms of plasticity in fitness‐related traits are associated with invasive species. On one hand, it may be better to have a robust performance across environments. On the other, it may be beneficial to take advantage of limited favorable conditions. We chose to study a worldwide invasive species, Potamopyrgus antipodarum, and compare the plasticity of life‐history traits of a sample of invasive genotypes to a sample of ancestral‐range genotypes. We examined the responses to salinity in this freshwater snail because it varies spatially and temporally in the introduced range and contributes to variation in fitness in our system. We used a recently developed statistical method that quantifies aspects of differences in the shape among reaction norms. We found that the invasive lineages survived and reproduced with an increased probability at the higher salinities, and were superior to ancestral‐range lineages in only two traits related to reproduction. Moreover, we found that in terms of traits related to growth, the invasive lineages have a performance optimum that is shifted to higher salinities than the ancestral‐range lineages as well as having a narrower niche breadth. Contrary to the prediction of the general purpose genotype hypothesis, we found that invasive lineages tended to be opportunistic specialists.  相似文献   

8.
    
Plants have a remarkable capacity to adapt to local environmental conditions, which can result in ecotypic differentiation. Patterns of differentiation can, however, also be influenced by the extensive phenotypic plasticity exhibited by many plant species. In this study, we evaluated the distinctness of two putative ecotypes of the parasitic herb Rhinanthus angustifolius. We compared population means of characters commonly used to distinguish between the putative ecotypes after growing individuals of R. angustifolius with a variety of host species in a common garden. Resulting data were also pooled over environments to study how phenotypic plasticity affects the distinctness of ecotypes and individual populations. Except for node number, most of the characters were plastic. The pattern of differentiation was consistent with the existence of two, or possibly three, habitat‐related groups of populations; however, we observed considerable overlap in flowering time and morphological characters after pooling data across host environments. The results show that the complex phenological and morphological variation in R. angustifolius is caused by a combination of genetically determined ecotypic differentiation and plastic responses to the host environment and other factors. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2016, 180 , 89–103.  相似文献   

9.
In ectotherms, variation in life history traits among populations is common and suggests local adaptation. However, geographic variation itself is not a proof for local adaptation, as genetic drift and gene flow may also shape patterns of quantitative variation. We studied local and regional variation in means and phenotypic plasticity of larval life history traits in the common frog Rana temporaria using six populations from central Sweden, breeding in either open‐canopy or partially closed‐canopy ponds. To separate local adaptation from genetic drift, we compared differentiation in quantitative genetic traits (QST) obtained from a common garden experiment with differentiation in presumably neutral microsatellite markers (FST). We found that R. temporaria populations differ in means and plasticities of life history traits in different temperatures at local, and in FST at regional scale. Comparisons of differentiation in quantitative traits and in molecular markers suggested that natural selection was responsible for the divergence in growth and development rates as well as in temperature‐induced plasticity, indicating local adaptation. However, at low temperature, the role of genetic drift could not be separated from selection. Phenotypes were correlated with forest canopy closure, but not with geographical or genetic distance. These results indicate that local adaptation can evolve in the presence of ongoing gene flow among the populations, and that natural selection is strong in this system.  相似文献   

10.
    
Morphological characters were compared in parr (total length 33-166 mm) of Atlantic salmon Salmo salar sampled from eight wild populations in three regions, three in northern, two in the middle and three in southern Norway, covering a distance of 1700 km (from 70° N to 58° N). On the basis of morphological characters 94·6% of the individuals were correctly classified into the three regions. Discrimination between populations within these three regions also had a high degree of correct classification (89·0-95·8%). Principle component analysis identified largest differences to be in head characters, notably eye diameter and jawbone, with the smallest diameter and head size among the northernmost populations. Fish from the southern rivers had a deeper body form whereas fish from the middle region had larger heads and pectoral fins. This illustrates that S. salar already in the early parr stage has morphological traits, which can be used in discrimination between regions and populations and that these differences are discernible in spite of the volume of escaped farmed fish spawning in Norwegian rivers during the past 30 years.  相似文献   

11.
  总被引:4,自引:0,他引:4  
Biologists have long known that closely related species are often phenotypically different where they occur together, but are indistinguishable where they occur alone. The causes of such character displacement are controversial, however. We used polyphenic spadefoot toad tadpoles (Spea bombifrons and S. multiplicata) to test the hypothesis that character displacement evolves to minimize competition for food. We also sought to evaluate the role of phenotypic plasticity in the mediation of competitive interactions between these species. Depending on their diet, individuals of both species develop into either a small-headed omnivore morph, which feeds mostly on detritus, or a large-headed carnivore morph, which specializes on shrimp. Laboratory experiments and surveys of natural ponds revealed that the two species were more dissimilar in their tendency to produce carnivores when they occurred together than when they occurred alone. This divergence in carnivore production was expressed as both character displacement (where S. multiplicata's propensity to produce carnivores was lower in sympatry than in allopatry) and as phenotypic plasticity (where S. multiplicata facultatively enhanced carnivore production in S. bombifrons, and S. bombifrons facultatively suppressed carnivore production in S. multiplicata). In separate experiments, we established that S. bombifrons (the species for which carnivore production was enhanced) was the superior competitor for shrimp. Conversely, S. multiplicata (the species for which carnivore production was suppressed and omnivore production enhanced) was the superior competitor for detritus. These results therefore demonstrate that selection to minimize competition for food can cause character displacement. They also suggest that both character displacement and phenotypic plasticity may mediate competitive interactions between species.  相似文献   

12.
    
Both plasticity and genetic differentiation can contribute to phenotypic differences between populations. Using data on non‐fitness traits from reciprocal transplant studies, we show that approximately 60% of traits exhibit co‐gradient variation whereby genetic differences and plasticity‐induced differences between populations are the same sign. In these cases, plasticity is about twice as important as genetic differentiation in explaining phenotypic divergence. In contrast to fitness traits, the amount of genotype by environment interaction is small. Of the 40% of traits that exhibit counter‐gradient variation the majority seem to be hyperplastic whereby non‐native individuals express phenotypes that exceed those of native individuals. In about 20% of cases plasticity causes non‐native phenotypes to diverge from the native phenotype to a greater extent than if plasticity was absent, consistent with maladaptive plasticity. The degree to which genetic differentiation versus plasticity can explain phenotypic divergence varies a lot between species, but our proxies for motility and migration explain little of this variation.  相似文献   

13.
    
The relative contribution of adaptation and phenotypic plasticity can vary between core and edge populations, with implications for invasive success. We investigated the spread of the invasive yellow monkeyflower, Erythranthe gutatta in New Zealand, where it is spreading from lowland agricultural land into high-elevation conservation areas. We investigated the extent of phenotypic variation among clones from across the South Island, looked for adaptation and compared degrees of plasticity among lowland core versus montane range-edge populations. We grew 34 clones and measured their vegetative and floral traits in two common gardens, one in the core range at 9 m a.s.l. and one near the range-edge at 560 m a.s.l. Observed trait variation was explained by a combination of genotypic diversity (as identified through common gardens) and high phenotypic plasticity. We found a subtle signature of local adaptation to lowland habitats but all clones were plastic and able to survive and reproduce in both gardens. In the range-edge garden, above-ground biomass was on average almost double and stolon length almost half that of the same clone in the core garden. Clones from low-elevation sites showed higher plasticity on average than those from higher elevation sites. The highest performing clones in the core garden were also top performers in the range-edge garden. These results suggest some highly fit general-purpose genotypes, possibly pre-adapted to New Zealand montane conditions, best explains the spread of E. gutatta from lowland to higher elevation areas.  相似文献   

14.
    
The distribution of phenotypes in space will be a compromise between adaptive plasticity and local adaptation increasing the fit of phenotypes to local conditions and gene flow reducing that fit. Theoretical models on the evolution of quantitative characters on spatially explicit landscapes have only considered scenarios where optimum trait values change as deterministic functions of space. Here, these models are extended to include stochastic spatially autocorrelated aspects to the environment, and consequently the optimal phenotype. Under these conditions, the regression of phenotype on the environmental variable becomes steeper as the spatial scale on which populations are sampled becomes larger. Under certain deterministic models – such as linear clines – the regression is constant. The way in which the regression changes with spatial scale is informative about the degree of phenotypic plasticity, the relative scale of effective gene flow and the environmental dependency of selection. Connections to temporal models are discussed.  相似文献   

15.
    
Plants produce a multitude of metabolites that contribute to their fitness and survival and play a role in local adaptation to environmental conditions. The effects of environmental variation are particularly well studied within the genus Plantago; however, previous studies have largely focused on targeting specific metabolites. Studies exploring metabolome‐wide changes are lacking, and the effects of natural environmental variation and herbivory on the metabolomes of plants growing in situ remain unknown. An untargeted metabolomic approach using ultra‐high‐performance liquid chromatography–mass spectrometry, coupled with variation partitioning, general linear mixed modeling, and network analysis was used to detect differences in metabolic phenotypes of Plantago major in fifteen natural populations across Denmark. Geographic region, distance, habitat type, phenological stage, soil parameters, light levels, and leaf area were investigated for their relative contributions to explaining differences in foliar metabolomes. Herbivory effects were further investigated by comparing metabolomes from damaged and undamaged leaves from each plant. Geographic region explained the greatest number of significant metabolic differences. Soil pH had the second largest effect, followed by habitat and leaf area, while phenological stage had no effect. No evidence of the induction of metabolic features was found between leaves damaged by herbivores compared to undamaged leaves on the same plant. Differences in metabolic phenotypes explained by geographic factors are attributed to genotypic variation and/or unmeasured environmental factors that differ at the regional level in Denmark. A small number of specialized features in the metabolome may be involved in facilitating the success of a widespread species such as Plantago major into such wide range of environmental conditions, although overall resilience in the metabolome was found in response to environmental parameters tested. Untargeted metabolomic approaches have great potential to improve our understanding of how specialized plant metabolites respond to environmental change and assist in adaptation to local conditions.  相似文献   

16.
    
Geographical variation in behaviour within species is common. However, how behavioural plasticity varies between and within locally adapted populations is less studied. Here, we studied behavioural plasticity induced by perceived predation risk and food availability in pond (low predation - high competition) vs. coastal marine (high predation - low competition) nine-spined sticklebacks (Pungitius pungitius) reared in a common garden experiment. Pond sticklebacks were more active feeders, more risk-taking, aggressive and explorative than marine sticklebacks. Perceived predation risk decreased aggression and risk-taking of all fish. Food restriction increased feeding activity and risk-taking. Pond sticklebacks became more risk-taking than marine sticklebacks under food shortage, whereas well-fed fish behaved similarly. Among poorly fed fish, males showed higher drive to feed, whereas among well-fed fish, females did. Apart from showing how evolutionary history, ontogenetic experience and sex influence behaviour, the results provide evidence for habitat-dependent expression of adaptive phenotypic plasticity.  相似文献   

17.
    
Character displacement occurs when two species compete, and those individuals most dissimilar from the average resource‐use phenotypes of the other species are selectively favored. Few studies have explored the sequence of events by which such divergence comes about. We addressed this issue by studying two species of spadefoot toads that have undergone ecological character displacement with each other. Previous research revealed that phenotypic shifts between sympatric and allopatric populations of one species, Spea multiplicata, reflect a condition‐dependent maternal effect. Here, we show that analogous shifts in the other species, S. bombifrons, cannot similarly be explained by such a maternal effect, and that these shifts instead appear to be underlain by allelic differences. We hypothesize that these two species have evolved different mechanisms of character displacement because they differ in duration in sympatry. Specifically, because they occur at the edge of a range expansion, populations of S. bombifrons have been exposed to S. multiplicata for a longer period. Consequently, S. bombifrons have likely had more time to accumulate genetic changes that promote character displacement. Generally, character displacement may often progress through an initial phase in which trait differences are environmentally induced to one in which they are constitutively expressed.  相似文献   

18.
    
We examine the interaction between phenotypic plasticity and evolutionary adaptation using muscle gene expression levels among populations of the fish Fundulus heteroclitus acclimated to three temperatures. Our analysis reveals shared patterns of phenotypic plasticity due to thermal acclimation as well as non‐neutral patterns of variation among populations adapted to different thermal environments. For the majority of significant differences in gene expression levels, phenotypic plasticity and adaptation operate on different suites of genes. The subset of genes that demonstrate both adaptive differences and phenotypic plasticity, however, exhibit countergradient variation of expression. Thus, expression differences among populations counteract environmental effects, reducing the phenotypic differentiation between populations. Finally, gene‐by‐environment interactions among genes with non‐neutral patterns of expression suggest that the penetrance of adaptive variation depends on the environmental conditions experienced by the individual.  相似文献   

19.
  总被引:2,自引:0,他引:2  
Alpine environments are particularly susceptible to environmental changes associated with global warming but there is potential for alpine plants to adapt to warming if local adaptation occurs and gene flow allows genotypes adapted to low altitudes to colonize higher altitude sites. Here we examine the adaptive potential of a common alpine grass, Poa hiemata, within the restricted alpine habitat of Australian mountains, across a narrow altitudinal gradient replicated in three areas. Grasses at high altitude sites had shorter leaf lengths and larger circumferences than those at lower sites. Transplant experiments with clonal material and plants grown from seed indicated that these differences were partly genetic, with environmental and genetic factors both contributing to the differences between altitudes. Differences in altitudinal forms were also evident in a common garden experiment. Plants showed a home-site advantage in terms of survival. A fitness analysis indicated that at high altitude sites, selection favored plants with short leaves and larger circumferences, whereas these traits were selected in the opposite direction at the low altitude sites. These findings indicate cogradient selection and potential for both plastic and genotypic shifts in response to climate change in P. hiemata.  相似文献   

20.
Here, patterns of phenotypic plasticity and trait integration of leaf characteristics in six geographically discrete populations of the perennial herb Pelargonium australe were compared. It was hypothesized that populations would show local adaptation in trait means, but similar patterns of plasticity and trait integration. Further, it was questioned whether phenotypic plasticity was positively correlated with environmental heterogeneity and whether plasticity for water-use traits in particular was adaptive. Seedlings were grown in a glasshouse at six combinations of water and nutrient availability. Leaf anatomical, morphological and gas exchange traits were measured. High amounts of plasticity in leaf traits were found in response to changes in growth conditions and there was evidence of local adaptation among the populations. While there were significant correlations between plasticity and environmental heterogeneity, not all were positive. Notably, patterns of plasticity and trait integration varied significantly among populations. Despite that variation, some of the observed plasticity was adaptive: fitness was correlated with conservative water use when water was limiting. Pelargonium arrived in Australia approximately 5 million yr ago. It is concluded here that high amounts of plasticity, in some cases adaptive, and weak integration among traits may be key to the spread and success of this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号