首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the receptor-mediated endocytosis of asialoglycoproteins in thick sections of cultured hepatocytes of newborn rats by high voltage electron microscope. The organelles involved in endocytosis are revealed ultrastructurally using colloidal gold particles coupled to lactosylated bovine serum albumin. Keeping the cells at 4 degrees C the marker binds to the cell surface showing microvilli, and is not internalized. Increasing the temperature to 37 degrees C, we observed that within 5-15 min. the marker enters the intracellular endocytic organelles close to the cell surface. After 60 min. the marker is found in the larger and deeper endocytic organelles and in large lisosome-like vesicles. We find that the process of endocytosis in newborn cultured hepatocytes is similar to that found in cultured cells of adult rats, but the process of internalization is slower.  相似文献   

2.
The rate of endocytosis of cell surface-bound [3H]-asialo-orosomucoid was determined as a function of temperature. Freshly isolated rat hepatocytes were allowed to bind [3H]asialo-orosomucoid at 4 degrees C, washed to remove nonbound ligand, and internalization was then assessed by the resistance of cell-associated radioactivity to release by the Ca2+ chelator EDTA. At 10 degrees C or below, endocytosis is negligible. Above 10 degrees C, the rate of endocytosis is proportional to temperature but the increase of the rate of endocytosis with increasing temperature changes sharply at about 20 degrees C. From 10-20 degrees C, the apparent activation energy for endocytosis, calculated from an Arrhenius plot, is 45.9 kcal/mol and the temperature coefficient, Q10, is 15.6. However, between 20 and 41 degrees C, the calculated activation energy is 17.0 kcal/mol and the Q10 is 2.6. Although the rate of endocytosis of previously bound [3H]asialo-orosomucoid is very dependent on the temperature, the final extent of endocytosis is essentially temperature-independent between 14 and 37 degrees C. The results suggest that there are at least two steps in the overall process of endocytosis mediated by the asialoglycoprotein receptor on isolated hepatocytes which can be potentially rate-limiting, one at 10 degrees C and another at approximately 20 degrees C.  相似文献   

3.
The ability of second messengers to modulate receptor-mediated endocytosis was studied on isolated rat hepatocytes. A 20-min preincubation with vasopressin was used as a modulation. We observed a 20% inactivation of both surface and intracellular receptors, with no change in the affinity of those remaining active. The internalization and dissociation of a synchronous wave of ligand was not affected, but its degradation was partially inhibited. Our observations suggest that second messengers such as intracellular calcium and diacylglycerol play a complex role in the intracellular trafficking associated with endocytosis.  相似文献   

4.
Rat hepatocytes, freshly isolated by a collagenase perfusion technique, bound [3H]asialo-orosomucoid in a sugar-specific and calcium-dependent manner as expected for the hepatic asialoglycoprotein receptor. At least 90% of the total cell surface-bound [3H]asialo-orosomucoid represented specific binding and could be removed by washing with EDTA. Freshly isolated cells had about 7 x 10(4) surface receptors per cell. However, when cells were incubated at 37 degrees C, the number of surface receptors per cell rapidly increased 2- to 3-fold to about 2.2 x 10(5). This increase in receptor number occurred in the absence of serum and began within minutes, depending on the particular conditions used to keep the cells in suspension. (The maximal rate of appearance of new receptors at 37 degrees C was about 70 receptors per cell per s.) When cells were first exposed to a brief EDTA treatment at 4 degrees C, before measuring the binding of [3H]asialo-orosomucoid, the number of surface receptors per cell was found to increase by about 45%. Therefore, about 30% of the surface receptors on freshly isolated cells have already bound endogenous asialoglycoproteins or are present in the membrane in a cryptic form. At 4 degrees C the binding of [3H]asialo-orosomucoid was rapid (kon greater than or equal to 1.8 x 10(4) M-1s-1), whereas the dissociation of bound [3H]asialo-orosomucoid, measured in the presence of excess nonradioactive glycoprotein, was extremely slow (koff less than or equal to 0.9 x 10(-5) s-1). The association constant calculated from these data (Ka = 2.0 x 10(9) M-1) agreed well with that obtained from equilibrium binding experiments (Ka = 2.4 x 10(9) M-1) using untreated cells or cells which had first been treated with EDTA or incubated at 37 degrees C. In all cases, when the concentration of [3H]asialo-orosomucoid was higher than about 600 ng/ml, the Scatchard plots were curvilinear. The data are, however, consistent with the conclusion that there is a single high affinity receptor on the hepatocyte surface. The additional receptors that appear on the surface when cells are incubated at 37 degrees C or exposed to EDTA are identical with those on untreated cells,  相似文献   

5.
We have constructed an artificial ligand for the hepatocyte-specific asialoglycoprotein receptor for the purpose of generating a synthetic delivery system for DNA. This ligand has a tetra-antennary structure, containing four terminal galactose residues on a branched carrier peptide. The carbohydrate residues of this glycopeptide were introduced by reductive coupling of lactose to the alpha- and epsilon-amino groups of the two N-terminal lysines on the carrier peptide. The C-terminus of the peptide, containing a cysteine separated from the branched N-terminus by a 10 amino acid spacer sequence, was used for conjugation to 3-(2-pyridyldithio)propionate-modified polylysine via disulfide bond formation. Complexes containing plasmid DNA bound to these galactose-polylysine conjugates have been used for asialoglycoprotein receptor-mediated transfer of a luciferase gene into human (HepG2) and murine (BNL CL.2) hepatocyte cell lines. Gene transfer was strongly promoted when amphipathic peptides with pH-controlled membrane-disruption activity, derived from the N-terminal sequence of influenza virus hemagglutinin HA-2, were also present in these DNA complexes. Thus, we have essentially borrowed the small functional domains of two large proteins, asialoglycoprotein and hemagglutinin, and assembled them into a supramolecular complex to generate an efficient gene-transfer system.  相似文献   

6.
Asialoglycoprotein receptors on hepatocytes lose endocytic and ligand binding activity when hepatocytes are exposed to iron ions. Here, we report the effects of zinc and copper ions on the endocytic and ligand binding activity of asialoglycoprotein receptors on isolated rat hepatocytes. Treatment of cells at 37 degrees C for 2 h with ZnCl2 (0-220 microM) or CuCl2 (0-225 microM) reversibly blocked sustained endocytosis of 125I-asialoorosomucoid by up to 93% (t1/2 = 62 min) and 99% (t1/2 = 54 min), respectively. Cells remained viable during such treatments. Zinc- and copper-treated cells lost approximately 50% of their surface asialoglycoprotein receptor ligand binding activity; zinc-treated cells accumulated inactive asialoglycoprotein receptors intracellularly, whereas copper-treated cells accumulated inactive receptors on their surfaces. Cells treated at 4 degrees C with metal did not lose surface asialoglycoprotein receptor activity. Exposure of cells to copper ions, but not to zinc ions, blocked internalization of prebound 125I-asialoorosomucoid, but degradation of internalized ligand and pinocytosis of the fluid-phase marker Lucifer Yellow were not blocked by metal treatment. Zinc ions reduced diferric transferrin binding and endocytosis on hepatocytes by approximately 33%; copper ions had no inhibitory effects. These findings are the first demonstration of a specific inhibition of receptor-mediated endocytosis by non-iron transition metals.  相似文献   

7.
Continuous endocytosis of 125I-asialo-orosomucoid (ASOR) mediated by the galactosyl receptor in rat hepatocytes is a cyclic process. 125I-ASOR-receptor complexes are internalized, processed, and the ligand is degraded while the receptor is returned to the cell surface for reutilization. Since a true cycle has a thermodynamic requirement for the input of external energy, we examined the effects of changes in intracellular ATP levels on the function of the receptor cycle. Hepatocytes were depleted of ATP to various extents prior to endocytosis by incubating cells at 15 degrees C in the presence of 2 mM NaF and 0-20 mM NaN3. A luciferase-luciferin bioluminescence assay was used to quantitate the amount of cellular ATP. ATP-depleted cells were allowed to bind 125I-ASOR at 0 degrees C, washed through discontinuous Percoll gradients, and only viable cells were isolated and incubated at 37 degrees C to initiate a synchronous single round of endocytosis. The extent of internalization of this surface-bound 125I-ASOR was unaffected by an ATP depletion to less than 1% of the control level. The rate of internalization of surface-bound ligand was unaffected until the ATP levels decreased to 30% or less; at greater than 98% ATP depletion the initial rate decreased by a maximum of 55% and the kinetics became biphasic. In contrast, continuous endocytosis in the presence of excess ASOR was inhibited by only a 25% decline in cellular ATP content and demonstrated a very sharp threshold response to changing ATP levels. Continuous endocytosis, which requires receptor recycling, was completely inhibited when the total cellular ATP level decreased by only 40%. We conclude that the internalization phase of endocytosis is not dependent on ATP but that the processing and/or externalization phases of the complete receptor cycle are either directly or indirectly dependent on ATP and very sensitive to changes in cellular ATP content.  相似文献   

8.
In isolated rat hepatocytes fluid phase endocytosis, determined by the uptake of the fluorescent dye lucifer yellow (LY), and receptor mediated endocytosis, determined using a ligand for the asialoglycoprotein receptor (asialo-orosomucoid; ASOR), are different pathways based on their different sensitivities to hyperosmolarity induced by sucrose (Oka and Weigel, J. Cell. Biol. 105, 311a, 1987). LY uptake was unaffected by 0.2 M sucrose at all temperatures tested between 12 degrees and 37 degrees C whereas the uptake of 125I-ASOR was completely inhibited at any temperature. Since the two probes are taken up by different pathways it was possible to determine independently the activation energies (Ea) for the fluid phase versus the receptor mediated coated pit endocytic process. The Ea was 26.4 +/- 3.5 and 25.8 +/- 1.9 kcal/mole for, respectively, receptor mediated and fluid phase endocytosis. These values are not significantly different, and we conclude that the fluid phase and receptor mediated pathways are thermodynamically equivalent even though they are independent.  相似文献   

9.
Receptor-mediated endocytosis via coated pits is modulated by the activity of protein kinases and protein phosphorylation. We examined the effects of the potent protein kinase inhibitor staurosporine (SSP) on endocytosis of the asialoglycoprotein (ASGP) receptor in HepG2 cells. Staurosporine caused a rapid (<2 min) inhibition of ligand internalization from the cell surface. In contrast the rate of receptor exocytosis from intracellular compartments to the cell surface was not altered (t1/2 = 8 min). This resulted in increased ASGP receptors at the plasma membrane (140% of control) while the total number of receptors per cell was unchanged. Receptor up-regulation was half-maximal at 30 nM SSP. At this concentration staurosporine also inhibited the internalization of iodinated transferrin by HepG2 cells and SK Hep-1 cells, another human hepatoma-derived cell line. Staurosporine was without effect on the non-receptor-mediated uptake of Lucifer yellow by pinocytosis. We investigated the possible involvement of protein kinase C in the inhibitory effects of staurosporine on receptor endocytosis. The active protein kinase C inhibitor H7 did not inhibit ASGP receptor internalization. Furthermore depletion of cellular protein kinase C by overnight incubation with 1 μM phorbol myristate acetate did not abrogate the SSP effect. Together these data suggest that the mechanism of SSP action is independent of the inhibition of protein kinase C. In conclusion staurosporine is a potent and rapid inhibitor of receptor trafficking which is specific for receptor internalization from the plasma membrane.  相似文献   

10.
We have shown that degradation of asialo-orosomucoid (ASOR) in isolated rat hepatocytes occurs by two different intracellular pathways [Clarke, Oka & Weigel (1987) J. Biol. Chem. 262, 17384-17392] mediated by two subpopulations of cell surface galactosyl (Gal) receptors, designated State 1 or State 2 receptors. In the present study, several inhibitors were tested for their effects on ligand degradation by the State 1 or State 2 pathway. Leupeptin, monensin and chloroquine completely inhibited degradation of 125I-labelled ASOR in both pathways. Dose-response studies showed, however, that the State 2 pathway was more sensitive to leupeptin or monensin than the State 1 pathway. No differences were observed with chloroquine. For example, the onset of inhibition in the State 2 and State 1 pathways occurred at about 0.05 and 0.3 microM-leupeptin respectively, a 6-fold difference. At 3.5 microM-monensin, 125I-ASOR degradation in the State 2 pathway was completely blocked, whereas degradation in the State 1 pathway was essentially unaffected. Colchicine was observed to give the largest differential sensitivity between the two pathways. The State 2 degradation pathway was about 30-fold more sensitive to colchicine than the State 1 pathway. Lumicolchicine had no affect. The onset of inhibition of the rate of 125I-ASOR degradation in the State 2 and State 1 pathways occurred at approximately 0.1 and 3.0 microM-colchicine respectively. At very high concentrations (greater than 0.1 mM), the State 1 pathway could be completely inhibited. We conclude that intracellular 125I-ASOR processing or delivery to degradative compartments in both the State 1 and State 2 Gal receptor pathways requires low pH. Ligand delivery to the degradative compartment does not require microtubules in the State 1 pathway, consistent with the very rapid onset of degradation in this pathway. The State 2 degradation pathway does require microtubules.  相似文献   

11.
The function of intracellular asialoglycoprotein receptors during the endocytosis of asialo-orosomucoid in isolated hepatocytes was assessed by following changes in the occupancy of intracellular receptors. Unoccupied total cellular (inside and surface) or surface receptors were quantified at 0 degrees C by the binding of 125I-asialo-orosomucoid in the presence or absence, respectively, of digitonin. Freshly isolated cells had about 17% of their total receptors on the surface. After incubation at 37 degrees C, the receptor distribution changed to 25 to 50% on the cell surface and 50 to 75% inside the cell. At 37 degrees C, the average total number of receptors/cell was 4.5 x 10(5). Dissociation constants, determined from equilibrium binding studies in the presence or absence of digitonin to assess total or surface receptors, were identical (5.4 +/- 1.4 and 5.6 +/- 1.1 x 10(-9) M, respectively). In the presence of asialo-orosomucoid at 37 degrees C, there was both a time- and a concentration-dependent decrease in surface and intracellular receptor activity. This receptor activity decrease was reversed by removing asialo-orosomucoid from the medium or by washing the digitonin-permeabilized cells with ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid prior to quantification of receptor activity. Within 1 to 2 h in the presence of excess asialo-orosomucoid, a steady state was attained in which approximately 70% of the intracellular receptors were occupied. The kinetics of receptor activity recovery on the cell surface after internalization of a pulse of ligand is different than the rate of recovery of internal receptor activity. The results suggest that all of the internal asialoglycoprotein receptors are functional and participate during endocytosis. Internal receptors may be functionally equivalent to those on the surface or they may serve a reservoir or routing function for internalized ligand.  相似文献   

12.
13.
The hepatic asialoglycoprotein receptor is a membrane glycoprotein used as a model to study receptor-mediated endocytosis. In order to examine the ability of second messengers to modulate intracellular trafficking, we performed a comparative study on normal and diabetic rat hepatocytes exploring the effects of an in vivo modulation, streptozotocin-diabetes, and an in vitro modulator, vasopressin, which transduces signals via the phosphoinositide pathway. We studied three main experimental aspects: (1) constitutive endocytosis, (2) continuous ligand flux, and (3) a synchronous wave of ligand. In normal cells, vasopressin decreased ligand-binding capacity by 20%, without altering the mechanism of internalization, and decreased the level of degradation, without affecting the distribution of degradation products. Diabetic cells were characterized by a 50% decrease in cell-surface and intracellular receptor ligand-binding capacity, slowed internalization of a synchronous wave of ligand, and markedly reduced degradation with an altered distribution of degraded products. Vasopressin had no additive effect on the modification induced by diabetes. These results suggest that second messengers generated by hormones play a role in the regulation of receptor-mediated endocytosis. They also confirm that receptors are subdivided into those susceptible to modulation of any kind and those insensitive to modulation, although the boundary between the two subsets is variable.  相似文献   

14.
Substantial amounts of epidermal growth factor (EGF) are cleared from the circulation by hepatocytes via receptor-mediated endocytosis and subsequently degraded within lysosomes. We have used a combined biochemical and morphological approach to examine the fate of the receptor after exposure to EGF. Polyclonal antibodies were prepared against the purified receptor and their specificity established by immunoprecipitation and immunoblotting techniques. The EGF receptor was then localized by immunofluorescence and immunoperoxidase techniques and quantified on immunoblots. In untreated livers, EGF receptor was restricted to the sinusoidal and lateral surfaces of hepatocytes. 2-4 min after exposure of cells to EGF, the receptor was found in small vesicles (i.e., coated vesicles) as well as larger vesicles and tubules at the cell periphery. By 15 min the receptor was found in multivesicular endosomes located near bile canaliculi. Exposure of hepatocytes to EGF also resulted in a rapid loss of receptor protein from total liver homogenates and a decrease in its half-life from 8.7 h in control livers to 2.5 h. This EGF-induced loss of receptors was not observed when lysosomal proteinases were inhibited by leupeptin or when endosome/lysosome fusion was prevented by low temperature (16 degrees C). In the presence of leupeptin, receptor could be detected in structures identified as lysosomes using acid-phosphatase cytochemistry. All these results suggested rapid internalization of EGF receptors in response to ligand and degradation within lysosomes. However, four times more ligand was degraded at 8 h than the number of high-affinity (Kd of 8-15 nM) EGF-binding sites lost, suggesting either (a) high-affinity receptors were recycled, and/or (b) more than 300,000 receptors were available for EGF uptake. We identified and characterized a latent pool of approximately 300,000 low-affinity receptors (Kd approximately 200 nM) that could be separated on sucrose gradients from the plasma membrane pool of approximately 300,000 high-affinity receptors (Kd of 8-15 nM). Despite the differences in their binding affinities, the high- and low-affinity receptors appeared to be structurally identical and were both EGF-dependent protein kinases. In addition, the dynamics of the low-affinity receptors were consistent with a functional role in EGF uptake and delivery to lysosomes.  相似文献   

15.
It is necessary to proliferate hepatocytes and to increase the number of hepatocytes for development of bioartificial liver (BAL) and reconstitutive therapy. But usually the cell has a precarious balance between proliferation and differentiation: as the cell proliferation increases, functional differentiation decreases. Therefore, it is desirable for the hepatocytes to be functional by differentiation as a material for such clinical use not to be proliferative. In this study, we investigated the background of hepatocyte proliferation for the springboard of control between proliferation and differentiation of hepatocytes, and we focused attention to the asialoglycoprotein receptors (ASGP-R) of the hepatocytes. Partially hepatectomized (PH) rats were used as a model animal. When the isolated hepatocytes were plated onto the artificial extracellular matrix of poly-(N-p-vinylbenzyl-O-beta-d-galactopyranosyl-d-gluconamide) (PVLA) having galactose residues as cell-specific ligand, the rate of adhesion was decreased along with liver regeneration. Interestingly, the release of the ASGP-R from hepatocytes in serum after PH in vivo and reduction of ASGP-R of the hepatocytes in the proliferative state occurred due to cell growth in vitro. It is suggested that the ASGP-R on the hepatocyte surface during the differentiation was released in the proliferative state.  相似文献   

16.
Using high-resolution oxygraphy, we tested the changes of various parameters characterizing the mitochondrial energy provision system that were induced by peroxidative damage. In the presence of succinate as respiratory substrate, 3 mM t-butyl hydroperoxide increased respiration in the absence of ADP, which indicated partial uncoupling of oxidative phosphorylation. Low activity of coupled respiration was still maintained as indicated by the ADP-activated and oligomycin-inhibited respiration. However, during the incubation the phosphorylative capacity decreased as indicated by the continuous decrease of the mitochondrial membrane potential. Under these experimental conditions the maximum capacity of the succinate oxidase system was inhibited by 50% in comparison with values obtained in the absence of t-butyl hydroperoxide. Our data thus indicate that the oxygraphic evaluation of mitochondrial function represents a useful tool for evaluation of changes participating in peroxidative damage of cell energy metabolism.  相似文献   

17.
Phosphorylation of asialoglycoprotein receptor was investigated by using rat hepatocytes. Analysis of the purified receptor by SDS-PAGE and autoradiogram revealed that the 64 and 54 Kd polypeptides of the receptor were phosphorylated but the 43 Kd one was not and that phosphorylation took place at the cell surface. These results are compatible with the fact that the 64 and 54 Kd species exist predominantly at the cell surface. The sites of phosphorylation were identified as Ser and Thr with no detectable radioactivity in phosphotyrosine.  相似文献   

18.
19.
胆固醇是动物细胞细胞膜的重要组成成分,其做为细胞和环境之间的屏障调节细胞膜的流动性。胆固醇是体内所有的类固醇激素和胆酸合成的前体物质,参与体内代谢。同时胆固醇在神经系统的发育中也起着重要的作用。在血浆中胆固醇以低密度脂蛋白和高密度脂蛋白这两种胆固醇运载血脂蛋白的形式运输。动物细胞通过细胞表面的低密度脂蛋白受体(LDL receptor,LDLR)介导的内吞可以从血液中摄取富含胆固醇的低密度脂蛋白,当细胞表面的LDLR的功能缺陷时,可以导致高胆固醇血症,继而引起动脉粥样硬化、冠心病和中风等严重疾病。本文综述了LDL受体的概述及其通过内吞调节血液中低密度脂蛋白胆固醇水平的作用,并对LDL受体的调节进行了阐述。  相似文献   

20.
Isolated rat liver parenchymal cells incubated in the presence of monensin exhibited a reduced uptake of 125I-asialofetuin (125I-AF). Binding studies indicated that the effect was due to a rapid reduction in the number of active surface receptors for the asialoglycoprotein. Monensin had no effect on receptor internalization, but apparently interrupted the recycling of receptors back to the cell surface. Monensin also inhibited the degradation of 125I-AF previously bound to the cells; this inhibition was probably not due to a direct effect on intralysosomal proteolysis, as no lysosomal accumulation of undegraded ligand could be demonstrated in subcellular fractionation studies by means of sucrose gradients. It is more likely that monensin inhibits transfer of the labelled ligand from endocytic vesicles to lysosomes, as indicated by the accumulation of radioactivity in the former and by the ability of monensin to prevent the normally observed time-dependent increase in the buoyant density of endocytic vesicles. Whereas the effect of monensin on binding and uptake of asialofetuin was reversible, the effect on asialofetuin degradation could not be reversed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号