首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Experimental evolution has provided little support for the hypothesis that the narrow diets of herbivorous insects reflect trade‐offs in performance across hosts; selection lines can sometimes adapt to an inferior novel host without a decline in performance on the ancestral host. An alternative approach for detecting trade‐offs would be to measure adaptation decay after selection is relaxed, that is, when populations newly adapted to a novel host are reverted to the ancestral one. Lines of the seed beetle Callosobruchus maculatus rapidly adapted to a poor host (lentil); survival in lentil seeds increased from 2% to > 90% in < 30 generations. After the lines had reached a plateau with respect to survival in lentil, sublines were reverted to the ancestral host, mung bean. Twelve generations of reversion had little effect on performance in lentil, but after 25–35 generations, the reverted lines exhibited lower survival, slower development and smaller size. The most divergent pair of lines was then assayed on both lentil and mung bean. Performance on lentil was again much poorer in the reverted line than in the nonreverted one, but the lines performed equally well on mung bean. Moreover, the performance of the nonreverted line on mung bean remained comparable to that of the original mung‐bean population. Our results thus present a paradox: loss of adaptation to lentil following reversion implies a trade‐off, but the continued strong performance of lentil‐adapted lines on mung bean does not. Genomic comparisons of the reverted, nonreverted and ancestral lines may resolve this paradox and determine the importance of selection vs. drift in causing a loss of adaptation following reversion.  相似文献   

2.
The lack of evolutionary response to selection on mitochondrial genes through males predicts the evolution of nuclear genetic influence on male‐specific mitochondrial function, for example by gene duplication and evolution of sex‐specific expression of paralogs involved in metabolic pathways. Intergenomic epistasis may therefore be a prevalent feature of the genetic architecture of male‐specific organismal function. Here, we assess the role of mitonuclear genetic variation for male metabolic phenotypes [metabolic rate and respiratory quotient (RQ)] associated with ejaculate renewal, in the seed beetle Callosobruchus maculatus, by assaying lines with crossed combinations of distinct mitochondrial haplotypes and nuclear lineages. We found a significant increase in metabolic rate following mating relative to virgin males. Moreover, processes associated with ejaculate renewal showed variation in metabolic rate that was affected by mitonuclear interactions. Mitochondrial haplotype influenced mating‐related changes in RQ, but this pattern varied over time. Mitonuclear genotype and the energy spent during ejaculate production affected the weight of the ejaculate, but the strength of this effect varied across mitochondrial haplotypes showing that the genetic architecture of male‐specific reproductive function is complex. Our findings unveil hitherto underappreciated metabolic costs of mating and ejaculate renewal, and provide the first empirical demonstration of mitonuclear epistasis on male reproductive metabolic processes.  相似文献   

3.
Theory predicts that sexual reproduction can increase population viability relative to asexual reproduction by allowing sexual selection in males to remove deleterious mutations from the population without large demographic costs. This requires that selection acts more strongly in males than females and that mutations affecting male reproductive success have pleiotropic effects on population productivity, but empirical support for these assumptions is mixed. We used the seed beetle Callosobruchus maculatus to implement a three‐generation breeding design where we induced mutations via ionizing radiation (IR) in the F0 generation and measured mutational effects (relative to nonirradiated controls) on an estimate of population productivity in the F1 and effects on sex‐specific competitive lifetime reproductive success (LRS) in the F2. Regardless of whether mutations were induced via F0 males or females, they had strong negative effects on male LRS, but a nonsignificant influence on female LRS, suggesting that selection is more efficient in removing deleterious alleles in males. Moreover, mutations had seemingly shared effects on population productivity and competitive LRS in both sexes. Thus, our results lend support to the hypothesis that strong sexual selection on males can act to remove the mutation load on population viability, thereby offering a benefit to sexual reproduction.  相似文献   

4.
In animal populations, sib mating is often the primary source of inbreeding depression (ID). We used recently wild‐caught Drosophila melanogaster to test whether such ID is amplified by environmental stress and, in males, by sexual selection. We also investigated whether increased ID because of stress (increased larval competition) persisted beyond the stressed stage and whether the effects of stress and sexual selection interacted. Sib mating resulted in substantial cumulative fitness losses (egg to adult reproduction) of 50% (benign) and 73% (stressed). Stress increased ID during the larval period (23% vs. 63%), but not during post‐stress reproductive stages (36% vs. 31%), indicating larval stress may have purged some adult genetic load (although ID was uncorrelated across stages). Sexual selection exacerbated inbreeding depression, with inbred male offspring suffering a higher reproductive cost than females, independent of stress (57% vs. 14% benign, 49% vs. 11% stress).  相似文献   

5.
Identification of the genes underlying adaptation sheds light on the biological functions targeted by natural selection. Searches for footprints of positive selection, in the form of rapid amino acid substitutions, and the identification of species‐specific genes have proved to be powerful approaches to identifying the genes involved in host specialization in plant‐pathogenic fungi. We used an evolutionary comparative genomic approach to identify genes underlying host adaptation in the ant‐infecting genus Ophiocordyceps, which manipulates ant behaviour. A comparison of the predicted genes in the genomes of species from three species complexes—O. unilateralis, O. australis and O. subramanianii—revealed an enrichment in pathogenesis‐associated functions, including heat‐labile enterotoxins, among species‐specific genes. Furthermore, these genes were overrepresented among those displaying significant footprints of positive selection. Other categories of genes suspected to be important for virulence and pathogenicity in entomopathogenic fungi (e.g., chitinases, lipases, proteases, core secondary metabolism genes) were much less represented, although a few candidate genes were found to evolve under positive selection. An analysis including orthologs from other entomopathogenic fungi in a broader context showed that positive selection on enterotoxins was specific to the ant‐infecting genus Ophiocordyceps. Together with previous studies reporting the overexpression of an enterotoxin during behavioural manipulation in diseased ants, our findings suggest that heat‐labile enterotoxins are important effectors in host adaptation and co‐evolution in the Ophiocordyceps entomopathogenic fungi.  相似文献   

6.
Resource competition is frequently strong among parasites that feed within small discrete resource patches, such as seeds or fruits. The properties of a host can influence the behavioural, morphological and life‐history traits of associated parasites, including traits that mediate competition within the host. For seed parasites, host size may be an especially important determinant of competitive ability. Using the seed beetle, Callosobruchus maculatus, we performed replicated, reciprocal host shifts to examine the role of seed size in determining larval competitiveness and associated traits. Populations ancestrally associated with either a small host (mung bean) or a large one (cowpea) were switched to each other's host for 36 generations. Compared to control lines (those remaining on the ancestral host), lines switched from the small host to the large host evolved greater tolerance of co‐occurring larvae within seeds (indicated by an increase in the frequency of small seeds yielding two adults), smaller egg size and higher fecundity. Each change occurred in the direction predicted by the traits of populations already adapted to cowpea. However, we did not observe the expected decline in adult mass following the shift to the larger host. Moreover, lines switched from the large host (cowpea) to the small host (mung bean) did not evolve the predicted increase in larval competitiveness or egg size, but did exhibit the predicted increase in body mass. Our results thus provide mixed support for the hypothesis that host size determines the evolution of competition‐related traits of seed beetles. Evolutionary responses to the two host shifts were consistent among replicate lines, but the evolution of larval competition was asymmetric, with larval competitiveness evolving as predicted in one direction of host shift, but not the reverse. Nevertheless, our results indicate that switching hosts is sufficient to produce repeatable and rapid changes in the competition strategy and fitness‐related traits of insect populations.  相似文献   

7.
Diaphorina citri Kuwayama (Hemiptera: Psyllidae) is the primary vector of Candidatus Liberibacter spp. bacteria that cause citrus greening, a disease of worldwide importance. Olfactometry was employed to test responses of D. citri to odours from intact citrus plants (Mexican lime, Citrus aurantifolia, sour orange, Citrus aurantium, Marsh grapefruit, Citrus paradisi and Valencia orange, Citrus sinensis), citrus plants previously infested with D. citri, and odours of conspecifics including nymphs, adult insects of same and opposite sex, and their products (honeydew), both alone and in combination. In contrast to other studies, psyllids of both sexes were attracted to volatiles of undamaged Mexican lime leaves, whereas undamaged grapefruit attracted only females, and leaves of Valencia and sour orange did not attract either sex. All four plant species attracted female psyllids when previously infested, but only Mexican lime and sour orange‐attracted males. Thus, Citrus species appear to vary in the production of both constituitive and induced volatiles that attract adult psyllids. Volatiles emitted by nymphs did not attract either sex, but psyllid honeydew was attractive to males, likely due to female pheromone residues. Males oriented to the odour of females, whereas the reverse was not true, and neither males nor females oriented to same‐sex volatiles. The addition of conspecific cues (adults, nymphs or honeydew) did not increase female attraction to previously infested leaves, but male response was increased by the presence of adults and honeydew, regardless of plant species. Thus, female psyllids appear to orient more strongly to volatiles of plant origin, whereas males respond more strongly to cues emanating from females and conspecific excretions. These results suggest that female psyllids drive the initial colonization of host plants, whereas males orient to females and infested plants. Identification of the specific volatiles involved may permit their use in monitoring and management of this pest.  相似文献   

8.
Theory predicts that costly secondary sexual traits will evolve heightened condition dependence, and many studies have reported strong condition dependence of signal and weapon traits in a variety of species. However, although genital structures often play key roles in intersexual interactions and appear to be subject to sexual or sexually antagonistic selection, few studies have examined the condition dependence of genital structures, especially in both sexes simultaneously. We investigated the responses of male and female genital structures to manipulation of larval diet quality (new versus once‐used mung beans) in the bruchid seed beetle Callosobruchus maculatus. We quantified effects on mean relative size and static allometry of the male aedeagus, aedeagal spines, flap and paramere and the female reproductive tract and bursal spines. None of the male traits showed a significant effect of diet quality. In females, we found that longer bursal spines (relative to body size) were expressed on low‐quality diet. Although the function of bursal spines is poorly understood, we suggest that greater bursal spine length in low‐condition females may represent a sexually antagonistic adaptation. Overall, we found no evidence that genital traits in C. maculatus are expressed to a greater extent when nutrients are more abundant. This suggests that, even though some genital traits appear to function as secondary sexual traits, genital traits do not exhibit heightened condition dependence in this species. We discuss possible reasons for this finding.  相似文献   

9.
Speciation is thought to often result from indirect selection for reproductive isolation. This will occur when reproductive traits that cause reproductive isolation evolve (i) as a by‐product of natural selection on traits with which they are genetically correlated or (ii) as an indirect result of diversifying sexual selection. Here, we use experimental evolution to study the degree of divergent evolution of reproductive traits by manipulating the intensity of natural and sexual selection in replicated selection lines of seed beetles. Following 40 generations of selection, we assayed the degree of divergent evolution of reproductive traits between replicate selection lines experiencing the same selection regime. The evolution of reproductive traits was significantly divergent across selection lines within treatments. The evolution of reproductive traits was both slower and, more importantly, significantly less divergent among lines experiencing stronger directional natural selection. This suggests that reproductive traits did not evolve as an indirect by‐product of adaptation. We discuss several ways in which natural selection may hamper divergent evolution among allopatric populations.  相似文献   

10.
The impact of sexual selection on the adaptive process remains unclear. On the one hand, sexual selection might hinder adaptation by favouring costly traits and preferences that reduce nonsexual fitness. On the other hand, condition dependence of success in sexual selection may accelerate adaptation. Here, we used replicate populations of Drosophila melanogaster to artificially select on male desiccation resistance while manipulating the opportunity for precopulatory sexual selection in a factorial design. Following five generations of artificial selection, we measured the desiccation resistance of males and females to test whether the addition of sexual selection accelerated adaptation. We found a significant interaction between the effects of natural selection and sexual selection: desiccation resistance was highest in populations where sexual selection was allowed to operate. Despite only selecting on males, we also found a correlated response in females. These results provide empirical support for the idea that sexual selection can accelerate the rate of adaptation.  相似文献   

11.
We estimated selection on adult body size for two generations in two populations of Aquarius remigis, as part of a long‐term study of the adaptive significance of sexual size dimorphism (SSD). Net adult fitness was estimated from the following components: prereproductive survival, daily reproductive success (mating frequency or fecundity), and reproductive lifespan. Standardized selection gradients were estimated for total length and for thorax, abdomen, genital and mesofemur lengths. Although selection was generally weak and showed significant temporal and spatial heterogeneity, patterns were consistent with SSD. Prereproductive survival was strongly influenced by date of eclosion, but size (thorax and genital lengths in females; total and abdomen lengths in males) played a significant secondary role. Sexual selection favoured smaller males with longer external genitalia in one population. Net adult fitness was not significantly related to body size in females, but was negatively related to size (thorax and total length) in males.  相似文献   

12.
Sexual size dimorphism (SSD) implies correlated differences in energetic requirements and feeding opportunities, such that sexes will face different trade‐offs in habitat selection. In seasonal migrants, this could result in a differential spatial distribution across the wintering range. To identify the ecological causes of sexual spatial segregation, we studied a sexually dimorphic shorebird, the bar‐tailed godwit Limosa lapponica, in which females have a larger body and a longer bill than males. With respect to the trade‐offs that these migratory shorebirds experience in their choice of wintering area, northern and colder wintering sites have the benefit of being closer to the Arctic breeding grounds. According to Bergmann's rule, the larger females should incur lower energetic costs per unit of body mass over males, helping them to winter in the cold. However, as the sexes have rather different bill lengths, differences in sex‐specific wintering sites could also be due to the vertical distribution of their buried prey, that is, resource partitioning. Here, in a comparison between six main intertidal wintering areas across the entire winter range of the lapponica subspecies in northwest Europe, we show that the percentage of females between sites was not correlated with the cost of wintering, but was positively correlated with the biomass in the bottom layer and negatively with the biomass in the top layer. We conclude that resource partitioning, rather than relative expenditure advantages, best explains the differential spatial distribution of male and female bar‐tailed godwits across northwest Europe.  相似文献   

13.
Selection for different fitness optima between sexes is supposed to operate on several traits. As fitness‐related traits are often energetically costly, selection should also act directly on the energetics of individuals. However, efforts to examine the relationship between fitness and components of the energy budget are surprisingly scarce. We investigated the effects of basal metabolic rate (BMR, the minimum energy required for basic life functions) and body condition on long‐term survival (8 winter months) with manipulated densities in enclosed populations of bank voles (Myodes glareolus). Here, we show that survival selection on BMR was clearly sex‐specific but density‐independent. Both the linear selection gradient and selection differential for BMR were positive in females, whereas survival did not correlate with male characteristics. Our findings emphasize the relative importance of individual physiology over ecological factors (e.g. intra‐specific competition). Most current models of the origin of endothermy underline the importance of metabolic optima in females, whose physiology evolved to fulfil demands of parental provisioning in mammals. Our novel findings of sex‐specific selection could be related to these life history differences between sexes.  相似文献   

14.
15.
Spatially varying selection can lead to population‐specific adaptation, which is often recognized at the phenotypic level; however, the genetic evidence is weaker in many groups of organisms. In plants, environmental shifts that occur due to colonization of a novel environment may require adaptive changes in the timing of growth and flowering, which are often governed by location‐specific environmental cues such as day length. We studied locally varying selection in 19 flowering time loci in nine populations of the perennial herb Arabidopsis lyrata, which has a wide but patchy distribution in temperate and boreal regions of the northern hemisphere. The populations differ in their recent population demographic and colonization histories and current environmental conditions, especially in the growing season length. We searched for population‐specific molecular signatures of directional selection by comparing a set of candidate flowering time loci with a genomic reference set within each population using multiple approaches and contrasted the patterns of different populations. The candidate loci possessed approximately 20% of the diversity of the reference loci. On average the flowering time loci had more rare alleles (a smaller Tajima's D) and an excess of highly differentiated sites relative to the reference, suggesting positive selection. The strongest signal of selection was detected in photoperiodic pathway loci in the colonizing populations of Northwestern Europe, whereas no evidence of positive selection was detected in the Central European populations. These findings emphasized the population‐specific nature of selection and suggested that photoperiodic adaptation was important during postglacial colonization of the species.  相似文献   

16.
Recent droughts and increasing temperatures have resulted in extensive tree mortality across the globe. Understanding the environmental controls on tree regeneration following these drought events will allow for better predictions of how these ecosystems may shift under a warmer, drier climate. Within the widely distributed piñon–juniper woodlands of the southwestern USA, a multiyear drought in 2002–2004 resulted in extensive adult piñon mortality and shifted adult woodland composition to a juniper‐dominated, more savannah‐type ecosystem. Here, we used pre‐ (1998–2001) and 10‐year post‐ (2014) drought stand structure data of individually mapped trees at 42 sites to assess the effects of this drought on tree regeneration across a gradient of environmental stress. We found declines in piñon juvenile densities since the multiyear drought due to limited new recruitment and high (>50%) juvenile mortality. This is in contrast to juniper juvenile densities, which increased over this time period. Across the landscape, piñon recruitment was positively associated with live adult piñon densities and soil available water capacity, likely due to their respective effects on seed and water availability. Juvenile piñon survival was strongly facilitated by certain types of nurse trees and shrubs. These nurse plants also moderated the effects of environmental stress on piñon survival: Survival of interspace piñon juveniles was positively associated with soil available water capacity, whereas survival of nursed piñon juveniles was negatively associated with perennial grass cover. Thus, nurse plants had a greater facilitative effect on survival at sites with higher soil available water capacity and perennial grass cover. Notably, mean annual climatic water deficit and elevation were not associated with piñon recruitment or survival across the landscape. Our findings reveal a clear shift in successional trajectories toward a more juniper‐dominated woodland and highlight the importance of incorporating biotic interactions and soil properties into species distribution modeling approaches.  相似文献   

17.
Inhibition of the mTOR (mechanistic Target Of Rapamycin) signaling pathway robustly extends the lifespan of model organisms including mice. The precise molecular mechanisms and physiological effects that underlie the beneficial effects of rapamycin are an exciting area of research. Surprisingly, while some data suggest that mTOR signaling normally increases with age in mice, the effect of age on mTOR signaling has never been comprehensively assessed. Here, we determine the age‐associated changes in mTORC1 (mTOR complex 1) and mTORC2 (mTOR complex 2) signaling in the liver, muscle, adipose, and heart of C57BL/6J.Nia mice, the lifespan of which can be extended by rapamycin treatment. We find that the effect of age on several different readouts of mTORC1 and mTORC2 activity varies by tissue and sex in C57BL/6J.Nia mice. Intriguingly, we observed increased mTORC1 activity in the liver and heart tissue of young female mice compared to male mice of the same age. Tissue and substrate‐specific results were observed in the livers of HET3 and DBA/2 mouse strains, and in liver, muscle and adipose tissue of F344 rats. Our results demonstrate that aging does not result in increased mTOR signaling in most tissues and suggest that rapamycin does not promote lifespan by reversing or blunting such an effect.  相似文献   

18.
When females mate with multiple males, they set the stage for postcopulatory sexual selection via sperm competition and/or cryptic female choice. Surprisingly little is known about the rates of multiple mating by females in the wild, despite the importance of this information in understanding the potential for postcopulatory sexual selection to drive the evolution of reproductive behaviour, morphology and physiology. Dung beetles in the genus Onthophagus have become a laboratory model for studying pre‐ and postcopulatory sexual selection, yet we still lack information about the reproductive behaviour of female dung beetles in natural populations. Here, we develop microsatellite markers for Onthophagus taurus and use them to genotype the offspring of wild‐caught females and to estimate natural rates of multiple mating and patterns of sperm utilization. We found that O. taurus females are highly polyandrous: 88% of females produced clutches sired by at least two males, and 5% produced clutches with as many as five sires. Several females (23%) produced clutches with significant paternity skew, indicating the potential for strong postcopulatory sexual selection in natural populations. There were also strong positive correlations between the number of offspring produced and both number of fathers and paternity skew, which suggests that females benefit from mating polyandrously by inciting postcopulatory mechanisms that bias paternity towards males that can sire more viable offspring. This study evaluates the fitness consequences of polyandry for an insect in the wild and provides strong evidence that female dung beetles benefit from multiple mating under natural conditions.  相似文献   

19.
One of the most important drivers of local adaptation for forest trees is climate. Coupled to these patterns, however, are human‐induced disturbances through habitat modification and pollution. The confounded effects of climate and disturbance have rarely been investigated with regard to selective pressure on forest trees. Here, we have developed and used a population genetic approach to search for signals of selection within a set of 36 candidate genes chosen for their putative effects on adaptation to climate and human‐induced air pollution within five populations of red spruce (Picea rubens Sarg.), distributed across its natural range and air pollution gradient in eastern North America. Specifically, we used FST outlier and environmental correlation analyses to highlight a set of seven single nucleotide polymorphisms (SNPs) that were overly correlated with climate and levels of sulphate pollution after correcting for the confounding effects of population history. Use of three age cohorts within each population allowed the effects of climate and pollution to be separated temporally, as climate‐related SNPs (= 7) showed the strongest signals in the oldest cohort, while pollution‐related SNPs (= 3) showed the strongest signals in the youngest cohorts. These results highlight the usefulness of population genetic scans for the identification of putatively nonneutral evolution within genomes of nonmodel forest tree species, but also highlight the need for the development and application of robust methodologies to deal with the inherent multivariate nature of the genetic and ecological data used in these types of analyses.  相似文献   

20.
Although differential selective pressures on males and females of the same species may result in sex‐specific evolutionary trajectories, comparative studies of adaptive radiations have largely neglected within‐species variation. In this study, we explore the potential effects of natural selection, sexual selection, or a combination of both, on bite performance in males and females of 19 species of Liolaemus lizards. More specifically, we study the evolution of bite performance, and compare evolutionary relationships between the variation in head morphology, bite performance, ecological variation and sexual dimorphism between males and females. Our results suggest that in male Liolaemus, the variation in bite force is at least partly explained by the variation in the degree of sexual dimorphism in head width (i.e. our estimate of the intensity of sexual selection), and neither bite force nor the morphological variables were correlated with diet (i.e. our proxy for natural selection). On the contrary, in females, the variation in bite force and head size can, to a certain extent, be explained by variation in diet. These results suggest that whereas in males, sexual selection seems to be operating on bite performance, in the case of females, natural selection seems to be the most likely and most important selective pressure driving the variation in head size. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 461–475.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号