首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 3 毫秒
1.
There is an increasing recognition that long distance dispersal (LDD) plays a key role in establishing spatial genetic structure during colonization. Recent works, focused on short distance dispersal, demonstrated that a neutral mutation arising at the colonization front can either ‘surf’ with the wave front and reach high frequencies or stay near its place of origin at low frequencies. Here, we examine how LDD, and more generally the shape of the dispersal kernel, modifies this phenomenon and how the width of the colonization corridor affects the fate of the mutation. We demonstrate that when LDD events are more frequent, the ‘surfing phenomenon’ is less frequent, probably because any alleles can get far ahead from the colonization front and preclude the invasion by others alleles, thus leading to an attenuation of the diversity loss. We also demonstrate that the width of the colonization corridor influences the fate of the mutation, wide spaces decreasing the probability of invasion. Overall, the genetic structure of diversity resulted not only from LDD but also particularly from the shape of the dispersal kernel.  相似文献   

2.
3.
Cavalli‐Sforza and coauthors originally explored the genetic variation of modern humans throughout the world and observed an overall east‐west genetic gradient in Asia. However, the specific environmental and population genetics processes causing this gradient were not formally investigated and promoted discussion in recent studies. Here we studied the influence of diverse environmental and population genetics processes on Asian genetic gradients and identified which could have produced the observed gradient. To do so, we performed extensive spatially‐explicit computer simulations of genetic data under the following scenarios: (a) variable levels of admixture between Paleolithic and Neolithic populations, (b) migration through long‐distance dispersal (LDD), (c) Paleolithic range contraction induced by the last glacial maximum (LGM), and (d) Neolithic range expansions from one or two geographic origins (the Fertile Crescent and the Yangzi and Yellow River Basins). Next, we estimated genetic gradients from the simulated data and we found that they were sensible to the analysed processes, especially to the range contraction induced by LGM and to the number of Neolithic expansions. Some scenarios were compatible with the observed east‐west genetic gradient, such as the Paleolithic expansion with a range contraction induced by the LGM or two Neolithic range expansions from both the east and the west. In general, LDD increased the variance of genetic gradients among simulations. We interpreted the obtained gradients as a consequence of both allele surfing caused by range expansions and isolation by distance along the vast east‐west geographic axis of this continent.  相似文献   

4.
The palaeoceanography of southern Australia has been characterized by fluctuating sea levels during glacial periods, changing temperature regimes and modified boundary currents. Previous studies on genetic structuring of species in southeastern Australia have focused mainly on the differentiation of eastern and western populations while the potential role of Bass Strait as a region of overlap for three biogeographic provinces (Peronia, Maugea, and Flindersia) has been largely ignored. This study aimed to explore the likely roles of historic and contemporary factors in determining divergence patterns in the habitat‐forming intertidal seaweed Hormosira banksii in southeastern Australia with a special focus on postglacial dispersal into Bass Strait. We examined the genetic diversity of 475 Hormosira specimens collected from 19 sites around southern Australia using DNA sequence analysis of cytochrome oxidase 1. Three major haplotype groups were identified (western, centre and eastern) corresponding with the three existing biogeographical provinces in this region. Historic break points appeared to be retained and reinforced by modern day dispersal barriers. Phylogeographic grouping of Hormosira reflected a combination of historic and contemporary oceanography. As western and eastern group haplotypes were largely absent within Bass Strait, re‐colonization after the last glacial maximum appeared to have originated from refuges within or near present day Bass Strait. Patterns of genetic structure for Hormosira are consistent with other marine species in this region and highlight the importance of biogeographical barriers in contributing to modern genetic structure.  相似文献   

5.
6.

Aim

The hypotheses proposed to explain the high percentage of bipolar lichens in Antarctica have never been explicitly tested. We used the strictly bipolar, coastal lichenized fungus Mastodia tessellata (Verrucariaceae, Ascomycota) and its photobionts (Prasiola, Trebouxiophyceae, Chlorophyta) as model species to discern whether this extraordinary disjunction originated from vicariance or long‐distance dispersal.

Location

Coasts of Antarctica, Tierra del Fuego (Chile), Alaska (USA) and British Columbia (Canada).

Methods

Based on a comprehensive geographical (315 specimens and 16 populations from Antarctica, Tierra del Fuego and North America) and molecular sampling (three and four loci for the fungus and algae respectively), we implemented explicit Bayesian methods to compare alternative hypotheses of speciation and migration, and performed dating analyses for the fungal and algal partner, in order to infer the timing of the colonization events and the direction of gene flow among distant, disjunct areas.

Results

Mastodia tessellata comprises two fungal species which in turn associate with three photobiont lineages along the studied distribution range. Independent estimation of divergence ages for myco‐ and photobionts indicated a middle to latest Miocene species split in the Southern Hemisphere, and a late Miocene to Pleistocene acquisition of the bipolar distribution. Comparison of migration models and genetic diversity patterns suggested an austral origin for the bipolar species.

Main conclusions

The complex evolutionary history of Mastodia tessellata s.l. can be explained by a combination of vicariant and long‐distance dispersal mechanisms. We provide novel evidence of a pre‐Pleistocene long‐term evolution of lichens in Antarctica as well as for bipolar distributions shaped by Southern to Northern Hemisphere migratory routes without the need for stepping stones.  相似文献   

7.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号