首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Attempts to understand the causes of variation in senescence trajectories would benefit greatly from biomarkers that reflect the progressive declines in somatic integrity (SI) that lead to senescence. While telomere length has attracted considerable interest in this regard, sources of variation in telomere length potentially unrelated to declines in SI could, in some contexts, leave telomere attrition rates a more effective biomarker than telomere length alone. Here, we investigate whether telomere length and telomere attrition rates predict the survival of wild white‐browed sparrow‐weaver nestlings (Plocepasser mahali). Our analyses of telomere length reveal counterintuitive patterns: telomere length soon after hatching negatively predicted nestling survival to fledging, a pattern that appears to be driven by differentially high in‐nest predation of broods with longer telomeres. Telomere length did not predict survival outside this period: neither hatchling telomere length nor telomere length in the mid‐nestling period predicted survival from fledging to adulthood. Our analyses using within‐individual telomere attrition rates, by contrast, revealed the expected relationships: nestlings that experienced a higher rate of telomere attrition were less likely to survive to adulthood, regardless of their initial telomere length and independent of effects of body mass. Our findings support the growing use of telomeric traits as biomarkers of SI, but lend strength to the view that longitudinal assessments of within‐individual telomere attrition since early life may be a more effective biomarker in some contexts than telomere length alone.  相似文献   

2.
Telomeres protect eukaryotic chromosomes; variation in telomere length has been linked (primarily in homoeothermic animals) to variation in stress, cellular ageing and disease risk. Moreover, telomeres have been suggested to function as biomarker for quantifying past environmental stress, but studies in wild animals remain rare. Environmental stress, such as extreme environmental temperatures in poikilothermic animals, may result in oxidative stress that accelerates telomere attrition. However, growth, which may depend on temperature, can also contribute to telomere attrition. To test for associations between multitissue telomere length and past water temperature while accounting for the previous individual growth, we used quantitative PCR to analyse samples from 112 young‐of‐the‐year brown trout from 10 natural rivers with average water temperature differences of up to 6°C (and an absolute maximum of 23°C). We found negative associations between relative telomere length (RTL) and both average river temperature and individual body size. We found no indication of RTL–temperature association differences among six tissues, but we did find indications for differences among the tissues for associations between RTL and body size; size trends, albeit nonsignificant in their differences, were strongest in muscle and weakest in fin. Although causal relationships among temperature, growth, oxidative stress, and cross‐sectional telomere length remain largely unknown, our results indicate that telomere‐length variation in a poikilothermic wild animal is associated with both past temperature and growth.  相似文献   

3.
Disruption of telomere maintenance pathways leads to accelerated entry into cellular senescence, a stable proliferative arrest that promotes aging‐associated disorders in some mammals. The budding yeast CST complex, comprising Cdc13, Stn1, and Ctc1, is critical for telomere replication, length regulation, and end protection. Although mammalian homologues of CST have been identified recently, their role and function for telomere maintenance in normal somatic human cells are still incompletely understood. Here, we characterize the function of human Stn1 in cultured human fibroblasts and demonstrate its critical role in telomere replication, length regulation, and function. In the absence of high telomerase activity, shRNA‐mediated knockdown of hStn1 resulted in aberrant and fragile telomeric structures, stochastic telomere attrition, increased telomere erosion rates, telomere dysfunction, and consequently accelerated entry into cellular senescence. Oxidative stress augmented the defects caused by Stn1 knockdown leading to almost immediate cessation of cell proliferation. In contrast, overexpression of hTERT suppressed some of the defects caused by hStn1 knockdown suggesting that telomerase can partially compensate for hStn1 loss. Our findings reveal a critical role for human Stn1 in telomere length maintenance and function, supporting the model that efficient replication of telomeric repeats is critical for long‐term viability of normal somatic mammalian cells.  相似文献   

4.
Evolution of body size is likely to involve trade-offs between body size, growth rate and longevity. Within species, larger body size is associated with faster growth and ageing, and reduced longevity, but the cellular processes driving these relationships are poorly understood. One mechanism that might play a key role in determining optimal body size is the relationship between body size and telomere dynamics. However, we know little about how telomere length is affected when selection for larger size is imposed in natural populations. We report here on the relationship between structural body size and telomere length in wild house sparrows at the beginning and end of a selection regime for larger parent size that was imposed for 4 years in an isolated population of house sparrows. A negative relationship between fledgling size and telomere length was present at the start of the selection; this was extended when fledgling size increased under the selection regime, demonstrating a persistent covariance between structural size and telomere length. Changes in telomere dynamics, either as a correlated trait or a consequence of larger size, could reduce potential longevity and the consequent trade-offs could thereby play an important role in the evolution of optimal body size.  相似文献   

5.
Although little is known on the impact of environment on telomere length dynamics, it has been suggested to be affected by stress, lifestyle and/or life‐history strategies of animals. We here compared telomere dynamics in erythrocytes of hatchlings and fledglings of the brood parasite great spotted cuckoos (Clamator glandarius) and of magpies (Pica pica), their main host in Europe. In magpie chicks, telomere length decreased from hatching to fledging, whereas no significant change in telomere length of great spotted cuckoo chicks was found. Moreover, we found interspecific differences in the association between laying date and telomere shortening. Interspecific differences in telomere shortening were interpreted as a consequence of differences in lifestyle and life‐history characteristics of magpies and great spotted cuckoos. In comparison with magpies, cuckoos experience reduced sibling competition and higher access to resources and, consequently, lower stressful environmental conditions during the nestling phase. These characteristics also explain the associations between telomere attrition and environmental conditions (i.e. laying date) for magpies and the absence of association for great spotted cuckoos. These results therefore fit expectations on telomere dynamics derived from interspecific differences in lifestyle and life history of brood parasites and their bird hosts.  相似文献   

6.
7.
A larger body size confers many benefits, such as increased reproductive success, ability to evade predators and increased competitive ability and social status. However, individuals rarely maximize their growth rates, suggesting that this carries costs. One such cost could be faster attrition of the telomeres that cap the ends of eukaryotic chromosomes and play an important role in chromosome protection. A relatively short telomere length is indicative of poor biological state, including poorer tissue and organ performance, reduced potential longevity and increased disease susceptibility. Telomere loss during growth may also be accelerated by environmental factors, but these have rarely been subjected to experimental manipulation in the natural environment. Using a wild system involving experimental manipulations of juvenile Atlantic salmon Salmo salar in Scottish streams, we found that telomere length in juvenile fish was influenced by parental traits and by direct environmental effects. We found that faster‐growing fish had shorter telomeres and there was a greater cost (in terms of reduced telomere length) if the growth occurred in a harsher environment. We also found a positive association between offspring telomere length and the growth history of their fathers (but not mothers), represented by the number of years fathers had spent at sea. This suggests that there may be long‐term consequences of growth conditions and parental life history for individual longevity.  相似文献   

8.
In birds, egg size affects chick growth and survival and it is an important component of reproductive success. The shiny cowbird Molothrus bonariensis is an extreme generalist brood parasite that uses hosts with a wide range of body masses. Survival of cowbird chicks decreases with host body mass, as competition for food with nestmates is more intense in large than in small hosts. We studied variation in shiny cowbird egg size and chick growth in two hosts that differ markedly in body size: the chalk‐browed mockingbird Mimus saturninus (70–75 g), and the house wren Troglodytes aedon (12–13 g). We analyzed: 1) if females parasitizing mockingbirds lay larger eggs than those parasitizing wrens, and 2) the association between egg size and chick growth. We experimentally controlled for time of parasitism and number of host chicks and evaluated growth rate of male and female parasite chicks. Shiny cowbirds parasitizing mockingbird nests laid larger eggs than those parasitizing wren nests. Chick body mass after hatching was positively associated with egg size until chicks were five days of age, but there was no association between egg size and growth rate, or asymptotic mass. There were no sexual differences in egg size or body mass at the time of hatching, but growth rate was higher in males than in females leading to sexual dimorphism in asymptotic mass. Differences in egg size between hosts and the effect of egg size on body mass after hatching support the hypothesis that different females are specialized in the use of hosts that differ in body mass.  相似文献   

9.
Life history studies have established that trade‐offs between growth and survival are common both within and among species. Identifying the factor(s) that mediate this trade‐off has proven difficult, however, especially at the among‐species level. In this study, we examined a series of potentially interrelated traits in a community of temperate‐zone passerine birds to help understand the putative causes and consequences of variation in early‐life growth among species. First, we examined whether nest predation risk (a proven driver of interspecific variation in growth and development rates) was correlated with species‐level patterns of incubation duration and nestling period length. We then assessed whether proxies for growth rate covaried with mean trait covariance strength (i.e., phenotypic correlations ( rp), which can be a marker of early‐life stress) among body mass, tarsus length, and wing length at fledging. Finally, we examined whether trait covariance strength at fledging was related to postfledging survival. We found that higher nest predation risk was correlated with faster skeletal growth and that our proxies for growth corresponded with increased trait covariance strength ( rp), which subsequently, correlated with higher mortality in the next life stage (postfledging period). These results provide an indication that extrinsic pressures (nest predation) impact rates of growth, and that there are costs of rapid growth across species, expressed as higher mean rp and elevated postfledging mortality. The link between higher levels of trait covariance at fledging and increased mortality is unclear, but increased trait covariance strength may reflect reduced phenotypic flexibility (i.e., phenotypic canalization), which may limit an organism''s capacity for coping with environmental or ecological variability.  相似文献   

10.
Shortening of telomeres, specific nucleotide repeats that cap eukaryotic chromosomes, is thought to play an important role in cellular and organismal senescence. We examined telomere dynamics in two long-lived seabirds, the European shag and the wandering albatross. Telomere length in blood cells declines between the chick stage and adulthood in both species. However, among adults, telomere length is not related to age. This is consistent with reports of most telomere loss occurring early in life in other vertebrates. Thus, caution must be used in estimating annual rates of telomere loss, as these are probably not constant with age. We also measured changes within individuals in the wild, using repeat samples taken from individual shags as chicks and adults. We found high inter-individual variation in the magnitude of telomere loss, much of which was explained by circumstances during growth. Individuals laying down high tissue mass for their size showed greater telomere shortening. Independently of this, individuals born late in the season showed more telomere loss. Early conditions, possibly through their effects on oxidative stress, appear to play an important role in telomere attrition and thus potentially in the longevity of individuals.  相似文献   

11.
Low socio-economic status (SES) is associated with a shortened life expectancy, but its effect on aging is unknown. The rate of white-blood-cell (WBC) telomere attrition may be a biological indicator of human aging. We tested the hypothesis that SES is associated with telomere attrition independent of known risk factors influencing the aging process. We studied 1552 female twins. A venous blood sample was taken from each twin and isolated WBCs used for extraction of DNA. Terminal restriction fragment length (TRFL) was measured. Questionnaire data were collected on occupation, education, income, smoking, exercise, height and weight. Standard multiple linear regression and multivariate analyses of variance tested for associations between SES and TRFL, adjusting for covariates. A discordant twin analysis was conducted on a subset to verify findings. WBC telomere length was highly variable but significantly shorter in lower SES groups. The mean difference in TRFL between nonmanual and manual SES groups was 163.2 base pairs (bp) of which 22.9 bp (approximately 14%) was accounted for by body mass index, smoking and exercise. Comparison of TRFL in the 17 most discordant SES twin pairs confirmed this difference. Low SES, in addition to the harmful effects of smoking, obesity and lack of exercise, appears to have an impact on telomere length.  相似文献   

12.
Theory predicts that selection acting across environments should erode genetic variation in reaction norms; i.e., selection should weaken genotype × environment interaction (G × E). In spite of this expectation, G × E is often detected in fitness-related traits. It thus appears that G × E is at least sometimes sustained under selection, a possibility that highlights the need for theory that can account for variation in the presence and strength of G × E. We tested the hypothesis that trait differences in developmental architecture contribute to variation in the expression of G × E. Specifically, we assessed the influence of canalization (robustness to genetic or environmental perturbations) and condition-dependence (association between trait expression and prior resource acquisition or vital cellular processes). We compared G × E across three trait types expected to differ in canalization and condition-dependence: mating signals, body size-related traits, and genitalia. Because genitalia are expected to show the least condition-dependence and the most canalization, they should express weaker G × E than the other trait types. Our study species was a member of the Enchenopa binotata species complex of treehoppers. We found significant G × E in most traits; G × E was strongest in signals and body traits, and weakest in genitalia. These results support the hypothesis that trait differences in developmental architecture (canalization and condition-dependence) contribute to variation in the expression of G × E. We discuss implications for the dynamics of sexual selection on different trait types.  相似文献   

13.
Telomeres are protective caps at the end of chromosomes, and their length is positively correlated with individual health and lifespan across taxa. Longitudinal studies have provided mixed results regarding the within‐individual repeatability of telomere length. While some studies suggest telomere length to be highly dynamic and sensitive to resource‐demanding or stressful conditions, others suggest that between‐individual differences are mostly present from birth and relatively little affected by the later environment. This dichotomy could arise from differences between species, but also from methodological issues. In our study, we used the highly reliable Terminal Restriction Fragment analysis method to measure telomeres over a 10‐year period in adults of a long‐lived seabird, the common tern (Sterna hirundo). Telomeres shortened with age within individuals. The individual repeatability of age‐dependent telomere length was high (>0.53), and independent of the measurement interval (i.e., one vs. six years). A small (R2 = .01), but significant part of the between‐individual variation in telomere length was, however, explained by the number of fledglings produced in the previous year, while reproduction in years prior to the previous year had no effect. We confirmed that age‐dependent telomere length predicted an individual's remaining lifespan. Overall, our study suggests that the majority of between‐individual variation in adult telomere length is consistent across adult life, and that a smaller part of the variation can be explained by dynamic factors, such as reproduction.  相似文献   

14.
A consistent association has been observed between leukocyte telomere length (LTL) and atherosclerosis, but the mechanisms underlying these associations are still not well understood. Premature biology aging was evident in atherosclerotic plaques, characterized by reduced cell proliferation, irreversible growth arrest and apoptosis, and telomere attrition. As atherosclerosis is a state of chronic low-grade inflammation and increased oxidative stress, shortened LTL in patients with atherosclerosis might stem from the two sources, one is an accelerated rate in hematopoietic stem cells (HSCs) replication to replace leukocytes consumed in the inflammatory process, and another is the increase in the loss of telomere repeats per replication. Thus, diminished HSC reserves at birth and age-dependent telomere attrition afterward are mirrored in shortened LTL during the adulthood. In addition, the inter-individual variation of LTL in the general population can be partly explained by genetic factors regulating telomere maintenance and the rate of HSCs replication. Atherosclerosis is an aging-related disease, and practically all humans develop atherosclerosis if they live long enough. Here we overview the potential roles of LTL dynamics in the imbalance between injurious oxidative stress/inflammation and endothelial repair during the pathogenesis of age-related atherosclerosis, and discuss the possibility that preventing accelerated cellular senescence is a potential target in prevention of atherosclerosis.  相似文献   

15.
Telomeres are sensitive to damage induced by oxidative stress, and thus it is expected that dietary antioxidants may support the maintenance of telomere length in animals, particularly those with a fast rate of life (e.g. fast metabolism, activity and growth). We tested experimentally the effect of antioxidant supplements on telomere length during early development in wild gull chicks with natural individual variations in behaviour pattern and growth rate. Proactive chicks had shorter telomeres than reactive chicks, but the penalty for the bold behaviour pattern was reduced by antioxidant supplementation. Chicks growing faster had longer telomeres during early growth, suggesting that inherited quality supports a fast life history.  相似文献   

16.
Individual variation in survival probability due to differential responses to early‐life environmental conditions is important in the evolution of life histories and senescence. A biomarker allowing quantification of such individual variation, and which links early‐life environmental conditions with survival by providing a measure of conditions experienced, is telomere length. Here, we examined telomere dynamics among 24 cohorts of European badgers (Meles meles). We found a complex cross‐sectional relationship between telomere length and age, with no apparent loss over the first 29 months, but with both decreases and increases in telomere length at older ages. Overall, we found low within‐individual consistency in telomere length across individual lifetimes. Importantly, we also observed increases in telomere length within individuals, which could not be explained by measurement error alone. We found no significant sex differences in telomere length, and provide evidence that early‐life telomere length predicts lifespan. However, while early‐life telomere length predicted survival to adulthood (≥1 year old), early‐life telomere length did not predict adult survival probability. Furthermore, adult telomere length did not predict survival to the subsequent year. These results show that the relationship between early‐life telomere length and lifespan was driven by conditions in early‐life, where early‐life telomere length varied strongly among cohorts. Our data provide evidence for associations between early‐life telomere length and individual life history, and highlight the dynamics of telomere length across individual lifetimes due to individuals experiencing different early‐life environments.  相似文献   

17.
Sexual size dimorphism (SSD) is common in birds and has been linked to various selective forces. Nevertheless, the question of how and when the sexes start to differentiate from each other is poorly studied. This is a critical knowledge gap, as sex differences in growth may cause different responses to similar ecological conditions. In this study, we describe the sex‐specific growth – based on body mass and five morphometric measurements – of 56 captive Black‐tailed Godwit Limosa limosa limosa chicks raised under ad libitum food conditions, and conclude that all six growth curves are sex‐specific. Females are the larger sex in terms of body mass and skeletal body size. To test whether sex‐specific growth leads to sex‐specific susceptibility to environmental conditions, we compared the age‐specific sizes of male and female chicks in the wild with those of Black‐tailed Godwits reared in captivity. We then tested for a relationship between residual growth and relative hatching date, age, sex and habitat type in which the wild chicks were born. Early‐hatched chicks were relatively bigger and in better condition than late‐hatched chicks, but body condition and size were not affected by natal habitat type. Female chicks deviated more negatively from the sex‐specific growth curves than male chicks for body mass and total‐head length. This suggests that the growth of the larger females is more susceptible to limiting environmental conditions. On average, the deviations of wild chicks from the predicted growth curves were negative for all measurements, which suggests that conditions are limiting in the current agricultural landscape. We argue that in estimating growth curves for sexually dimorphic species, it is critical first to make accurate sex and age determinations.  相似文献   

18.
Animals in a poor biological state face reduced life expectancy, and as a consequence should make decisions that prioritize immediate survival and reproduction over long-term benefits. We tested the prediction that if, as has been suggested, developmental telomere attrition is a biomarker of state and future life expectancy, then individuals who have undergone greater developmental telomere attrition should display greater choice impulsivity as adults. We measured impulsive decision-making in a cohort of European starlings (Sturnus vulgaris) in which we had previously manipulated developmental telomere attrition by cross-fostering sibling chicks into broods of different sizes. We show that as predicted by state-dependent optimality models, individuals who had sustained greater developmental telomere attrition and who had shorter current telomeres made more impulsive foraging decisions as adults, valuing smaller, sooner food rewards more highly than birds with less attrition and longer telomeres. Our findings shed light on the biological embedding of early adversity and support a functional explanation for its consequences that could be applicable to other species, including humans.  相似文献   

19.
Explaining variation in life expectancy between individuals of the same age is fundamental to our understanding of population ecology and life history evolution. Variation in the length and rate of loss of the protective telomere chromosome caps has been linked to cellular lifespan. Yet, the extent to which telomere length and dynamics predict organismal lifespan in nature is still contentious. Using longitudinal samples taken from a closed population of Acrocephalus sechellensis (Seychelles warblers) studied for over 20 years, we describe the first study into life‐long adult telomere dynamics (1–17 years) and their relationship to mortality under natural conditions (= 204 individuals). We show that telomeres shorten with increasing age and body mass, and that shorter telomeres and greater rates of telomere shortening predicted future mortality. Our results provide the first clear and unambiguous evidence of a relationship between telomere length and mortality in the wild, and substantiate the prediction that telomere length and shortening rate can act as an indicator of biological age further to chronological age when exploring life history questions in natural conditions.  相似文献   

20.
FUMI HIROSE  YUTAKA WATANUKI 《Ibis》2012,154(2):296-306
In some bird species, the survival of chicks hatching later in the season is lower than those hatched earlier due to increased risk of predation and a seasonal decline in feeding conditions. To reduce these risks, it might be advantageous for late‐hatched chicks to grow faster and hence fledge at younger age. In this experimental study, the growth rates of early‐ and late‐hatched Rhinoceros Auklet Cerorhinca monocerata chicks were compared under average and poor food supplies in captivity. Controlling for potentially confounding effects of chick mass at 10 days old, chick age and nest‐chamber temperature, late‐hatched chicks had higher wing growth rate than early‐hatched chicks before attaining the minimum wing length required for fledgling under both average and poor food supplies. After attaining the minimum wing length, however, late‐hatched chicks had a lower fledging mass, indicating a potential cost that could diminish the early advantage of fast wing growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号