首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Ecological speciation occurs when populations evolve reproductive isolation as a result of divergent natural selection. This isolation can be influenced by many potential reproductive barriers, including selection against hybrids, selection against migrants and assortative mating. How and when these barriers act and interact in nature is understood for relatively few empirical systems. We used a mark–recapture experiment in a contact zone between lake and stream three‐spined sticklebacks (Gasterosteus aculeatus, Linnaeus) to evaluate the occurrence of hybrids (allowing inferences about mating isolation), the interannual survival of hybrids (allowing inferences about selection against hybrids) and the shift in lake‐like vs. stream‐like characteristics (allowing inferences about selection against migrants). Genetic and morphological data suggest the occurrence of hybrids and no selection against hybrids in general, a result contradictory to a number of other studies of sticklebacks. However, we did find selection against more lake‐like individuals, suggesting a barrier to gene flow from the lake into the stream. Combined with previous work on this system, our results suggest that multiple (most weakly and often asymmetric) barriers must be combining to yield substantial restrictions on gene flow. This work provides evidence of a reproductive barrier in lake–stream sticklebacks and highlights the value of assessing multiple reproductive barriers in natural contexts.  相似文献   

3.
Understanding how organisms adapt to their local environment is one of the key goals in molecular ecology. Adaptation can be achieved through qualitative changes in the coding sequence and/or quantitative changes in gene expression, where the optimal dosage of a gene's product in a given environment is being selected for. Differences in gene expression among populations inhabiting distinct environments can be suggestive of locally adapted gene regulation and have thus been studied in different species (Whitehead & Crawford 2006 ; Hodgins‐Davis & Townsend 2009 ). However, in contrast to a gene's coding sequence, its expression level at a given point in time may depend on various factors, including the current environment. Although critical for understanding the extent of local adaptation, it is usually difficult to disentangle the heritable differences in gene regulation from environmental effects. In this issue of Molecular Ecology, Stutz et al. ( 2015 ) describe an experiment in which they reciprocally transplanted three‐spined sticklebacks (Gasterosteus aculeatus) between independent pairs of small and large lakes. Their experimental design allows them to attribute differences in gene expression among sticklebacks either to lake of origin or destination lake. Interestingly, they find that translocated sticklebacks show a pattern of gene expression more similar to individuals from the destination lake than to individuals from the lake of origin, suggesting that expression of the targeted genes is more strongly regulated by environmental effects than by genetics. The environmental effect by itself is not entirely surprising; however, the relative extent of it is. Especially when put in the context of local adaptation and population differentiation, as done here, these findings cast a new light onto the heritability of differential gene expression and specifically its relative importance during population divergence and ultimately ecological speciation.  相似文献   

4.
Parallel evolution is characterised by repeated, independent occurrences of similar phenotypes in a given habitat type, in different parts of the species distribution area. We studied body shape and body armour divergence between five marine, four lake, and ten pond populations of nine‐spined sticklebacks [Pungitius pungitius (Linnaeus, 1758)] in Fennoscandia. We hypothesized that marine and lake populations (large water bodies, diverse fish fauna) would be similar, whereas sticklebacks in isolated ponds (small water bodies, simple fish fauna) would be divergent. We found that pond fish had deeper bodies, shorter caudal peduncles, and less body armour (viz. shorter/absent pelvic spines, reduced/absent pelvic girdle, and reduced number of lateral plates) than marine fish. Lake fish were intermediate, but more similar to marine than to pond fish. Results of our common garden experiment concurred with these patterns, suggesting a genetic basis for the observed divergence. We also found large variation among populations within habitat types, indicating that environmental variables other than those related to gross habitat characteristics might also influence nine‐spined stickleback morphology. Apart from suggesting parallel evolution of morphological characteristics of nine‐spined sticklebacks in different habitats, the results also show a number of similarities to the evolution of three‐spined stickleback (Gasterosteus aculeatus Linnaeus, 1758) morphology. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 403–416.  相似文献   

5.
Recent work incorporating demographic–genetic interactions indicates the importance of population size, gene flow, and selection in influencing local adaptation. This work typically assumes that density‐dependent survival affects individuals equally, but individuals in natural population rarely compete equally. Among‐individual differences in resource use generate stronger competition between more similar phenotypes (frequency‐dependent competition) but it remains unclear how this additional form of selection changes the interactions between population size, gene flow, and local stabilizing selection. Here, we integrate migration–selection dynamics with frequency‐dependent competition. We developed a coupled demographic‐quantitative genetic model consisting of two patches connected by dispersal and subject to local stabilizing selection and competition. Our model shows that frequency‐dependent competition slightly increases local adaptation, greatly increases genetic variance within patches, and reduces the amount that migration depresses population size, despite the increased genetic variance load. The effects of frequency‐dependence depend on the strength of divergent selection, trait heritability, and when mortality occurs in the life cycle in relation to migration and reproduction. Essentially, frequency‐dependent competition reduces the density‐dependent interactions between migrants and residents, the extent to which depends on how different and common immigrants are compared to residents. Our results add new dynamics that illustrate how competition can alter the effects of gene flow and divergent selection on local adaptation and population carrying capacities.  相似文献   

6.
Specialization for the use of different resources can lead to ecological speciation. Accordingly, there are numerous examples of ecologically specialized pairs of fish “species” in postglacial lakes. Using a polymorphic panel of single nucleotide variants, we tested for genetic footprints of within‐lake population stratification in nine‐spined sticklebacks (Pungitius pungitius) collected from three habitats (viz. littoral, benthic, and pelagic) within a northern Swedish lake. Analyses of admixture, population structure, and relatedness all supported the conclusion that the fish from this lake form a single interbreeding unit.  相似文献   

7.
Migration is a ubiquitous life history trait with profound evolutionary and ecological consequences. Recent developments in telemetry and genomics, when combined, can bring significant insights on the migratory ecology of nonmodel organisms in the wild. Here, we used this integrative approach to document dispersal, gene flow and potential for local adaptation in anadromous Arctic Char from six rivers in the Canadian Arctic. Acoustic telemetry data from 124 tracked individuals indicated asymmetric dispersal, with a large proportion of fish (72%) tagged in three different rivers migrating up the same short river in the fall. Population genomics data from 6,136 SNP markers revealed weak, albeit significant, population differentiation (average pairwise FST = 0.011) and asymmetric dispersal was also revealed by population assignments. Approximate Bayesian computation simulations suggested the presence of asymmetric gene flow, although in the opposite direction to that observed from the telemetry data, suggesting that dispersal does not necessarily lead to gene flow. These observations suggested that Arctic Char home to their natal river to spawn, but may overwinter in rivers with the shortest migratory route to minimize the costs of migration in nonbreeding years. Genome scans and genetic–environment associations identified 90 outlier markers putatively under selection, 23 of which were in or near a gene. Of these, at least four were involved in muscle and cardiac function, consistent with the hypothesis that migratory harshness could drive local adaptation. Our study illustrates the power of integrating genomics and telemetry to study migrations in nonmodel organisms in logistically challenging environments such as the Arctic.  相似文献   

8.
Populations of three‐spined sticklebacks Gasterosteus aculeatus originating from contrasting habitats were studied to determine if habitat can affect the ability to combine spatial cues. Previous work has shown that different species combine spatial cues in different ways, and this study showed these differences also arose within a species: all fish were able to use geometrical cues to locate a maze exit, but only fish collected from river populations combined geometric cues with a non‐geometric global landmark cue.  相似文献   

9.
Social learning is an important process in the spread of information, especially in changing environments where inherited behaviors may not remain relevant. In many species, the decision of whom to trust to have reliable information depends on the relationship between individuals. Many fish species, including three‐spined sticklebacks, preferentially associate with familiar individuals. Previous studies in three‐spined sticklebacks have provided mixed evidence about the effect of familiarity on social learning in this species. Therefore, this study further explores familiarity and social learning in sticklebacks, specifically from a demonstrator‐focused perspective. We found that in a food patch discrimination task, individuals with unfamiliar demonstrators performed significantly better than those with familiar demonstrators. In a problem‐solving task, we found that focal fish attended to the behavior of demonstrators, but we did not detect an effect of familiarity on performance, and indeed the proportion of individuals to solve the task after observing demonstrators was low. These results suggest that sticklebacks have a preference for unfamiliar demonstrators, but that the use of social information varies depending on context.  相似文献   

10.
Selection against migrants is key to maintaining genetic differences between populations linked by dispersal. However, migrants may mitigate fitness costs by proactively choosing among available habitats, or by phenotypic plasticity. We previously reported that a reciprocal transplant of lake and stream stickleback (Gasterosteus aculeatus) found little support for divergent selection. Here, we revisit that experiment to test whether phenotypic plasticity in gene expression may have helped migrants adjust to unfamiliar habitats. We measured gene expression profiles in stickleback via TagSeq and tested whether migrants between lake and stream habitats exhibited a plastic response to their new environment that allowed them to converge on the expression profile of adapted natives. We report extensive gene expression differences between genetically divergent lake and stream stickleback, despite gene flow . But for many genes, expression was highly plastic. Fish transplanted into the adjoining habitat partially converged on the expression profile typical of natives from their new habitat. This suggests that expression plasticity may soften the impact of migration. Nonetheless, lake and stream fish differed in survival rates and parasite infection rates in our study, implying that expression plasticity is not fast or extensive enough to fully homogenize fish performance.  相似文献   

11.
Drivers of population genetic structure are still poorly understood in marine micro‐organisms. We exploited the North Sea–Baltic Sea transition for investigating the seascape genetics of a marine diatom, Skeletonema marinoi. Eight polymorphic microsatellite loci were analysed in 354 individuals from ten locations to analyse population structure of the species along a 1500‐km‐long salinity gradient ranging from 3 to 30 psu. To test for salinity adaptation, salinity reaction norms were determined for sets of strains originating from three different salinity regimes of the gradient. Modelled oceanographic connectivity was compared to directional relative migration by correlation analyses to examine oceanographic drivers. Population genetic analyses showed distinct genetic divergence of a low‐salinity Baltic Sea population and a high‐salinity North Sea population, coinciding with the most evident physical dispersal barrier in the area, the Danish Straits. Baltic Sea populations displayed reduced genetic diversity compared to North Sea populations. Growth optima of low salinity isolates were significantly lower than those of strains from higher native salinities, indicating local salinity adaptation. Although the North Sea–Baltic Sea transition was identified as a barrier to gene flow, migration between Baltic Sea and North Sea populations occurred. However, the presence of differentiated neutral markers on each side of the transition zone suggests that migrants are maladapted. It is concluded that local salinity adaptation, supported by oceanographic connectivity patterns creating an asymmetric migration pattern between the Baltic Sea and the North Sea, determines genetic differentiation patterns in the transition zone.  相似文献   

12.
1. The three‐spined stickleback (Gasterosteus aculeatus) on the Iberian Peninsula is only distributed in freshwater habitats and has completely disappeared from most of its range, mainly as a consequence of habitat degradation and invasive fish introductions. Genetic investigations have shown that Mediterranean‐Adriatic sticklebacks constitute an evolutionarily significant unit. Here, we present the first genetic data for Iberian populations living on the southern edge of the stickleback’s range. We used microsatellite markers to study gene diversity, population structure and genetic demography of stickleback populations. 2. High genetic differentiation among collections yielded a model of four genetically homogeneous units related to geography. The observed pattern of isolation by distance resulted mainly from the hydrographical pattern and limited gene flow among rivers. Moreover, low levels of gene diversity, high isolation and recent bottleneck events, which have led to small or even critical effective population sizes in several locations, could be explained by additional recent anthropogenic fragmentation. 3. We defined at least four evolutionarily significant units threatened by habitat fragmentation in north‐eastern Iberian sticklebacks. Because they retain long evolutionary histories, these populations should be considered of high conservation priority, and urgent management measures should be implemented.  相似文献   

13.
Phenotypic plasticity is recognized as an important mechanism of adaptation. However, because of its potential costs and limits, it has been hypothesized to be reduced and ultimately become lost when there is no selection for its maintenance. Heterogeneous environments in particular are expected to favour and thus maintain plastic phenotypes. Lakes and rivers differ in their flow regimes. In addition to higher average water velocity, rivers are characterized by distinct spatial and temporal variation in water flow, whereas lakes can be regarded as quite uniform in this respect. We studied whether behaviour, which is generally considered to be highly plastic, shows differences in the degree of plasticity between lake and river populations of the European grayling, Thymallus thymallus, fry in response to different water velocities. Given that aggressive behaviour in fish has been shown to relate to ambient flow regime, we compared aggressiveness of hatchery‐reared grayling originating from hatchery stocks of two lake and two river populations in still and flowing water. River fish showed higher aggressiveness in flowing water compared with still water, whereas aggressiveness of lake fish did not appear to vary according to water velocity. The higher plasticity of aggressiveness evoked in river fish by different water velocities may thus represent an adaptation to more variable flow and presumably related feeding conditions in their natural environment.  相似文献   

14.
Disentangling the effects of natural environmental features and anthropogenic factors on the genetic structure of endangered populations is an important challenge for conservation biology. Here, we investigated the combined influences of major environmental features and stocking with non‐native fish on the genetic structure and local adaptation of Atlantic salmon (Salmo salar) populations. We used 17 microsatellite loci to genotype 975 individuals originating from 34 French rivers. Bayesian analyses revealed a hierarchical genetic structure into five geographically distinct clusters. Coastal distance, geological substrate and river length were strong predictors of population structure. Gene flow was higher among rivers with similar geologies, suggesting local adaptation to geological substrate. The effect of river length was mainly owing to one highly differentiated population that has the farthest spawning grounds off the river mouth (up to 900 km) and the largest fish, suggesting local adaptation to river length. We detected high levels of admixture in stocked populations but also in neighbouring ones, implying large‐scale impacts of stocking through dispersal of non‐native individuals. However, we found relatively few admixed individuals suggesting a lower fitness of stocked fish and/or some reproductive isolation between wild and stocked individuals. When excluding stocked populations, genetic structure increased as did its correlation with environmental factors. This study overall indicates that geological substrate and river length are major environmental factors influencing gene flow and potential local adaptation among Atlantic salmon populations but that stocking with non‐native individuals may ultimately disrupt these natural patterns of gene flow among locally adapted populations.  相似文献   

15.
Among populations of the three‐spined stickleback fish in Alaska, females appear to show two forms of sterility tolerance to infection by the diphyllobothriidean cestode Schistocephalus solidus. In contrast to sticklebacks in other regions of the northern hemisphere, female fish are capable of producing clutches of eggs despite supporting large parasite burdens. Nonetheless, nutrient loss to the parasite, coupled with the energetic demands of host reproduction, eventually curtails spawning among infected females. Host females in Walby Lake experience ‘fecundity reduction’ resulting from nutrient theft as a side effect of infection. In Scout Lake, infected females show ‘fecundity compensation’, an adaptive, inducible response allowing them to increase current fecundity to compensate for reduction or loss of future reproduction. This multi‐year study of sticklebacks from each lake addresses two empirical questions for a better understanding of the dynamic interplay between host and parasite. First, is there is any annual variation within the two responses to parasitism in each host population; and, if so, is it related to parasite burden? Second, do the two host responses show consistent differences between the populations of sticklebacks despite any yearly variation in them? We found annual, intra‐population variation within the response shown by each population of stickleback which appears to have been influenced by the parasite : host mass ratio and possibly by unknown environmental conditions affecting the reproductive physiology of stickleback females. Moreover, the data support the hypothesis that ovum mass is more sensitive to parasitism (parasite burden) than clutch size in females from Walby Lake which exhibit fecundity reduction. Notwithstanding the intra‐population variation within each host response, the responses to infection occurred consistently within each respective stickleback population and appear to reflect stable, fundamental characteristics of the populations. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 958–968.  相似文献   

16.
Variation in gene expression contributes to ecological speciation by facilitating population persistence in novel environments. Likewise, immune responses can be of relevance in speciation driven by adaptation to different environments. Previous studies examining gene expression differences between recently diverged ecotypes have often relied on only one pair of populations, targeted the expression of only a subset of genes or used wild‐caught individuals. Here, we investigated the contribution of habitat‐specific parasites and symbionts and the underlying immunological abilities of ecotype hosts to adaptive divergence in lake–river population pairs of the cichlid fish Astatotilapia burtoni. To shed light on the role of phenotypic plasticity in adaptive divergence, we compared parasite and microbiota communities, immune response, and gene expression patterns of fish from natural habitats and a lake‐like pond set‐up. In all investigated population pairs, lake fish were more heavily parasitized than river fish, in terms of both parasite taxon composition and infection abundance. The innate immune response in the wild was higher in lake than in river populations and was elevated in a river population exposed to lake parasites in the pond set‐up. Environmental differences between lake and river habitat and their distinct parasite communities have shaped differential gene expression, involving genes functioning in osmoregulation and immune response. Most changes in gene expression between lake and river samples in the wild and in the pond set‐up were based on a plastic response. Finally, gene expression and bacterial communities of wild‐caught individuals and individuals acclimatized to lake‐like pond conditions showed shifts underlying adaptive phenotypic plasticity.  相似文献   

17.
Sexual reproduction is an evolutionary ‘puzzle’. A sexual female ‘throws away’ half of her genes (during meiosis), and ‘fills up’ what she lost with genes from a male. Thus, sexual reproduction can only be successful if the offspring with the new mixture of genes should be more than twice as fit as if she had just made a copy of herself. A challenging hypothesis assumes that infectious diseases select for females that reshuffle the immune genes for their offspring in each generation. The required increase in quality could be achieved by females selectively ‘smelling out’ suitable immune‐genes (i.e. Mhc alleles) in potential partners, which, in combination with the female's genes, offer optimal resistance against quickly changing infectious diseases. It was found that most three spined sticklebacks Gasterosteus aculeatus in natural populations around Plön, Germany, had intermediate instead of maximal numbers of different Mhc class IIB alleles. Furthermore, fish with an intermediate number of different Mhc alleles were infected with the lowest number of both parasite species and parasites per species. This suggests that Mhc heterozygosity was optimized instead of maximized. Can this immunogenetic optimum be achieved through female choice? In a flow channel design that allowed the detection of olfactory signals only, it was found that female three‐spined sticklebacks that were ready to spawn preferred males as mates that in combination with their Mhc alleles would allow the production of offspring with the optimal number of Mhc alleles. Thus, mate choice in three‐spined sticklebacks could have the two‐fold advantage over asexual reproduction that is required to maintain sexual reproduction. The interaction of olfactory with visual signals in three‐spined stickleback mate choice is discussed. The three‐spined stickleback is a suitable model organism for studying the evolution of sexual reproduction in relation to optimizing offspring immune genetics although other fishes may be as suitable.  相似文献   

18.
Adaptive phenotypic plasticity and fixed genotypic differences have long been considered opposing strategies in adaptation. More recently, these mechanisms have been proposed to act complementarily and under certain conditions jointly facilitate evolution, speciation, and even adaptive radiations. Here, we investigate the relative contributions of adaptive phenotypic plasticity vs. local adaptation to fitness, using an emerging model system to study early phases of adaptive divergence, the generalist cichlid fish species Astatotilapia burtoni. We tested direct fitness consequences of morphological divergence between lake and river populations in nature by performing two transplant experiments in Lake Tanganyika. In the first experiment, we used wild‐caught juvenile lake and river individuals, while in the second experiment, we used F1 crosses between lake and river fish bred in a common garden setup. By tracking the survival and growth of translocated individuals in enclosures in the lake over several weeks, we revealed local adaptation evidenced by faster growth of the wild‐caught resident population in the first experiment. On the other hand, we did not find difference in growth between different types of F1 crosses in the second experiment, suggesting a substantial contribution of adaptive phenotypic plasticity to increased immigrant fitness. Our findings highlight the value of formally comparing fitness of wild‐caught and common garden‐reared individuals and emphasize the necessity of considering adaptive phenotypic plasticity in the study of adaptive divergence.  相似文献   

19.
Phenotypically plastic changes in response to variation in perceived predation risk are widespread, but little is known about if and how social environment modulates induced responses to predation risk. We investigated the influence of perceived predation risk (i.e. chemical cues from a predator) and social environment (i.e. one, two or 20 individuals reared together) on three‐spined stickleback (Gasterosteus aculeatus) morphology in a factorial common garden experiment. We found that exposure to chemical cues from potential predators did not influence growth or body condition or induce more robust morphological defences (i.e. lateral plate numbers and dorsal spine lengths). However, sticklebacks exposed to predator cues developed longer caudal peduncles and larger eyes as compared with fish from the control treatment. As these responses may improve sticklebacks’ ability to avoid piscine predation, they might be adaptive. Social environment/density also influenced expression of some traits, but these effects were independent of predation‐risk treatment effects. In general, these results suggest that apart from the classic morphological defence structures, which appear mostly constitutive, three‐spined sticklebacks are capable of expressing potentially adaptive morphological responses to chemical cues from potential predators.  相似文献   

20.
Molecular comparisons of populations diverging into ecologically different environments often reveal strong differentiation in localized genomic regions, with the remainder of the genome being weakly differentiated. This pattern of heterogeneous genomic divergence, however, is rarely connected to direct measurements of fitness differences among populations. We here do so by performing a field enclosure experiment in threespine stickleback fish residing in a lake and in three replicate adjoining streams, and displaying weak yet heterogeneous genomic divergence between these habitats. Tracking survival over 29 weeks, we consistently find that lake genotypes transplanted into the streams suffer greatly reduced viability relative to local stream genotypes and that the performance of F1 hybrid genotypes is intermediate. This observed selection against migrants and hybrids combines to a total reduction in gene flow from the lake into streams of around 80%. Overall, our study identifies a strong reproductive barrier between parapatric stickleback populations, and cautions against inferring weak fitness differences between populations exhibiting weak overall genomic differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号