首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Glomus intraradices, an arbuscular mycorrhizal fungus (AMF), is frequently found in a surprisingly wide range of ecosystems all over the world. It is used as model organism for AMF and its genome is being sequenced. Despite the ecological importance of AMF, little has been known about their population structure, because no adequate molecular markers have been available. In the present study we analyse for the first time the intraspecific genetic structure of an AMF directly from colonized roots in the field. A recently developed PCR‐RFLP approach for the mitochondrial rRNA large subunit gene (mtLSU) of these obligate symbionts was used and complemented by sequencing and primers specific for a particularly frequent mtLSU haplotype. We analysed root samples from two agricultural field experiments in Switzerland and two semi‐natural grasslands in France and Switzerland. RFLP type composition of G. intraradices (phylogroup GLOM A‐1) differed strongly between agricultural and semi‐natural sites and the G. intraradices populations of the two agricultural sites were significantly differentiated. RFLP type richness was higher in the agricultural sites compared with the grasslands. Detailed sequence analyses which resolved multiple sequence haplotypes within some RFLP types even revealed that there was no overlap of haplotypes among any of the study sites except between the two grasslands. Our results demonstrate a surprisingly high differentiation among semi‐natural and agricultural field sites for G. intraradices. These findings will have major implications on our views of processes of adaptation and specialization in these plant/fungus associations.  相似文献   

2.
Mating activities of the rice stem borer, Chilo suppressalis, were compared between rice‐ and wateroat‐feeding populations, and two potential temporal factors that may act as reproductive barriers were examined. Seasonal data of the number of moths attracted to pheromone traps showed that the peak of emergence at the rice field was approximately 10 days earlier than that at the wateroat vegetation in the first flight season, although there was a broad overlap of emergence at the two locations. Both field observations and a laboratory experiment showed that moths from the rice field started mating earlier than those from the wateroat vegetation. However, whereas the difference was distinctive in the laboratory experiment, mating activity at the wateroat vegetation shifted significantly to an earlier time phase than that observed in the laboratory. Body size data showed that the male moths attracted to the pheromone traps at the wateroat vegetation were significantly larger than those at the rice field, suggesting that the traps at the two locations mainly attracted moths originating from different host plants. However, pheromone‐trapped males at the rice field were significantly larger than those reared from overwintering samples. These results support the idea that males from the wateroat vegetation migrate to the rice field. The differences in seasonal and temporal mating activity and their effects on development of reproductive isolation between host‐associated populations are discussed.  相似文献   

3.
An understanding of how arthropods use energy is fundamental to explaining their diverse life histories and adaptation to specific environments. It is also of importance when attempting to predict the impacts of environmental change on patterns of development and phenology. Here, lipid use by the economically important agent of ovine myiasis, Lucilia sericata (Diptera: Calliphoridae), was quantified at a range of temperatures. During pupation, at temperatures above the minimum temperature required for development (9 °C), pupae depleted an average of 30% of their total lipid over the course of pupation regardless of temperature. There was no detectable loss of lipid during pupation at temperatures below 9 °C. In general, larger individuals had the same relative amounts of lipid as smaller individuals. Newly emerged adults metabolized about 16% of the lipid reserves with which they emerged in the first 24 h during flight‐related activity. Starved adults, with access to water but without sucrose or protein, depleted their lipid reserves and died within about 4 days of emergence. However, adults with access to protein and/or carbohydrate were able to maintain a stored lipid content of about 2.38% of their total body mass for at least 14 days after emergence, irrespective of sex. This finding is similar to that in field‐caught individuals, in which lipid content was found to be a mean of 3% of body mass. The data suggest that warmer environmental conditions, within the temperature limits tested here, although shortening the time required for development and altering the patterns of seasonal abundance of L. sericata, are unlikely to impact on fly survival because of greater metabolic demands during non‐feeding stages of the lifecycle.  相似文献   

4.
For studying the population of pea-midge cocoons, larvae and pupae in the soil, a new method of examining the 'float' obtained from washing soil through the wet-extraction apparatus is described.
Examination of soil samples in the summer of 1957 from fields which carried heavily attacked pea crops in 1956 indicated that pupae were present at depths of 0–3, 3–6, 6–9 in., respectively, from 18 June onwards, and that the peak emergence of midges was in the period 28 June-2 July; observations on adult activity in pea fields confirmed this. Small numbers of pupae were recovered throughout July.
Similar studies on pea fields in 1957 showed the build-up of the cocoon population and the rate of pupation of this generation of larvae. The first flight of 1957 was composed of individuals from the 1956 generation and was far larger than the second flight, which was composed of some 1956 generation and part of the first 1957 generation.
There were indications that increases of temperature might accelerate pupation with a resulting earlier emergence of adults.
The size of midge populations recorded from soil from green pea and dry-harvesting pea fields tended to be similar and appeared to be related to sowing date.  相似文献   

5.
Abstract Prays oleae Bern, (OM) and Palpita unionalis Hüb., (JM) are two of the most important pests in olive groves in Egypt. A 3‐year monitoring study using sex pheromone traps in semi‐arid and arid olive groves was performed. In the semi‐arid grove, flight pattern of the OM was the same as in other Mediterranean countries, but in dates concordating plant phenology. The moth completes three generations annually: the first flight is in March to April, the second is in May to June and the third occurs in August to October. In the arid olive grove, an interesting flight pattern was observed. First flight was always very close or overlapped with the second one with no male catches during August to October. However, eggs were present most of the season, indicating unusually high female presence and oviposition activity of the OM during the absence of males in the traps. Generally, moth densities were significantly lower in low fruiting years than in higher ones and were also lower in the arid olive grove than in the semi‐arid one. In contrast, JM males were present all season, exhibiting six to seven and three to four overlapping flight peaks in arid and semi‐arid olive groves, respectively. Moth densities were significantly higher in the arid olive grove than those in the semi‐arid one. This study shows that trapping location and fruit bearing year are characteristics that strongly affect the grove‐specific information needed to estimate correctly adult emergence and thus the timing of control measures.  相似文献   

6.
7.
8.
Oreina cacaliae (Schrank) (Coleoptera: Chrysomelidae) has a 2‐year life cycle that it has to complete within the short warm seasons of the harsh alpine environment. Three years of field observations and experiments revealed that not all beetles overwintered in the soil next to their principal host Adenostyles alliariae (Asteraceae), as was previously assumed, but that many O. cacaliae left their host in autumn and flew to overwintering sites that were extensively sun‐exposed. In spring, these individuals became active 2 months earlier than their conspecifics that had remained in the soil close to the host plant. These early beetles flew from their hibernation sites against the direction of the prevailing wind. After a random landing in snow, they walked to the spring host Petasites paradoxus (Asteraceae) and fed on its floral stalks, the only plant parts present at that time. A few weeks later, they took flight again to locate newly emerging A. alliariae on which they would feed and deposit larvae as did individuals that had overwintered close to A. alliariae. Leaves of A. alliariae contain pyrrolizidine alkaloids (PAs), which the beetles sequester for their own defence. The dominating PA (seneciphylline) was also found to be present in the floral stalks of P. paradoxus. With additional behavioural assays in the field and laboratory, we demonstrated the importance of plant odours in the short‐range host location process. This study reveals a unique hibernation behaviour in which part of the beetle population uses exceptionally warm locations from which they emerge in spring, long before all the snow has melted. This early, but risky emergence allows them to exploit a second, highly suitable host plant, which they locate first by wind‐guided flight and then by odour‐guided walking. The well‐fed beetles then use odour again to move to their principal host plant, on which they reproduce.  相似文献   

9.
The diamondback moth, Plutella xylostella, is a worldwide pest of brassicas, and its biology and ecology have been extensively studied over recent years. Despite the importance of mathematical models to the management of insect pests, no stochastic model has been developed to date for P. xylostella. In this context, the study aimed to develop a stochastic model capable of describing the stage emergence of P. xylostella under field conditions. The stochastic model was developed using simple nonlinear functions based on the laboratory data on development times under constant temperatures. Comparison between estimated and observed cumulative proportions of egg hatch, pupation and adult emergence recorded in the field in Southern Brazil shows that the model accurately describes the stage emergence of P. xylostella. The developed model shows potential to estimate the stage emergence of P. xylostella under field conditions, and can add significant advances to the management of this pest.  相似文献   

10.
1. The evolution of host range and preference in phytophagous insects is driven by a female's oviposition choice impacting her offspring's fitness. Analysis of the fitness of progeny on different host plants has commonly been restricted to the performance of immature stages. However, since host use can affect adult size, it is important to measure the ongoing effects of host choice on the resulting imagines. 2. The orange‐tip butterfly, Anthocharis cardamines, shows a strong preference for two host plants in Britain, Alliaria petiolata and Cardamine pratensis, which affect body size. Whilst females exhibit a strong positive size–fecundity relation, the impact of body‐size alteration is unknown in males. In this study, fitness effects of host plant choice for male A. cardamines were examined. 3. Males reared on C. pratensis were smaller and emerged earlier than those reared on A. petiolata, and early‐season males were smaller than late‐season ones in the field. Interestingly, regression analysis indicated that the earlier emergence of small males was a host‐mediated rather than a size‐mediated effect. Small size was associated with reduced male dispersal in a semi‐isolated wild population over a 3‐year period. 4. It is proposed that the earlier emergence associated with C. pratensis has evolved in response to depressed dispersal in isolated/semi‐isolated populations associated with this patchily distributed host. We suggest that adult life‐history traits are important for the maintenance of host range in this species, and offer a critique of Courtney's earlier hypothesis that host range is maintained by time‐limited oviposition behaviour.  相似文献   

11.
A technique is described whereby 5th‐instar larvae of the codling moth (Laspeyresia pomonella) which have finished feeding can be tagged externally with cobalt‐58 and released on apple trees, where they seek cocooning sites. Two μCi 58Co per insect did not significantly affect larval survival in the field, or subsequent pupation, emergence, mating, and oviposition in the laboratory. Tagging was more efficient than whole‐tree scraping for the location of cocoons, and was non‐destructive of both the insects and their cocooning sites.

Relocation and observation of the tagged larvae in their cocoons permitted accurate estimation of mortality from when they left the fruit (= release) until adult emergence in the following spring. Natural mortality of larvae seeking cocooning sites was attributed mainly to insect predators, and varied significantly between trees and blocks, averaging 57% over 6 years. Avian predation by the silvereye (Zosterops lateralis) was the greatest hazard to cocooned larvae; this, too, varied significantly between blocks, and averaged 53% over the same period. Both mortalities appeared to be density‐related.  相似文献   

12.
13.
1. As for some other spring‐feeding moths, adult flight of Epirrita autumnata (Lepidoptera: Geometridae) occurs in late autumn. Late‐season flight is a result of a prolonged pupal period. Potential evolutionary explanations for this phenological pattern are evaluated. 2. In a laboratory rearing, there was a weak correlation between pupation date and the time of adult emergence. A substantial genetic difference in pupal period was found between two geographic populations. Adaptive evolution of eclosion time can thus be expected. 3. Metabolic costs of a prolonged pupal period were found to be moderate but still of some ecological significance. Pupal mortality is likely to form the main cost of the prolonged pupal period. 4. Mortality rates of adults, exposed in the field, showed a declining temporal trend from late summer to normal eclosion time in autumn. Lower predation pressure on adults may constitute the decisive selective advantage of late‐season flight. It is suggested that ants, not birds, were the main predators responsible for the temporal trend. 5. Egg mortality was estimated to be low; it is thus unlikely that the late adult period is selected for to reduce the time during which eggs are exposed to predators. 6. In a laboratory experiment, oviposition success was maximal at the time of actual flight peak of E. autumnata, however penalties resulting from sub‐optimal timing of oviposition remained limited.  相似文献   

14.
Calopteryx exul is an endemic endangered damselfly that suffers considerable habitat degradation and local extinctions throughout its geographic range. Although recent studies have investigated its distribution, ecology and larval systematics, the life history of the species is still unknown. In this study, a field survey was conducted to determine larval development, temporal pattern of emergence and teneral spatial distribution of the species in the Seybouse watershed, north‐east Algeria. Larval growth was investigated in two populations: one at about 200 m (low‐elevation population) and the second at 600 m of elevation (high‐elevation population). The species showed partial bivoltine life cycle in both low‐ and high‐elevation population. The temporal pattern of emergence of the first flight season of the year at low‐elevation population was asynchronous with an emergence season lasting 46 days and half of the population emerging in 15 days. The second flight season was shorter with a most likely smaller population size. Sex ratio at emergence was slightly male biased. After ecdysis, tenerals stayed next to the water within a mean distance of 4.76 ± 4.35 m (± SD) with no significant difference between sexes. Conservation measures that should be taken into account in the elaboration of future management plans for the species are discussed.  相似文献   

15.
Studying the drivers of host specificity can contribute to our understanding of the origin and evolution of obligate pollination mutualisms. The preference–performance hypothesis predicts that host plant choice of female insects is related mainly to the performance of their offspring. Soil moisture is thought to be particularly important for the survival of larvae and pupae that inhabit soil. In the high Himalayas, Rheum nobile and R. alexandrae differ in their distribution in terms of soil moisture; that is, R. nobile typically occurs in scree with well‐drained soils, R. alexandrae in wetlands. The two plant species are pollinated by their respective mutualistic seed‐consuming flies, Bradysia sp1. and Bradysia sp2. We investigated whether soil moisture is important for regulating host specificity by comparing pupation and adult emergence of the two fly species using field and laboratory experiments. Laboratory experiments revealed soil moisture did have significant effects on larval and pupal performances in both fly species, but the two fly species had similar optimal soil moisture requirements for pupation and adult emergence. Moreover, a field reciprocal transfer experiment showed that there was no significant difference in adult emergence for both fly species between their native and non‐native habitats. Nevertheless, Bradysia sp1., associated with R. nobile, was more tolerant to drought stress, while Bradysia sp2., associated with R. alexandrae, was more tolerant to flooding stress. These results indicate that soil moisture is unlikely to play a determining role in regulating host specificity of the two fly species. However, their pupation and adult emergence in response to extremely wet or dry soils are habitat‐specific.  相似文献   

16.
Direct observations of selection response in natural, unmanipulated populations in the wild are rare. Those that exist have resulted from major changes in environment during an ongoing study. Selection response should be more common and more readily observable in short-lived organisms where the direction of selection changes from year to year. We examined how the interaction of fluctuating selection, and emergence from long-term diapause, caused ongoing microevolutionary change over eight years in an important life-history trait (diapause timing) in the freshwater calanoid copepod Diaptomus sanguineus. Emergence from long-term diapause releases into the population lineages that did not experience the most recent bout of selection, thereby promoting the maintenance of the heritable trait variation that allows continual selection response. A mechanistic selection model was created on the basis of field and laboratory studies to predict how interannual variations in predation intensity generate year-to-year changes in mean diapause timing and in net reproductive success for alternate trait values. The predicted selection response and the estimated effect of emergence from diapause were both significantly correlated with observed changes in trait mean. A linear model combining selection response and emergence from diapause explained 59% of the variance in year-to-year changes in trait mean. According to this model, strong selection occurred in about half of the years studied, and the average annual contributions to changes in trait mean from selection and emergence were roughly equal. Thus, both fluctuating natural selection and emergence from prolonged diapause affect the expression of diapause timing by D. sanguineus. Fluctuating selection is ubiquitous in nature and may provide opportunities in other populations to witness ongoing natural selection without directional trends in mean phenotype.  相似文献   

17.
Various organisms are known to build nests with defensive structures to protect their offspring from predation, but our understanding of plasticity in the nest structure remains poor. In this study, we investigated whether a paper wasp, Polistes chinensis antennalis, adjusted the construction of nest defensive structure according to the value of their offspring, and we also analysed the effect of adjusting the construction of the structure on predator's decision to attack. P. chinensis antennalis foundresses start a colony and maintain her nest alone until the emergence of workers. During this stage, foundresses often construct a defensive structure on cocoon caps of pupae using nest materials (pulp), which prevents predation of pupae by conspecifics from other nests. The value of pupae to the foundress varies among those in a nest, where the value is higher in pupae that spun the cocoon (and initiated pupation) earlier than other pupae in the nest. From field observations, we found that foundresses constructed a larger pulp structure on the cocoons of pupae that cocooned earlier in the order of cocoon spinning, even after considering confounding factors. We also found that the probability of a pupa being attacked by conspecific intruders decreased with the size of pulp structure on the cocoon. This indicates that intruders avoid attacking cocoons with larger pulp structures. Our study indicates that foundresses adjust the construction of nest defensive structures according to their offspring value, and this allows them to protect the high‐value offspring efficiently and effectively.  相似文献   

18.
To better understand the effects of local topography and climate on soil respiration, we conducted field measurements and soil incubation experiments to investigate various factors influencing spatial and temporal variations in soil respiration for six mixed‐hardwood forest slopes in the midst of the Korean Peninsula. Soil respiration and soil water content (SWC) were significantly greater (P=0.09 and 0.003, respectively) on north‐facing slopes compared to south‐facing slopes, while soil temperature was not significantly different between slopes (P>0.5). At all sites, soil temperature was the primary factor driving temporal variations in soil respiration (r2=0.84–0.96) followed by SWC, which accounted for 30% of soil respiration spatial and temporal variability. Results from both field measurements and incubation experiments indicate that variations in soil respiration due to aspect can be explained by a convex‐shaped function relating SWC to normalized soil respiration rates. Annual soil respiration estimates (1070–1246 g C m?2 yr?1) were not closely related to mean annual air temperatures among sites from different climate regimes. When soils from each site were incubated at similar temperatures in a laboratory, respiration rates for mineral soils from wetter and cooler sites were significantly higher than those for the drier and warmer sites (n=4, P<0.01). Our results indicate that the application of standard temperature‐based Q10 models to estimate soil respiration rates for larger geographic areas covering different aspects or climatic regimes are not adequate unless other factors, such as SWC and total soil nitrogen, are considered in addition to soil temperature.  相似文献   

19.
To avoid winter frost damage, evergreen coniferous species develop cold hardiness with suitable phenology for the local climate regime. Along the elevational gradient, a genetic cline in autumn phenology is often recognised among coniferous populations, but further quantification of evolutionary adaptation related to the local environment and its responsible signals generating the phenological variation are poorly understood. We evaluated the timing of cold hardening among populations of Abies sachalinensis, based on time series freezing tests using trees derived from four seed source populations × three planting sites. Furthermore, we constructed a model to estimate the development of hardening from field temperatures and the intraspecific variations occurring during this process. An elevational cline was detected such that high‐elevation populations developed cold hardiness earlier than low‐elevation populations, representing significant genetic control. Because development occurred earlier at high‐elevation planting sites, the genetic trend across elevation overlapped with the environmental trend. Based on the trade‐off between later hardening to lengthen the active growth period and earlier hardening to avoid frost damage, this genetic cline would be adaptive to the local climate. Our modelling approach estimated intraspecific variation in two model components: the threshold temperature, which was the criterion for determining whether the trees accumulated the thermal value, and the chilling requirement for trees to achieve adequate cold hardiness. A higher threshold temperature and a lower chilling requirement could be responsible for the earlier phenology of the high‐elevation population. These thermal responses may be one of the important factors driving the elevation‐dependent adaptation of A. sachalinensis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号