首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent application of time‐varying birth–death models to molecular phylogenies suggests that a decreasing diversification rate can only be observed if there was a decreasing speciation rate coupled with extremely low or no extinction. However, from a paleontological perspective, zero extinction rates during evolutionary radiations seem unlikely. Here, with a more comprehensive set of computer simulations, we show that substantial extinction can occur without erasing the signal of decreasing diversification rate in a molecular phylogeny. We also find, in agreement with the previous work, that a decrease in diversification rate cannot be observed in a molecular phylogeny with an increasing extinction rate alone. Further, we find that the ability to observe decreasing diversification rates in molecular phylogenies is controlled (in part) by the ratio of the initial speciation rate (Lambda) to the extinction rate (Mu) at equilibrium (the LiMe ratio), and not by their absolute values. Here we show in principle, how estimates of initial speciation rates may be calculated using both the fossil record and the shape of lineage through time plots derived from molecular phylogenies. This is important because the fossil record provides more reliable estimates of equilibrium extinction rates than initial speciation rates.  相似文献   

2.
A common pattern in time-calibrated molecular phylogenies is a signal of rapid diversification early in the history of a radiation. Because the net rate of diversification is the difference between speciation and extinction rates, such "explosive-early" diversification could result either from temporally declining speciation rates or from increasing extinction rates through time. Distinguishing between these alternatives is challenging but important, because these processes likely result from different ecological drivers of diversification. Here we develop a method for estimating speciation and extinction rates that vary continuously through time. By applying this approach to real phylogenies with explosive-early diversification and by modeling features of lineage-accumulation curves under both declining speciation and increasing extinction scenarios, we show that a signal of explosive-early diversification in phylogenies of extant taxa cannot result from increasing extinction and can only be explained by temporally declining speciation rates. Moreover, whenever extinction rates are high, "explosive early" patterns become unobservable, because high extinction quickly erases the signature of even large declines in speciation rates. Although extinction may obscure patterns of evolutionary diversification, these results show that decreasing speciation is often distinguishable from increasing extinction in the numerous molecular phylogenies of radiations that retain a preponderance of early lineages.  相似文献   

3.
Interest in methods that estimate speciation and extinction rates from molecular phylogenies has increased over the last decade. The application of such methods requires reliable estimates of tree topology and node ages, which are frequently obtained using standard phylogenetic inference combining concatenated loci and molecular dating. However, this practice disregards population‐level processes that generate gene tree/species tree discordance. We evaluated the impact of employing concatenation and coalescent‐based phylogeny inference in recovering the correct macroevolutionary regime using simulated data based on the well‐established diversification rate shift of delphinids in Cetacea. We found that under scenarios of strong incomplete lineage sorting, macroevolutionary analysis of phylogenies inferred by concatenating loci failed to recover the delphinid diversification shift, while the coalescent‐based tree consistently retrieved the correct rate regime. We suggest that ignoring microevolutionary processes reduces the power of methods that estimate macroevolutionary regimes from molecular data.  相似文献   

4.
A central theme connecting macroevolutionary processes to macroecological patterns is the shaping of regional biodiversity over time through speciation, extinction, migration, and range shifts. The use of phylogenies to explore the dynamics of diversification due to variation in speciation and extinction rates has been well-developed and there are established methods for inferring speciation times from phylogenies and generating its null distributions (as represented by node heights on molecular phylogenies). But inferring colonization events from phylogenies is more challenging. Unlike speciation events, represented by nodes, colonization events could occur at any point along a branch connecting species in the assemblage to the regional pool. We account for uncertainty in identification of colonization lineages and timing of colonization events by using an efficient analytical solution to inferring the distribution of colonization times from an assemblage phylogeny. Using the same solution, we efficiently derive the null distribution of colonization times, which provides us with a general approach to testing the adequacy of a model to describe colonization events into the assemblage. We illustrate this approach by demonstrating how the movement of squamate lineages into Madagascar has been uneven over time, peaking in the early Cenozoic when ocean conditions favored colonization.  相似文献   

5.
The hypothesis of punctuated equilibrium proposes that most phenotypic evolution occurs in rapid bursts associated with speciation events. Several methods have been developed that can infer punctuated equilibrium from molecular phylogenies in the absence of paleontological data. These methods essentially test whether the variance in phenotypes among extant species is better explained by evolutionary time since common ancestry or by the number of estimated speciation events separating taxa. However, apparent "punctuational" trait change can be recovered on molecular phylogenies if the rate of phenotypic evolution is correlated with the rate of speciation. Strong support for punctuational models can arise even if the underlying mode of trait evolution is strictly gradual, so long as rates of speciation and trait evolution covary across the branches of phylogenetic trees, and provided that lineages vary in their rate of speciation. Species selection for accelerated rates of ecological or phenotypic divergence can potentially lead to the perception that most trait divergence occurs in association with speciation events.  相似文献   

6.
Large complete species-level molecular phylogenies can provide the most direct information about the macroevolutionary history of clades having poor fossil records. However, extinction will ultimately erode evidence of pulses of rapid speciation in the deep past. Assessment of how well, and for how long, phylogenies retain the signature of such pulses has hitherto been based on a--probably untenable--model of ongoing diversity-independent diversification. Here, we develop two new tests for changes in diversification 'rules' and evaluate their power to detect sudden increases in equilibrium diversity in clades simulated with diversity-dependent speciation and extinction rates. Pulses of diversification are only detected easily if they occurred recently and if the rate of species turnover at equilibrium is low; rates reported for fossil mammals suggest that the power to detect a doubling of species diversity falls to 50 per cent after less than 50 Myr even with a perfect phylogeny of extant species. Extinction does eventually draw a veil over past dynamics, suggesting that some questions are beyond the limits of inference, but sudden clade-wide pulses of speciation can be detected after many millions of years, even when overall diversity is constrained. Applying our methods to existing phylogenies of mammals and angiosperms identifies intervals of elevated diversification in each.  相似文献   

7.
Estimates of diversification rates are invaluable for many macroevolutionary studies. Recently, an approach called BAMM (Bayesian Analysis of Macro‐evolutionary Mixtures) has become widely used for estimating diversification rates and rate shifts. At the same time, several articles have concluded that estimates of net diversification rates from the method‐of‐moments (MS) estimators are inaccurate. Yet, no studies have compared the ability of these two methods to accurately estimate clade diversification rates. Here, we use simulations to compare their performance. We found that BAMM yielded relatively weak relationships between true and estimated diversification rates. This occurred because BAMM underestimated the number of rates shifts across each tree, and assigned high rates to small clades with low rates. Errors in both speciation and extinction rates contributed to these errors, showing that using BAMM to estimate only speciation rates is also problematic. In contrast, the MS estimators (particularly using stem group ages), yielded stronger relationships between true and estimated diversification rates, by roughly twofold. Furthermore, the MS approach remained relatively accurate when diversification rates were heterogeneous within clades, despite the widespread assumption that it requires constant rates within clades. Overall, we caution that BAMM may be problematic for estimating diversification rates and rate shifts.  相似文献   

8.
Biodiversity arises from the balance between speciation and extinction. Fossils record the origins and disappearance of organisms, and the branching patterns of molecular phylogenies allow estimation of speciation and extinction rates, but the patterns of diversification are frequently incongruent between these two data sources. I tested two hypotheses about the diversification of primates based on ~600 fossil species and 90% complete phylogenies of living species: (1) diversification rates increased through time; (2) a significant extinction event occurred in the Oligocene. Consistent with the first hypothesis, analyses of phylogenies supported increasing speciation rates and negligible extinction rates. In contrast, fossils showed that while speciation rates increased, speciation and extinction rates tended to be nearly equal, resulting in zero net diversification. Partially supporting the second hypothesis, the fossil data recorded a clear pattern of diversity decline in the Oligocene, although diversification rates were near zero. The phylogeny supported increased extinction ~34 Ma, but also elevated extinction ~10 Ma, coinciding with diversity declines in some fossil clades. The results demonstrated that estimates of speciation and extinction ignoring fossils are insufficient to infer diversification and information on extinct lineages should be incorporated into phylogenetic analyses.  相似文献   

9.
Modern whales are frequently described as an adaptive radiation spurred by either the evolution of various key innovations (such as baleen or echolocation) or ecological opportunity following the demise of archaic whales. Recent analyses of diversification rate shifts on molecular phylogenies raise doubts about this interpretation since they find no evidence of increased speciation rates during the early evolution of modern taxa. However, one of the central predictions of ecological adaptive radiation is rapid phenotypic diversification, and the tempo of phenotypic evolution has yet to be quantified in cetaceans. Using a time-calibrated molecular phylogeny of extant cetaceans and a morphological dataset on size, we find evidence that cetacean lineages partitioned size niches early in the evolutionary history of neocetes and that changes in cetacean size are consistent with shifts in dietary strategy. We conclude that the signature of adaptive radiations may be retained within morphological traits even after equilibrium diversity has been reached and high extinction or fluctuations in net diversification have erased any signature of an early burst of diversification in the structure of the phylogeny.  相似文献   

10.
While ant colonies serve as host to a diverse array of myrmecophiles, few parasitoids are able to exploit this vast resource. A notable exception is the wasp family Eucharitidae, which is the only family of insects known to exclusively parasitize ants. Worldwide, approximately 700 Eucharitidae species attack five subfamilies across the ant phylogeny. Our goal is to uncover the pattern of eucharitid diversification, including timing of key evolutionary events, biogeographic patterns and potential cophylogeny with ant hosts. We present the most comprehensive molecular phylogeny of Eucharitidae to date, including 44 of the 53 genera and fossil-calibrated estimates of divergence dates. Eucharitidae arose approximately 50 Ma after their hosts, during the time when the major ant lineages were already established and diversifying. We incorporate host association data to test for congruence between eucharitid and ant phylogenies and find that their evolutionary histories are more similar than expected at random. After a series of initial host shifts, clades within Eucharitidae maintained their host affinity. Even after multiple dispersal events to the New World and extensive speciation within biogeographic regions, eucharitids remain parasitic on the same ant subfamilies as their Old World relatives, suggesting host conservatism despite access to a diverse novel ant fauna.  相似文献   

11.
Phenotypic divergence can promote reproductive isolation and speciation, suggesting a possible link between rates of phenotypic evolution and the tempo of speciation at multiple evolutionary scales. To date, most macroevolutionary studies of diversification have focused on morphological traits, whereas behavioral traits─including vocal signals─are rarely considered. Thus, although behavioral traits often mediate mate choice and gene flow, we have a limited understanding of how behavioral evolution contributes to diversification. Furthermore, the developmental mode by which behavioral traits are acquired may affect rates of behavioral evolution, although this hypothesis is seldom tested in a phylogenetic framework. Here, we examine evidence for rate shifts in vocal evolution and speciation across two major radiations of codistributed passerines: one oscine clade with learned songs (Thraupidae) and one suboscine clade with innate songs (Furnariidae). We find that evolutionary bursts in rates of speciation and song evolution are coincident in both thraupids and furnariids. Further, overall rates of vocal evolution are higher among taxa with learned rather than innate songs. Taken together, these findings suggest an association between macroevolutionary bursts in speciation and vocal evolution, and that the tempo of behavioral evolution can be influenced by variation in developmental modes among lineages.  相似文献   

12.
The protracted speciation model presents a realistic and parsimonious explanation for the observed slowdown in lineage accumulation through time, by accounting for the fact that speciation takes time. A method to compute the likelihood for this model given a phylogeny is available and allows estimation of its parameters (rate of initiation of speciation, rate of completion of speciation and extinction rate) and statistical comparison of this model to other proposed models of diversification. However, this likelihood computation method makes an approximation of the protracted speciation model to be mathematically tractable: it sometimes counts fewer species than one would do from a biological perspective. This approximation may have large consequences for likelihood‐based inferences: it may render any conclusions based on this method completely irrelevant. Here, we study to what extent this approximation affects parameter estimations. We simulated phylogenies from which we reconstructed the tree of extant species according to the original, biologically meaningful protracted speciation model and according to the approximation. We then compared the resulting parameter estimates. We found that the differences were larger for high values of extinction rates and small values of speciation‐completion rates. Indeed, a long speciation‐completion time and a high extinction rate promote the appearance of cases to which the approximation applies. However, surprisingly, the deviation introduced is largely negligible over the parameter space explored, suggesting that this approximate likelihood can be applied reliably in practice to estimate biologically relevant parameters under the original protracted speciation model.  相似文献   

13.
As species richness varies along the tree of life, there is a great interest in identifying factors that affect the rates by which lineages speciate or go extinct. To this end, theoretical biologists have developed a suite of phylogenetic comparative methods that aim to identify where shifts in diversification rates had occurred along a phylogeny and whether they are associated with some traits. Using these methods, numerous studies have predicted that speciation and extinction rates vary across the tree of life. In this study, we show that asymmetric rates of sequence evolution lead to systematic biases in the inferred phylogeny, which in turn lead to erroneous inferences regarding lineage diversification patterns. The results demonstrate that as the asymmetry in sequence evolution rates increases, so does the tendency to select more complicated models that include the possibility of diversification rate shifts. These results thus suggest that any inference regarding shifts in diversification pattern should be treated with great caution, at least until any biases regarding the molecular substitution rate have been ruled out.  相似文献   

14.
Different models of speciation predict contrasting patterns in the relationship between the dispersal ability of lineages and their diversification rates. This relationship is expected to be negative in isolation-limited models and positive in founder-event models. In addition, the combination of negative and positive effects of dispersal on speciation can result in higher diversification rates at intermediate levels of dispersal ability. Using molecular phylogenies to estimate diversification rates, and wing morphology to estimate dispersal ability, we analysed the influence of dispersal on diversification in the avifauna of Australasian archipelagoes. Contrary to expectations given the fragmented nature of island systems, the relationship between dispersal ability and diversification rate was monotonically negative. While multiple mechanisms could generate this pattern, they all share a phase of range expansion that is decoupled from speciation.  相似文献   

15.
The evolutionary origins of Madagascar''s biodiversity remain mysterious despite the fact that relative to land area, there is no other place with consistently high levels of species richness and endemism across a range of taxonomic levels. Most efforts to explain diversification on the island have focused on geographical models of speciation, but recent studies have begun to address the island''s accumulation of species through time, although with conflicting results. Prevailing hypotheses for diversification on the island involve either constant diversification rates or scenarios where rates decline through time. Using relative-time-calibrated phylogenies for seven endemic vertebrate clades and a model-fitting framework, I find evidence that diversification rates have declined through time on Madagascar. I show that diversification rates have clearly declined throughout the history of each clade, and models invoking diversity-dependent reductions to diversification rates best explain the diversification histories for each clade. These results are consistent with the ecological theory of adaptive radiation, and, coupled with ancillary observations about ecomorphological and life-history evolution, strongly suggest that adaptive radiation was an important formative process for one of the most species-rich regions on the Earth. These results cast the Malagasy biota in a new light and provide macroevolutionary justification for conservation initiatives.  相似文献   

16.
Rates of biological diversification should ultimately correspond to rates of genome evolution. Recent studies have compared diversification rates with phylogenetic branch lengths, but incomplete phylogenies hamper such analyses for many taxa. Herein, we use pairwise comparisons of confamilial sauropsid (bird and reptile) mitochondrial DNA (mtDNA) genome sequences to estimate substitution rates. These molecular evolutionary rates are considered in light of the age and species richness of each taxonomic family, using a random-walk speciation–extinction process to estimate rates of diversification. We find the molecular clock ticks at disparate rates in different families and at different genes. For example, evolutionary rates are relatively fast in snakes and lizards, intermediate in crocodilians and slow in turtles and birds. There was also rate variation across genes, where non-synonymous substitution rates were fastest at ATP8 and slowest at CO3. Family-by-gene interactions were significant, indicating that local clocks vary substantially among sauropsids. Most importantly, we find evidence that mitochondrial genome evolutionary rates are positively correlated with speciation rates and with contemporary species richness. Nuclear sequences are poorly represented among reptiles, but the correlation between rates of molecular evolution and species diversification also extends to 18 avian nuclear genes we tested. Thus, the nuclear data buttress our mtDNA findings.  相似文献   

17.
Members of the class Armophorea occur in microaerophilic and anaerobic habitats, including the digestive tract of invertebrates and vertebrates. Phylogenetic kinships of metopid and clevelandellid armophoreans conflict with traditional morphology‐based classifications. To reconcile their relationships and understand their morphological evolution and diversification, we utilized the molecular clock theory as well as information contained in the estimated time trees and morphology of extant taxa. The radiation of the last common ancestor of metopids and clevelandellids very likely occurred during the Paleozoic and crown diversification of the endosymbiotic clevelandellids dates back to the Mesozoic. According to diversification analyses, endosymbiotic clevelandellids have higher net diversification rates than predominantly free‐living metopids. Their cladogenic success was very likely associated with sharply isolated ecological niches constituted by their hosts. Conflicts between traditional classifications and molecular phylogenies of metopids and clevelandellids very likely come from processes, leading to further diversification without extinction of ancestral lineages as well as from morphological plesiomorphies incorrectly classified as apomorphies. Our study thus suggests that diversification processes and reconstruction of ancestral morphologies improve the understanding of paraphyly which occurs in groups of organisms with an apparently long evolutionary history and when speciation prevails over extinction.  相似文献   

18.
Hundreds of studies have been dedicated to estimating speciation and extinction from phylogenies of extant species. Although it has long been known that estimates of extinction rates using trees of extant organisms are often uncertain, an influential paper by Rabosky (2010) suggested that when birth rates vary continuously across the tree, estimates of the extinction fraction (i.e., extinction rate/speciation rate) will appear strongly bimodal, with a peak suggesting no extinction and a peak implying speciation and extinction rates are approaching equality. On the basis of these results, and the realistic nature of this form of rate variation, it is now generally assumed by many practitioners that extinction cannot be understood from molecular phylogenies alone. Here, we reevaluated and extended the analyses of Rabosky (2010) and come to the opposite conclusion—namely, that it is possible to estimate extinction from molecular phylogenies, even with model violations due to heritable variation in diversification rate. Note that while it may be tempting to interpret our study as advocating the application of simple birth–death models, our goal here is to show how a particular model violation does not necessitate the abandonment of an entire field: use prudent caution, but do not abandon all hope.  相似文献   

19.
The rate of molecular evolution is not constant across the Tree of Life. Characterizing rate discrepancies and evaluating the relative roles of time and rate along branches through the past are both critical to a full understanding of evolutionary history. In this study, we explore the interactions of time and rate in filmy ferns (Hymenophyllaceae), a lineage with extreme branch length differences between the two major clades. We test for the presence of significant rate discrepancies within and between these clades, and we separate time and rate across the filmy fern phylogeny to simultaneously yield an evolutionary time scale of filmy fern diversification and reconstructions of ancestral rates of molecular evolution. Our results indicate that the branch length disparity observed between the major lineages of filmy ferns is indeed due to a significant difference in molecular evolutionary rate. The estimation of divergence times reveals that the timing of crown group diversification was not concurrent for the two lineages, and the reconstruction of ancestral rates of molecular evolution points to a substantial rate deceleration in one of the clades. Further analysis suggests that this may be due to a genome-wide deceleration in the rate of nucleotide substitution.  相似文献   

20.
Diversification rate is one of the most important metrics in macroecological and macroevolutionary studies. Here I demonstrate that diversification analyses can be misleading when researchers assume that diversity increases unbounded through time, as is typical in molecular phylogenetic studies. If clade diversity is regulated by ecological factors, then species richness may be independent of clade age and it may not be possible to infer the rate at which diversity arose. This has substantial consequences for the interpretation of many studies that have contrasted rates of diversification among clades and regions. Often, it is possible to estimate the total diversification experienced by a clade but not diversification rate itself. I show that the evidence for ecological limits on diversity in higher taxa is widespread. Finally, I explore the implications of ecological limits for a variety of ecological and evolutionary questions that involve inferences about speciation and extinction rates from phylogenetic data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号