首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P64k protein from Neisseria meningitidis is well recognised in sera from individuals convalescent from meningococcal disease or vaccinated with the Cuban antimeningococcal vaccine VA-MENGOC-BC. The presence of the protein in more than 80 meningococcal strains has also been verified. It is immunogenic in animal models and the antibodies elicited show bactericidal activity against meningococci. To further investigate at the molecular level whether lpdA, the gene coding for P64k protein, is conserved among different N. meningitidis strains, a total of 20 strains isolated from different geographic areas were differentiated on the basis of restriction fragment length polymorphism (RFLP) patterns after polymerase chain reaction (PCR) amplification of the lpdA gene and restriction endonuclease digestion with HpaII. Although a total of five different PCR-RFLP patterns were present, nucleotide sequence determination showed that identity levels were as high as 93-99% among the N. meningitidis strains analysed.  相似文献   

2.
DNA heterogeneity among members of the genus Brucella was demonstrated with the arbitrarily primed polymerase chain reaction (AP-PCR). Simple, reproducible genomic fingerprints from DNA of 25 different Brucella strains were generated with five arbitrarily chosen primers, alone and in pairs, with the PCR. Reaction conditions were optimized for each primer. Several DNA segments were amplified in each sample with all of the primers. PCR products that are not shared among all strains act as polymorphic markers. Polymorphism was apparent for each primer. The Brucella strains can be distinguished according to the banding patterns of their amplified DNA on agarose gels, and the differences can be diagnostic of specific strains. To determine genetic relatedness among the Brucella strains, similarity coefficients were calculated. Statistical analysis of the similarity coefficients revealed the degrees of relatedness among strains of the genus Brucella.  相似文献   

3.
Within the last two decades, substantial progress has been made in understanding seed-bank dynamics and the contribution of the soil seed bank to a postdisturbance plant community. There has been relatively little progress, however, in understanding perennial bud-bank dynamics and the contribution of the soil bud bank to secondary succession. This lack of information is due primarily to the inability to reliably identify roots, rhizomes and lignotubers that lie dormant beneath the soil surface. This investigation addressed the issue of identification of below-ground woody structures. The first objective was to develop a method that used molecular tools to identify woody plant species from subsoil tissue samples. The second objective was to develop a key in which molecular markers served as criteria for the identification and differentiation of selected tree and shrub species common to the mountains of northeast Oregon and southeast Washington. Application of restriction fragment length polymorphism (RFLP) analysis of polymerase chain reaction (PCR)-amplified rbcL appears to be a reliable method to identify and differentiate 15 plants to the genus level. Two restriction enzymes, Dpn II and Hha I, provided restriction site polymorphisms in the PCR product. The fragment number and length were used to develop an identification key. However, plants not analysed in this 'exploratory key' might share the same banding patterns, resulting in a false identification of unknowns.  相似文献   

4.
Because of the accumulating evidence that suggests that numerous unhealthy conditions in the indoor environment are the result of abnormal growth of the filamentous fungi (mold) in and on building surfaces, it is necessary to accurately reflect the organisms responsible for these maladies and to identify them in precise and timely manner. To this end, we have developed a method that is cost effective, easy to perform, and accurate. We performed a simple polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP) analysis on multiple members of species known to negatively influence the indoor environment. The genera analyzed were Stachybotrys, Penicillium, Aspergillus, and Cladosporium. Each organism underwent PCR with universal primers that amplified ribosomal sequences generating products from 550 to 600 bp followed by enzymatic digestion with EcoRI, HaeIII, MspI, and HinfI. Our results show that using this combination of restriction enzymes enables the identification of these fungal organisms at the species level.  相似文献   

5.
J S Shin  S Chao  L Corpuz  T Blake 《Génome》1990,33(6):803-810
Nine low copy number genomic DNA clones, a ribosomal sequence, and seven cDNA clones were found to identify polymorphisms in cultivated barley (Hordeum vulgare L.). An F2 population consisting of 100 plants was produced from a cross between a high-yielding two-rowed feed barley cultivar and a genetic marker stock homozygous for nine recessive and one dominant morphological marker genes. Through the use of these 10 well-distributed marker genes, five previously mapped isozyme loci, and two storage-protein loci, the approximate recombinational location for each of 17 restriction fragment length polymorphism loci was estimated. One clone, pMSU21, identified variation that appeared to be the result of a small insertion-deletion event that differentiated two-rowed and six-rowed genotypes. This difference was characterized, and one allele was sequenced. Oligonucleotide primers that flanked the insertion-deletion event were synthesized, and DNA samples from the F2 population were subjected to polymerase chain reaction sequence amplification. The variation identified by this technique was determined to be allelic to the variation identified using pMSU21 in Southern blot analysis. Maps of previously undescribed informative clones are included.  相似文献   

6.
7.
Polymerase chain reaction restriction fragment length polymorphism (PCR‐RFLP) analysis of the plastid ribulose‐1,5‐bisphosphate carboxylase (RuBisCo) spacer region was developed for a more reliable and rapid species identification of cultivated Porphyra in combination with PCR‐RFLP analysis of the nuclear internal transcribed spacer (ITS) region. From the PCR‐RFLP analyses of the plastid and nuclear DNA, we examined seven strains of conchocelis that were used for cultivation as Porphyra tenera Kjellman but without strict species identification. The PCR‐RFLP analyses suggested that two strains, C‐32 and 90‐02, were cultivated P. tenera and that the other five strains, C‐24, C‐28, C‐29, C‐30 and M‐1, were Porphyra yezoensis f. narawaensis Miura. To identify species more accurately and to reveal additional genetic variation, the two strains C‐32 and 90‐02 were further studied by sequencing their RuBisCo spacer and ITS‐1 regions. Although RuBisCo spacer sequences of the two strains were identical to each other, each of their ITS‐1 sequences showed a single substitution. The sequence data again confirmed that the two strains (C‐32 and 90‐02) were cultivated P. tenera, and suggested that the two strains showed some genetic variation. We concluded that PCR‐RFLP analysis of the plastid and nuclear DNA is a powerful tool for reliable and rapid species identification of many strains of cultivated Porphyra in Japan and for the collection of genetically variable breeding material of Porphyra.  相似文献   

8.
The nucleotide changes that result in two restriction endonuclease polymorphisms that differentiate wild-type varicella-zoster virus (VZV) from the vaccine strain were determined. Oligonucleotide primers that flank these sites were used to amplify the intervening sequences with the polymerase chain reaction to identify VZV DNA in clinical isolates. Restriction enzyme digestion of the amplification products distinguished vaccine and wild-type genomes from one another. This study confirms the feasibility of amplifying VZV sequences so that they may be detected in clinical specimens and provides a molecular epidemiological approach to strain identification of VZV in vesicular lesions.  相似文献   

9.
10.
For restriction fragment length polymorphism (RFLP) analysis of 16S rRNA genes, the rDNA fragments of 1.5 kb were amplified by polymerase chain reaction (PCR) from crude cell lysates of various methanogenic species which were prepared by a combined technique of ultrasonic treatment and protease digestion. The PCR products were purified by the polyethylene glycol precipitation method and treated with various restriction enzymes. The 16S rDNA fragments digested with HaeIII or HhaI gave species-specific RFLP profiles on simplified agarose gel electrophoresis. 16S rDNA gragments of 0.4 kb from the bulk DNA extracted from mixed populations of anaerobic sludge were also amplified by PCR with a pair of methanogen-specific primers and cloned directly by the T-A cloning technique. The cloned 16S rDNAs from recombinants were reamplified by PCR, and RFLP pattern analysis was performed following digestion with HhaI. The PCR-RFLP analysis of 16S rDNA with the present protocol can be completed within one day, provided that sufficient amounts of test cells are available, and has great promise as a simple and rapid technique for identification of methanogens. A combined method consisting of PCR amplification, direc cloning with T vectors, and RFLP analysis of 16S rDNA is also useful for rapid estimation of the mixed population structure of methanogens without the need for cultivation and isolation.  相似文献   

11.
Snails of the genus Biomphalaria from Venezuela were subjected to morphological assessment as well as polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) analysis. Morphological identification was carried out by comparison of characters of the shell and the male and female reproductive apparatus. The PCR-RFLP involved amplification of the internal spacer region ITS1 and ITS2 of the RNA ribosomal gene and subsequent digestion of this fragment by the restriction enzymes DdeI, MnlI, HaeIII and MspI. The planorbids were compared with snails of the same species and others reported from Venezuela and present in Brazil, Cuba and Mexico. All the enzymes showed a specific profile for each species, that of DdeI being the clearest. The snails were identified as B. glabrata, B. prona and B. kuhniana.  相似文献   

12.
In Cuba, several Biomphalaria species have been reported such as B. orbignyi, B. schrammi, B. helophila, B. havanensis and B. peregrina; only the latter three are considered as potential hosts of Schistosoma mansoni. The specific identification of Biomphalaria species is based on anatomical and morphological characters of genital organs and shells. The correct identification of these snails is complicated by the high variation in these characters, similarity among species and in some cases by the small size of the snails. In this paper, we reported the classical morphological identification, the use of PCR and RFLP analysis of the internal transcribed spacer region of the ribosomal RNA genes for molecular identification of seven snail populations from different localities in Cuba. Using morphological and molecular analysis, we showed that among the studied Cuban Biomphalaria populations only B. havanensis and B. obstructa species were found.  相似文献   

13.
CpDNA variation among 52 tree samples belonging to 25 different taxa of Coffea and two species of Psilanthus was assessed by RFLP analysis on both the total chloroplast genome and the atpB-rbcL intergenic region. Twelve variable characters were distinguished allowing the identification of 12 different plastomes. The low sequence divergence observed might suggest that Coffea is a young genus. The results were in contradiction with the present classification into two genera. Additionally, cpDNA inheritance was studied in interspecific hybrids between C. arabica and C. canephora, and in an intraspecific progeny of C. canephora, using PCR-based markers. Both studies showed exclusively maternal inheritance of cpDNA.  相似文献   

14.
The Toxoplasma gondii (TGR) genes constitute a family of non-coding sequences, three of which have been previously described as possible tools for typing of Toxoplasma gondii isolates. We obtained new isolates of T. gondii from domestic and wild animals, and used these to evaluate the possibility of using TGR gene variants as markers to distinguish among T. gondii isolates from different animals and different geographical sources.Based on the band patterns obtained by restriction fragment length polymorphism (RFLP) analysis of the polymerase chain reaction (PCR) amplified TGR sequences, the T. gondii isolates could be separated into seven groups. Sequencing the amplified products showed that at least 20 TGR sequences not hitherto described had been found, demonstrating that the TGR gene family comprises a large number of different yet highly homologous sequences. Each isolate had its own unique TGR sequence. The TGR gene family therefore seems a promising target for typing individual T. gondii isolates and for studying the genetic distance between two isolates, which can be used for tracing routes of infection.  相似文献   

15.
Diagnosis of the Mycobacterium tuberculosis complex by direct PCR of mediastinal lymphnode DNA and microbiological tests were compared in cattle suspicious of bearing tuberculous-like lesions detected during slaughter. The PCR procedure applied on DNA samples (n=54) obtained by adding alpha -casein into the thiocyanate extraction mix was positive in 70% of the samples. PCR confirmed the identification of 23 samples (100%) that grew in culture, 9 samples (60%) that failed to grow in culture, plus 6 (37.5%) samples that resulted in growth of bacterial contaminants. Genotyping by IS6110-RFLP and DR-spoligotyping analysis of seven samples revealed the presence of several polimorphisms. Seven of the isolates contained multiple copies of IS6110, thus defining the existence of five singular genotypes.  相似文献   

16.
Two organ transplant recipients who received organs from a common donor and were diagnosed as having an Epstein-Barr virus (EBV)-associated posttransplant lymphoproliferative disorder were studied to determine the mode of EBV transmission. The results of restriction fragment length polymorphism, polymerase chain reaction, and minisatellite DNA analyses demonstrate that both patients had a common strain of EBV and that this strain was transmitted from the donor's organs to both recipients. Posttransplant lymphoproliferative disorder resulted from the proliferation of EBV-immortalized B lymphocytes of the recipient, not those of the donor.  相似文献   

17.

Some physical and biological characteristics of marsh microhabitats of the pulmonate snails Lymnaea tamentosa (Pfeiffer) and L. columella (Say), intermediate hosts of Fasciola hepatica in New Zealand, are compared by path analysis. The most significant variable suggested by the various path coefficients is the relative importance of flocculence of mud in the substratum. L. tomentosa was more likely to be found in or on flocculent mud, whereas L. columella appeared to prefer firm mud. Submersion of the substratum was of more direct importance to L. columella than to L. tomentosa; the effect of water on L. tomentosa was mainly indirect, since wetter microhabitats were more likely to contain flocculent mud. Results of an experiment simulating pugging of the muddy substratum by cattle suggest that both snail species are likely to be more numerous in habitats heavily pugged by cattle.  相似文献   

18.
19.
To construct a high-density molecular linkage map of Italian ryegrass (Lolium multiflorum Lam), we used a two-way pseudo-testcross F1 population consisting of 82 individuals to analyze three types of markers: restriction fragment length polymorphism markers, which we detected by using genomic probes from Italian ryegrass as well as heterologous anchor probes from other species belonging to the Poaceae family, amplified fragment length polymorphism markers, which we detected by using PstI/MseI primer combinations, and telomeric repeat associated sequence markers. Of the restriction fragment length polymorphism probes that we generated from a PstI genomic library, 74% (239 of 323) of randomly selected probes detected hybridization patterns consistent with single-copy or low-copy genetic locus status in the screening. The 385 (mostly restriction fragment length polymorphism) markers that we selected from the 1226 original markers were grouped into seven linkage groups. The maps cover 1244.4 cM, with an average of 3.7 cM between markers. This information will prove useful for gene targeting, quantitative trait loci mapping, and marker-assisted selection in Italian ryegrass.  相似文献   

20.
Amplified fragment length polymorphism (AFLP) analysis allows a rapid, relatively simple analysis of a large portion of a microbial genome, providing information about the species and its phylogenetic relationship to other microbes (Vos et al. 1995). The method simply surveys the genome for length and sequence polymorphisms. The AFLP pattern identified can be used for comparison to the genomes of other species. Unlike other methods, it does not rely on analysis of a single genetic locus that may bias the interpretation of results and does not require any prior knowledge of the targeted organism. Moreover, a standard set of reagents can be applied to any species without using species-specific information or molecular probes. We are using AFLP analysis to rapidly identify different bacterial species. A comparison of AFLP profiles generated from a large battery of Bacillus anthracis strains shows very little variability among different isolates (Keim et al. 1997). By contrast, there is a significant difference between AFLP profiles generated for any B. anthracis strain and even the most closely related Bacillus species. Sufficient variability is apparent among all known microbial species to allow phylogenetic analysis based on large numbers of genetically unlinked loci. These striking differences among AFLP profiles allow unambiguous identification of previously identified species and phylogenetic placement of newly characterized isolates relative to known species based on a large number of independent genetic loci. Data generated thus far show that the method provides phylogenetic analyses that are consistent with other widely accepted phylogenetic methods. However, AFLP analysis provides a more detailed analysis of the targets and samples a much larger portion of the genome. Consequently, it provides an inexpensive, rapid means of characterizing microbial isolates to further differentiate among strains and closely related microbial species. Such information cannot be rapidly generated by other means. AFLP sample analysis quickly generates a very large amount of molecular information about microbial genomes. However, this information cannot be analysed rapidly using manual methods. We are developing a large archive of electronic AFLP signatures that is being used to identify isolates collected from medical, veterinary, forensic and environmental samples. We are also developing the computational packages necessary to rapidly and unambiguously analyse the AFLP profiles and conduct a phylogenetic comparison of these data relative to information already in our database. We will use this archive and the associated algorithms to determine the species identity of previously uncharacterized isolates and place them phylogenetically relative to other microbes based on their AFLP signatures. This study provides significant new information about microbes with environmental, veterinary and medical significance. This information can be used in further studies to understand the relationships among these species and the factors that distinguish them from one another. It should also allow the identification of unique factors that contribute to important microbial traits, including pathogenicity and virulence. We are also using AFLP data to identify, isolate and sequence DNA fragments that are unique to particular microbial species and strains. The fragment patterns and sequence information provide insights into the complexity and organization of bacterial genomes relative to one another. They also provide the information necessary for the development of species-specific polymerase chain reaction primers that can be used to interrogate complex samples for the presence of B. anthracis, other microbial pathogens or their remnants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号