首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Pathological cardiac hypertrophy often leads to heart failure. Activation of autophagy has been shown in pathological hypertrophic hearts. Autophagy is regulated positively by Class III phosphoinositide 3‐kinase (PI3K). However, it is unknown whether Class III PI3K plays a role in the transition of cardiac hypertrophy to heart failure. To address this question, we employed a previously established cardiac hypertrophy model in heat shock protein 27 transgenic mice which shares common features with several types of human cardiomyopathy. Age‐matched wild‐type mice served as control. Firstly, a prolonged activation of autophagy, as reflected by autophagosome accumulation, increased LC3 conversion and decreased p62 protein levels, was detected in hypertrophic hearts from adaptive stage to maladaptive stage. Moreover, morphological abnormalities in myofilaments and mitochondria were presented in the areas accumulated with autophagosomes. Secondly, activation of Class III PI3K Vacuolar protein sorting 34 (Vps34), as demonstrated by upregulation of Vps34 expression, increased interaction of Vps34 with Beclin‐1, and deceased Bcl‐2 expression, was demonstrated in hypertrophic hearts from adaptive stage to maladaptive stage. Finally, administration with Wortmaninn, a widely used autophagy inhibitor by suppressing Class III PI3K activity, significantly decreased autophagy activity, improved morphologies of intracellular apartments, and most importantly, prevented progressive cardiac dysfunction in hypertrophic hearts. Collectively, we demonstrated that Class III PI3K plays a central role in the transition of cardiac hypertrophy to heart failure via a prolonged activation of autophagy in current study. Class III PI3K may serve as a potential target for the treatment and management of maladaptive cardiac hypertrophy.  相似文献   

3.
Autophagy degrades cytoplasmic proteins and organelles to recycle cellular components that are required for cell survival and tissue homeostasis. However, it is not clear how autophagy is regulated in mammalian cells. WASH (Wiskott–Aldrich syndrome protein (WASP) and SCAR homologue) plays an essential role in endosomal sorting through facilitating tubule fission via Arp2/3 activation. Here, we demonstrate a novel function of WASH in modulation of autophagy. We show that WASH deficiency causes early embryonic lethality and extensive autophagy of mouse embryos. WASH inhibits vacuolar protein sorting (Vps)34 kinase activity and autophagy induction. We identified that WASH is a new interactor of Beclin 1. Beclin 1 is ubiquitinated at lysine 437 through lysine 63 linkage in cells undergoing autophagy. Ambra1 is an E3 ligase for lysine 63‐linked ubiquitination of Beclin 1 that is required for starvation‐induced autophagy. The lysine 437 ubiquitination of Beclin 1 enhances the association with Vps34 to promote Vps34 activity. WASH can suppress Beclin 1 ubiquitination to inactivate Vps34 activity leading to suppression of autophagy.  相似文献   

4.
Mitochondrial dynamics maintains normal mitochondrial function by degrading damaged mitochondria and generating newborn mitochondria. The accumulation of damaged mitochondria influences the intracellular environment by promoting mitochondrial dysfunction, and thus initiating a vicious cycle. Oxidative stress induces mitochondrial malfunction, which is involved in many cardiovascular diseases. However, the mechanism of mitochondrial accumulation in cardiac myoblasts remains unclear. We observed mitochondrial dysfunction and an increase in mitochondrial mass under the oxidative conditions produced by tert‐butyl hydroperoxide (tBHP) in cardiac myoblast H9c2 cells. However, in contrast to the increase in mitochondrial mass, mitochondrial DNA (mtDNA) decreased, suggesting that enhanced mitochondrial biogenesis may be not the primary cause of the mitochondrial accumulation. Therefore, we investigated changes in a number of proteins involved in autophagy. Beclin1, Atg12–Atg5 conjugate, Atg7 contents decreased but LC3‐II accumulated in tBHP‐treated H9c2 cells. Moreover, the capacity for acid hydrolysis decreased in H9c2 cells. We also demonstrated a decrease in DJ‐1 protein under the oxidative conditions that deregulate mitochondrial dynamics. These results reveal that autophagy became defective under oxidative stress. We therefore suggest that defects in autophagy mediate mitochondrial accumulation under these conditions. J. Cell. Biochem. 114: 212–219, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
The pathogenesis of age‐related macular degeneration (AMD) involves demise of the retinal pigment epithelium and death of photoreceptors. In this article, we investigated the response of human adult retinal pigmented epithelial (ARPE‐19) cells to 5‐(N,N‐hexamethylene)amiloride (HMA), an inhibitor of Na+/H+ exchangers. We observed that ARPE‐19 cells treated with HMA are unable to activate ‘classical’ apoptosis but they succeed to activate autophagy. In the first 2 hrs of HMA exposure, autophagy is efficient in protecting cells from death. Thereafter, autophagy is impaired, as indicated by p62 accumulation, and this protective mechanism becomes the executioner of cell death. This switch in autophagy property as a function of time for a single stimulus is here shown for the first time. The activation of autophagy was observed, at a lesser extent, with etoposide, suggesting that this event might be a general response of ARPE cells to stress and the most important pathway involved in cell resistance to adverse conditions and toxic stimuli.  相似文献   

6.
Vps30p/Apg6p is required for both autophagy and sorting of carboxypeptidase Y (CPY). Although Vps30p is known to interact with Apg14p, its precise role remains unclear. We found that two proteins copurify with Vps30p. They were identified by mass spectrometry to be Vps38p and Vps34p, a phosphatidylinositol (PtdIns) 3-kinase. Vps34p, Vps38p, Apg14p, and Vps15p, an activator of Vps34p, were coimmunoprecipitated with Vps30p. These results indicate that Vps30p functions as a subunit of a Vps34 PtdIns 3-kinase complex(es). Phenotypic analyses indicated that Apg14p and Vps38p are each required for autophagy and CPY sorting, respectively, whereas Vps30p, Vps34p, and Vps15p are required for both processes. Coimmunoprecipitation using anti-Apg14p and anti-Vps38p antibodies and pull-down experiments showed that two distinct Vps34 PtdIns 3-kinase complexes exist: one, containing Vps15p, Vps30p, and Apg14p, functions in autophagy and the other containing Vps15p, Vps30p, and Vps38p functions in CPY sorting. The vps34 and vps15 mutants displayed additional phenotypes such as defects in transport of proteinase A and proteinase B, implying the existence of another PtdIns 3-kinase complex(es). We propose that multiple Vps34p-Vps15p complexes associated with specific regulatory proteins might fulfill their membrane trafficking events at different sites.  相似文献   

7.
8.
Endoplasmic reticulum stress is defined as the accumulation of unfolded proteins in the endoplasmic reticulum, and is caused by conditions such as heat or agents that cause endoplasmic reticulum stress, including tunicamycin and dithiothreitol. Autophagy, a major pathway for degradation of macromolecules in the vacuole, is activated by these stress agents in a manner dependent on inositol‐requiring enzyme 1b (IRE1b), and delivers endoplasmic reticulum fragments to the vacuole for degradation. In this study, we examined the mechanism for activation of autophagy during endoplasmic reticulum stress in Arabidopsis thaliana. The chemical chaperones sodium 4–phenylbutyrate and tauroursodeoxycholic acid were found to reduce tunicamycin‐ or dithiothreitol‐induced autophagy, but not autophagy caused by unrelated stresses. Similarly, over‐expression of BINDING IMMUNOGLOBULIN PROTEIN (BIP), encoding a heat shock protein 70 (HSP70) molecular chaperone, reduced autophagy. Autophagy activated by heat stress was also found to be partially dependent on IRE1b and to be inhibited by sodium 4–phenylbutyrate, suggesting that heat‐induced autophagy is due to accumulation of unfolded proteins in the endoplasmic reticulum. Expression in Arabidopsis of the misfolded protein mimics zeolin or a mutated form of carboxypeptidase Y (CPY*) also induced autophagy in an IRE1b‐dependent manner. Moreover, zeolin and CPY* partially co‐localized with the autophagic body marker GFP–ATG8e, indicating delivery to the vacuole by autophagy. We conclude that accumulation of unfolded proteins in the endoplasmic reticulum is a trigger for autophagy under conditions that cause endoplasmic reticulum stress.  相似文献   

9.
Autophagy traffics cellular components to the lysosome for degradation. Ral GTPase and the exocyst have been implicated in the regulation of stress‐induced autophagy, but it is unclear whether they are global regulators of this process. Here, we investigate Ral function in different cellular contexts in Drosophila and find that it is required for autophagy during developmentally regulated cell death in salivary glands, but does not affect starvation‐induced autophagy in the fat body. Furthermore, knockdown of exocyst subunits has a similar effect, preventing autophagy in dying cells but not in cells of starved animals. Notch activity is elevated in dying salivary glands, this change in Notch signaling is influenced by Ral, and decreased Notch function influences autophagy. These data indicate that Ral and the exocyst regulate autophagy in a context‐dependent manner, and that in dying salivary glands, Ral mediates autophagy, at least in part, by regulation of Notch.  相似文献   

10.
Autophagy, a process in which cellular components are engulfed and degraded within double-membrane vesicles termed autophagosomes, has an important role in the response to oxidative damage. Here we identify a novel cascade of phosphorylation events, involving a network of protein and lipid kinases, as crucial components of the signaling pathways that regulate the induction of autophagy under oxidative stress. Our findings show that both the tumor-suppressor death-associated protein kinase (DAPk) and protein kinase D (PKD), which we previously showed to be phosphorylated and consequently activated by DAPk, mediate the induction of autophagy in response to oxidative damage. Furthermore, we map the position of PKD within the autophagic network to Vps34, a lipid kinase whose function is indispensable for autophagy, and demonstrate that PKD is found in the same molecular complex with Vps34. PKD phosphorylates Vps34, leading to activation of Vps34, phosphatydilinositol-3-phosphate (PI(3)P) formation, and autophagosome formation. Consistent with its identification as a novel inducer of the autophagic machinery, we show that PKD is recruited to LC3-positive autophagosomes, where it localizes specifically to the autophagosomal membranes. Taken together, our results describe PKD as a novel Vps34 kinase that functions as an effecter of autophagy under oxidative stress.  相似文献   

11.
Ma J  Jin R  Jia X  Dobry CJ  Wang L  Reggiori F  Zhu J  Kumar A 《Genetics》2007,177(1):205-214
Over the last 15 years, yeast pseudohyphal growth (PHG) has been the focus of intense research interest as a model of fungal pathogenicity. Specifically, PHG is a stress response wherein yeast cells deprived of nitrogen form filaments of elongated cells. Nitrogen limitation also induces autophagy, a ubiquitous eukaryotic stress response in which proteins are trafficked to the vacuole/lysosome for degradation and recycling. Although autophagy and filamentous growth are both responsive to nitrogen stress, a link between these processes has not been investigated to date. Here, we present several studies describing an interrelationship between autophagy and filamentous growth. By microarray-based expression profiling, we detect extensive upregulation of the pathway governing autophagy during early PHG and find both processes active under conditions of nitrogen stress in a filamentous strain of budding yeast. Inhibition of autophagy results in increased PHG, and autophagy-deficient yeast induce PHG at higher concentrations of available nitrogen. Our results suggest a model in which autophagy mitigates nutrient stress, delaying the onset of PHG; conversely, inhibition of autophagy exacerbates nitrogen stress, resulting in precocious and overactive PHG. This physiological connection highlights the central role of autophagy in regulating the cell's nutritional state and the responsiveness of PHG to that state.  相似文献   

12.
《Autophagy》2013,9(1):6-18
The etiologic agent of Chagas disease, Trypanosoma cruzi, infects mammalian cells activating a signal transduction cascade that leads to the formation of its parasitophorous vacuole. Previous works have demonstrated the crucial role of lysosomes in the establishment of T. cruzi infection. In this work we have studied the possible relationship between this parasite and the host cell autophagy. We show, for the first time, that the vacuole containing T. cruzi (TcPV) is decorated by the host cell autophagic protein LC3. Furthermore, live cell imaging experiments indicate that autolysosomes are recruited to parasite entry sites. Interestingly, starvation or pharmacological induction of autophagy before infection significantly increased the number of infected cells whereas inhibitors of this pathway reduced the invasion. In addition, the absence of Atg5 or the reduced expression of Beclin1, two proteins required at the initial steps of autophagosome formation, limited parasite entry and reduced the association between TcPV and the classical lysosomal marker Lamp-1. These results indicate that mammalian autophagy is a key process that favors the colonization of T. cruzi in the host cell.  相似文献   

13.
Mammalian cells deploy autophagy to defend their cytosol against bacterial invaders. Anti‐bacterial autophagy relies on the core autophagy machinery, cargo receptors, and “eat‐me” signals such as galectin‐8 and ubiquitin that label bacteria as autophagy cargo. Anti‐bacterial autophagy also requires the kinase TBK1, whose role in autophagy has remained enigmatic. Here we show that recruitment of WIPI2, itself essential for anti‐bacterial autophagy, is dependent on the localization of catalytically active TBK1 to the vicinity of cytosolic bacteria. Experimental manipulation of TBK1 recruitment revealed that engagement of TBK1 with any of a variety of Salmonella‐associated “eat‐me” signals, including host‐derived glycans and K48‐ and K63‐linked ubiquitin chains, suffices to restrict bacterial proliferation. Promiscuity in recruiting TBK1 via independent signals may buffer TBK1 functionality from potential bacterial antagonism and thus be of evolutionary advantage to the host.  相似文献   

14.
The homotypic fusion and protein sorting (HOPS) complex is a multisubunit tethering complex that in yeast regulates membrane fusion events with the vacuole, the yeast lysosome. Mammalian homologs of all HOPS components have been found, but little is known about their function. Here, we studied the role of hVps41 and hVps39, two components of the putative human HOPS complex, in the endo‐lysosomal pathway of human cells. By expressing hemagglutinin (HA)‐tagged constructs, we show by immunoelectron microscopy (immunoEM) that both hVps41 and hVps39 associate with the limiting membrane of late endosomes as well as lysosomes. Small interference RNA (siRNA)‐mediated knockdown of hVps41 or hVps39 resulted in an accumulation of late endosomes, a depletion in the number of lysosomes and a block in the degradation of endocytosed cargo. Lysosomal pH and cathepsin B activity remained unaltered in these conditions. By immunoEM we found that hVps41 or hVps39 knockdown impairs homotypic fusion between late endosomes as well as heterotypic fusion between late endosomes and lysosomes. Thus, our data show that both hVps41 and hVps39 are required for late endosomal–lysosomal fusion events and the delivery of endocytic cargo to lysosomes in human cells.  相似文献   

15.
The pathology of spinocerebellar ataxia type 3, also known as Machado‐Joseph disease, is triggered by aggregation of toxic ataxin‐3 (ATXN3) variants containing expanded polyglutamine repeats. The physiological role of this deubiquitylase, however, remains largely unclear. Our recent work showed that ATX‐3, the nematode orthologue of ATXN3, together with the ubiquitin‐directed segregase CDC‐48, regulates longevity in Caenorhabditis elegans. Here, we demonstrate that the long‐lived cdc‐48.1; atx‐3 double mutant displays reduced viability under prolonged starvation conditions that can be attributed to the loss of catalytically active ATX‐3. Reducing the levels of the autophagy protein BEC‐1 sensitized worms to the effect of ATX‐3 deficiency, suggesting a role of ATX‐3 in autophagy. In support of this conclusion, the depletion of ATXN3 in human cells caused a reduction in autophagosomal degradation of proteins. Surprisingly, reduced degradation in ATXN3‐depleted cells coincided with an increase in the number of autophagosomes while levels of lipidated LC3 remained unaffected. We identified two conserved LIR domains in the catalytic Josephin domain of ATXN3 that directly interacted with the autophagy adaptors LC3C and GABARAP in vitro. While ATXN3 localized to early autophagosomes, it was not subject to lysosomal degradation, suggesting a transient regulatory interaction early in the autophagic pathway. We propose that the deubiquitylase ATX‐3/ATXN3 stimulates autophagic degradation by preventing superfluous initiation of autophagosomes, thereby promoting an efficient autophagic flux important to survive starvation.  相似文献   

16.
The yeast class III phosphoinositide 3‐kinase (PI3K) that catalyses production of the lipid signalling molecule, phosphatidylinositol‐3‐phosphate, is primarily implicated in vesicle‐mediated transport and autophagy. In this study, we identified, through a genetic screen, the Candida glabrata CgVPS15 gene, an orthologue of the Saccharomyces cerevisiae PI3K regulatory subunit‐encoding open reading frame (ORF) to be required for impairment of phagosomal maturation in human macrophages. We also disrupted catalytic subunit of the C. glabrata PI3K complex, CgVps34, and found it to be pivotal to arrest mature phagolysosome biogenesis. Further, deletion of either CgVPS15 or CgVPS34 rendered C. glabrata cells hyperadherent to epithelial cells and susceptible to the antimicrobial arsenal of primary murine and cultured human macrophages and diverse stresses. Despite no growth retardation at 37°C, Cgvps15Δ and Cgvps34Δ mutants were severely virulence attenuated in mice. We demonstrate that trafficking and/or processing of the vacuolar lumenal hydrolase, carboxypeptidase Y, and the major adhesin, Epa1, rely on PI3K regulatory mechanisms in C. glabrata. By disrupting autophagy‐related PI3K complex genes, we show that C. glabrata PI3K‐impeded phagolysosomal acidification is primarily owing to its role in cellular trafficking events. Altogether, our findings underscore the essentiality of PI3K signalling in modulation of host immune response, intracellular survival and virulence in C. glabrata.  相似文献   

17.
Autophagy is an intracellular degradation process involving many Atg proteins, which are recruited hierarchically to regulate this process. Rab/Ypt GTPases and their activators, guanine nucleotide exchange factors (GEFs), which are critical for regulating vesicle trafficking, are also involved in autophagy. Previously, we reported that yeast Vps21 and its GEF Vps9 are required for autophagy. Later, a third yeast VPS9‐domain‐containing protein, V AR P‐l ike 1 (Vrl1), which was identified as a mutant in major laboratory strains, had partially overlapping functions with Vps9 in trafficking. In this study, we showed that Vrl1 performed roles in autophagy, and its VPS9‐domain was crucial for its role in autophagy. We found that localization of Vrl1 differed from the other two VPS9‐domain‐containing proteins, Vps9 and Muk1, and only Vrl1 changed from multipoint to diffusion after starvation. Like Vps9, Vrl1 suppressed autophagic defects caused by the VPS9 deletion. We further showed that these VPS9‐domain‐containing proteins, Vps9, Muk1, and Vrl1, all co‐localized with Atg8 on autophagosomes in cells blocked in any late step of starvation‐induced autophagy, with Vrl1 most often co‐localizing with Atg8. A small portion (<25%) of these VPS9‐domain‐containing proteins were degraded through autophagy. However, a large portion (>60%) of Vrl1 decreased independently of autophagy. We propose that Vrl1 may regulate autophagy in a similar way as Vps9, and the level of Vrl1 partly decreases through both autophagy‐dependent and ‐independent routes.  相似文献   

18.
The regulation of autophagy in metazoans is only partly understood, and there is a need to identify the proteins that control this process. The diabetes‐ and obesity‐regulated gene (DOR), a recently reported nuclear cofactor of thyroid hormone receptors, is expressed abundantly in metabolically active tissues such as muscle. Here, we show that DOR shuttles between the nucleus and the cytoplasm, depending on cellular stress conditions, and re‐localizes to autophagosomes on autophagy activation. We demonstrate that DOR interacts physically with autophagic proteins Golgi‐associated ATPase enhancer of 16 kDa (GATE16) and microtubule‐associated protein 1A/1B‐light chain 3. Gain‐of‐function and loss‐of‐function studies indicate that DOR stimulates autophagosome formation and accelerates the degradation of stable proteins. CG11347, the DOR Drosophila homologue, has been predicted to interact with the Drosophila Atg8 homologues, which suggests functional conservation in autophagy. Flies lacking CG11347 show reduced autophagy in the fat body during pupal development. All together, our data indicate that DOR regulates autophagosome formation and protein degradation in mammalian and Drosophila cells.  相似文献   

19.
Bartonella effector proteins (named Beps) are substrates of VirB type IV secretion system for translocation into host cells evolved in Bartonella spp. Among these, BepE has been shown to protect cells from fragmentation effects triggered by other Beps and to promote in vivo dissemination of bacteria from the dermal site of inoculation to the bloodstream. Bacterial pathogens secreted effectors to modulate the interplay with host autophagy, either to combat autophagy to escape its bactericidal effect or to exploit autophagy to benefit intracellular replication. Here, we reported a distinct phenotype that selective autophagy in host cells is activated as a countermeasure, to attack BepE via conjugation with K63 polyubiquitin chain on BepE. We found that ectopic expression of Bartonella quintana BepE specifically induced punctate structures that colocalised with an autophagy marker (LC3‐II) in host cells, in addition to filopodia and membrane ruffle formation. Two tandemly arranged B artonella Intracellular Delivery (BID) domains in the BepE C‐terminus, where ubiquitination of sister pairs of lysine residues was confirmed, were essential to activate host cell autophagy. Multiple polyubiquitin chain linkages of K27, K29, K33, and K63 were found to be conjugated at sites of K222 and K365 on BepE, of which K63 polyubiquitination on BepE K365 determined the selective autophagy (p62/SQSTM1 positive autophagy) independent of the PI3K pathway. Colocalisation of BepE with LAMP1 confirmed the maturation of BepE‐induced autophagosomes in which BepE were targeted for degradation. Moreover, host cells employed selective autophagy to counter‐attack BepE to rescue cells from BepE‐induced endocytosis deficiency.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号