首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 15 毫秒
1.
Floral landscapes comprise diverse phytochemical combinations. Individual phytochemicals in floral nectar and pollen can reduce infection in bees and directly inhibit trypanosome parasites. However, gut parasites of generalist pollinators, which consume nectar and pollen from many plant species, are exposed to phytochemical combinations. Interactions between phytochemicals could augment or decrease effects of single compounds on parasites. Using a matrix of 36 phytochemical treatment combinations, we assessed the combined effects of two floral phytochemicals, eugenol and thymol, against four strains of the bumblebee gut trypanosome Crithidia bombi. Eugenol and thymol had synergistic effects against C. bombi growth across seven independent experiments, showing that the phytochemical combination can disproportionately inhibit parasites. The strength of synergistic effects varied across strains and experiments. Thus, the antiparasitic effects of individual compounds will depend on both the presence of other phytochemicals and parasite strain identity. The presence of synergistic phytochemical combinations could augment the antiparasitic activity of individual compounds for pollinators in diverse floral landscapes.  相似文献   

2.
The type three effector AvrRpm1Pma from Pseudomonas syringae pv. maculicola (Pma) triggers an RPM1‐mediated immune response linked to phosphorylation of RIN4 (RPM1‐interacting protein 4) in Arabidopsis. However, the effector–resistance (R) gene interaction is not well established with different AvrRpm1 effectors from other pathovars. We investigated the AvrRpm1‐triggered immune responses in Nicotiana species and isolated Rpa1 (R esistance to P seudomonas syringae pv. a ctinidiae 1) via a reverse genetic screen in Nicotiana tabacum. Transient expression and gene silencing were performed in combination with co‐immunoprecipitation and growth assays to investigate the specificity of interactions that lead to inhibition of pathogen growth. Two closely related AvrRpm1 effectors derived from Pseudomonas syringae pv. actinidiae biovar 3 (AvrRpm1Psa) and Pseudomonas syringae pv. syringae strain B728a (AvrRpm1Psy) trigger immune responses mediated by RPA1, a nucleotide‐binding leucine‐rich repeat protein with an N‐terminal coiled‐coil domain. In a display of contrasting specificities, RPA1 does not respond to AvrRpm1Pma, and correspondingly AvrRpm1Psa and AvrRpm1Psy do not trigger the RPM1‐mediated response, demonstrating that separate R genes mediate specific immune responses to different AvrRpm1 effectors. AvrRpm1Psa co‐immunoprecipitates with RPA1, and both proteins co‐immunoprecipitate with RIN4. In contrast with RPM1, however, RPA1 was not activated by the phosphomimic RIN4T166D and silencing of RIN4 did not affect the RPA1 activity. Delivery of AvrRpm1Psa by Pseudomonas syringae pv. tomato (Pto) in combination with transient expression of Rpa1 resulted in inhibition of the pathogen growth in N. benthamiana. Psa growth was also inhibited by RPA1 in N. tabacum.  相似文献   

3.
Resource competition is frequently strong among parasites that feed within small discrete resource patches, such as seeds or fruits. The properties of a host can influence the behavioural, morphological and life‐history traits of associated parasites, including traits that mediate competition within the host. For seed parasites, host size may be an especially important determinant of competitive ability. Using the seed beetle, Callosobruchus maculatus, we performed replicated, reciprocal host shifts to examine the role of seed size in determining larval competitiveness and associated traits. Populations ancestrally associated with either a small host (mung bean) or a large one (cowpea) were switched to each other's host for 36 generations. Compared to control lines (those remaining on the ancestral host), lines switched from the small host to the large host evolved greater tolerance of co‐occurring larvae within seeds (indicated by an increase in the frequency of small seeds yielding two adults), smaller egg size and higher fecundity. Each change occurred in the direction predicted by the traits of populations already adapted to cowpea. However, we did not observe the expected decline in adult mass following the shift to the larger host. Moreover, lines switched from the large host (cowpea) to the small host (mung bean) did not evolve the predicted increase in larval competitiveness or egg size, but did exhibit the predicted increase in body mass. Our results thus provide mixed support for the hypothesis that host size determines the evolution of competition‐related traits of seed beetles. Evolutionary responses to the two host shifts were consistent among replicate lines, but the evolution of larval competition was asymmetric, with larval competitiveness evolving as predicted in one direction of host shift, but not the reverse. Nevertheless, our results indicate that switching hosts is sufficient to produce repeatable and rapid changes in the competition strategy and fitness‐related traits of insect populations.  相似文献   

4.
Parasites manipulating their host to facilitate trophic transmission is a widespread and diverse phenomenon. Trematode eye‐flukes in the family Diplostomidae infect a variety of fish species as metacercariae, many residing in the eyes. A recently described diplostomid, Tylodelphys darbyi, from the South Island of New Zealand has been found to infect common bully Gobiomorphus cotidianus, an endemic freshwater fish. Within the fish, the metacercariae move about freely in the liquid parts of the eye and are quite large. We hypothesized that increasing intensity of T. darbyi infection will result in increasing visual impairment, thus reducing the ability of G. cotidianus to identify and react to a predatory threat. To test this hypothesis, we performed experiments to (a) examine the fish's reaction to a purely visual predator cue and (b) test their ability to avoid simulated predation under natural levels of infection. Among the 64 fish used in our experiments, T. darbyi had a prevalence of 98.7% with an average of 17.6 worms per fish. However, there was no relationship between T. darbyi intensity and either the fish's reaction to a visual predator stimulus or their ability to escape a simulated predator. Our findings indicate that despite being present in large numbers in the eyes of its fish host, the parasite appears incapable of improving its chances of trophic transmission to its avian definitive host. The results also suggest that the fish G. cotidianus could be using other senses (e.g., olfaction and lateral line) to compensate for visual impairment, and detect and respond to predators.  相似文献   

5.
The animal gut plays a central role in tackling two common ecological challenges, nutrient shortage and food‐borne parasites, the former by efficient digestion and nutrient absorption, the latter by acting as an immune organ and a barrier. It remains unknown whether these functions can be independently optimised by evolution, or whether they interfere with each other. We report that Drosophila melanogaster populations adapted during 160 generations of experimental evolution to chronic larval malnutrition became more susceptible to intestinal infection with the opportunistic bacterial pathogen Pseudomonas entomophila. However, they do not show suppressed immune response or higher bacterial loads. Rather, their increased susceptibility to P. entomophila is largely mediated by an elevated predisposition to loss of intestinal barrier integrity upon infection. These results may reflect a trade‐off between the efficiency of nutrient extraction from poor food and the protective function of the gut, in particular its tolerance to pathogen‐induced damage.  相似文献   

6.
Dissemination of vectorborne diseases depends strongly on the vector's host range and the pathogen's reservoir range. Because vectors interact with pathogens, the direction and strength of a vector's host shift is vital for understanding epidemiology and is embedded in the framework of ecological specialization. This study investigates survival in host‐race evolution of a polyphagous insect disease vector, Hyalesthes obsoletus, whether survival is related to the direction of the host shift (from field bindweed to stinging nettle), the interaction with plant‐specific strains of obligate vectored pathogens/symbionts (stolbur phytoplasma), and whether survival is related to genetic differentiation between the host races. We used a twice repeated, identical nested experimental design to study survival of the vector on alternative hosts and relative to infection status. Survival was tested with Kaplan–Meier analyses, while genetic differentiation between vector populations was quantified with microsatellite allele frequencies. We found significant direct effects of host plant (reduced survival on wrong hosts) and sex (males survive longer than females) in both host races and relative effects of host (nettle animals more affected than bindweed animals) and sex (males more affected than females). Survival of bindweed animals was significantly higher on symptomatic than nonsymptomatic field bindweed, but in the second experiment only. Infection potentially had a positive effect on survival in nettle animals but due to low infection rates the results remain suggestive. Genetic differentiation was not related to survival. Greater negative plant‐transfer effect but no negative effect of stolbur in the derived host race suggests preadaptation to the new pathogen/symbiont strain before strong diversifying selection during the specialization process. Physiological maladaptation or failure to accept the ancestral plant will have similar consequences, namely positive assortative mating within host races and a reduction in the likelihood of oviposition on the alternative plant and thus the acquisition of alternative stolbur strains.  相似文献   

7.
The anti-infectious potential of a selection of putative immunostimulants including six commercial beta-glucans (all extracted from baker's yeast Saccharomyces cerevisiae except for Laminarin) and chitin particles were verified in Artemia nauplii by challenging them under gnotobiotic conditions with the pathogen Vibrio campbellii. Under the described experimental conditions, no differential macroscopic nutritional effect (e.g. growth) was observed among the products. Significant increased survival was observed with beta-glucan (Sigma) and Zymosan and to a lesser extent with MacroGard in challenged nauplii. A poor correlation was found between survival values of the challenged Artemia and the product compositions (such as chitin, mannose and beta-glucan content) indicating that the quality of beta-glucans (e.g. the ratio of beta-1,3 and beta-1,6 glucan, the molecular weight, the dimensional structure, type and frequency of branches), eventually in combination with other unidentified compounds, is more important than the amount of product offered. This small-scale testing under gnotobiotic conditions using freshly hatched Artemia nauplii allows for a rapid and simultaneous screening of anti-infectious and/or putative immunostimulatory polymers, and should be combined with studies on cellular and humoral immune responses in order to gain more quantitative insight into their functional properties.  相似文献   

8.
Order Chiroptera is a unique group of mammals whose members have attained self-powered flight as their main mode of locomotion. Much speculation persists regarding bat evolution; however, lack of sufficient molecular data hampers evolutionary and conservation studies. Of ~ 1200 species, complete mitochondrial genome sequences are available for only eleven. Additional sequences should be generated if we are to resolve many questions concerning these fascinating mammals. Herein, we describe the complete mitochondrial genomes of three bats: Corynorhinus rafinesquii, Lasiurus borealis and Artibeus lituratus. We also compare the currently available mitochondrial genomes and analyze codon usage in Chiroptera. C. rafinesquii, L. borealis and A. lituratus mitochondrial genomes are 16438 bp, 17048 bp and 16709 bp, respectively. Genome organization and gene arrangements are similar to other bats. Phylogenetic analyses using complete mitochondrial genome sequences support previously established phylogenetic relationships and suggest utility in future studies focusing on the evolutionary aspects of these species. Comprehensive analyses of available bat mitochondrial genomes reveal distinct nucleotide patterns and synonymous codon preferences corresponding to different chiropteran families. These patterns suggest that mutational and selection forces are acting to different extents within Chiroptera and shape their mitochondrial genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号