首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A lymphocyte blastogenesis inhibitory factor, LBIF, has been found in the culture supernatant of a human macrophage-like cell line, U937. The factor has been purified by fast protein liquid chromatography. Partial amino acid sequencing analysis showed that LBIF was a novel immunoregulatory factor. Recent study has demonstrated that LBIF possesses a remarkable tumor growth inhibitory activity. In this study, the cell growth inhibitory activity of LBIF was characterized on the proliferation of a human melanoma cell line A375 in vitro. LBIF strongly inhibits the proliferation of A375 cells. The inhibitory activity was cytostatic and reversible by Day 5 although the lethal effect became apparent at Day 7. Cell cycle analysis by flow cytometry showed that LBIF arrested A375 cells at both G1 and G2/M phases. Mitotic index analysis indicated that A375 cells were arrested in G1 and G2 phases. LBIF function was not attributed to the elevation of intracytoplasmic cyclic-AMP levels. Thus, these results suggest that LBIF plays an important role in controlling cell cycle and there is a similarity between the mechanisms of G1 and G2 arrests in eukaryotic cell proliferation. LBIF-induced reversible cell-cycle arrest of A375 cells can be a useful system to analyze the signal transduction for cell proliferation and cell-cycle arrest.  相似文献   

2.
We previously isolated an interfering transbody, 4MH2, which penetrated the cytosol of living cells and preferentially hydrolyzed the target Her2 (ErbB2) mRNA, resulting in Her2 gene silencing followed by apoptotic cell death in Her2-overexpressing breast cancer cells. Here, we report the apoptotic cell death mechanism mediated by 4MH2-induced Her2 gene silencing in Her2-overexpressing SK-BR-3 breast cancer cells, in comparison with a small interfering RNA (siRNA) targeting Her2 mRNA (Her218-siRNA). 4MH2 induced G0/G1 cell cycle arrest to cause apoptotic cell death in SK-BR-3 cells by triggering specific signaling pathways associated with Her2 knockdown, including upregulation of G0/G1 cell cycle arrest-associated p21Cip1 and p27Kip1, downregulation of cyclin D1, inhibition of Akt phosphorylation, and downregulation of antiapoptotic Bcl-xL, which are comparable to those mediated by Her218-siRNA. Our results suggest that 4MH2-mediated Her2 gene silencing can trigger the downstream signaling pathways caused by Her2 downregulation, comparable to those mediated by the corresponding siRNA.  相似文献   

3.
The G1 arrest induced in NRK cells by picolinic acid could be prevented by addition of Fe3+, Zn2+ or Co2+ to the tissue culture media. Ca2+, Mg2+, Mn2+, Sr2+ or Ba2+ were ineffective. Complete and synchronous reversal of the G1 block, however, was achieved by Fe3+ at lower concentration from that of Zn2+. Co2+ reversed the block but cells divided asynchronously. Thymidine incorporation, mitotic index and relative DNA content per cell, verified that G1 arrested cells proceeded through the cell cycle after addition of Fe3+ or Zn2+. These observations afford a valuable model system for elucidating the biochemical events that occur between addition of a defined proliferative signal and stimulation of DNA synthesis in G1 arrested cells.  相似文献   

4.
Multifunctional trans-cinnamaldehyde (CA) and its analogs display anti-cancer properties, with 2-benzoyloxycinnamaldehyde (BCA) and 5-fluoro-2-hydroxycinnamaldehyde (FHCA) being identified as the ortho-substituted analogs that possess potent anti-tumor activities. In this study, BCA, FHCA and a novel analog 5-fluoro-2-benzoyloxycinnamaldehyde (FBCA), were demonstrated to decrease growth and colony formation of human colon-derived HCT 116 and mammary-derived MCF-7 carcinoma cells under non-adhesive conditions. The 2-benzoyloxy and 5-fluoro substituents rendered FBCA more potent than BCA and equipotent to FHCA. The cellular events by which these cinnamaldehydes caused G2/M phase arrest and halted proliferation of HCT 116 cells were thereby investigated. Lack of significant accumulation of mitosis marker phospho-histone H3 in cinnamaldehyde-treated cells indicated that the analogs arrested cells in G2 phase. G2 arrest was brought about partly by cinnamaldehyde-mediated depletion of cell cycle proteins involved in regulating G2 to M transition and spindle assembly, namely cdk1, cdc25C, mad2, cdc20 and survivin. Cyclin B1 levels were found to be increased, which in the absence of active cdk1, would fail to drive cells into M phase. Concentrations of cinnamaldehydes that brought about dysregulation of levels of cell cycle proteins also caused tubulin aggregation, as evident from immunodetection of dose-dependent tubulin accumulation in the insoluble cell lysate fractions. In a cell-free system, reduced biotin-conjugated iodoacetamide (BIAM) labeling of tubulin protein pretreated with cinnamaldehydes was indicative of drug interaction with the sulfhydryl groups in tubulin. In conclusion, cinnamaldehydes treatment at proapoptotic concentrations caused tubulin aggregation and dysegulation of cell cycle regulatory proteins cdk1 and cdc25C that contributed at least in part to arresting cells at G2 phase, resulting in apoptotic cell death characterized by emergence of cleaved forms of caspase 3 and poly (ADP-ribose) polymerase (PARP). Results presented in this study have thus provided further insights into the intricate network of cellular events by which cinnamaldehydes induce tumor cell death.  相似文献   

5.
How does a cell know if it's in G1 or G2 and should proceed to S phase or mitosis? This is a restatement of the question of how a cell ensures mitosis is dependent upon S phase, and S phase is dependent upon mitosis. Several gene products have been identified which play important roles in maintaining these interdependencies. Central to these controls are oscillations between different complexes of cyclins and cyclin-dependent kinases.  相似文献   

6.
Our previous studies have implied that prostaglandins inhibit cell growth independent of cAMP. Recent reports, however, have suggested that prostaglandin arrest of the cell cycle may be mediated through protein kinase A. In this report, in order to eliminate the role of c-AMP in prostaglandin mediated cell cycle arrest, we use the-49 lymphoma variant (cyc?) cells that lack adenylate cyclase activity. We demonstrate that dimethyl prostaglandin A1 (dmPGA1) inhibits DNA synthesis and cell growth in cyc? cells. DNA synthesis is inhibited 42% by dmPGA1 (50 μM) despite the fact that this cell line lacks cellular components needed for cAMP generation. The ability to decrease DNA synthesis depends upon the specific prostaglandin structure with the most effective form possessing the α,β unsaturated ketone ring. Dimethyl PGA1 is most effective in inhibiting DNA synthesis in cyc? cells, with prostaglandins PGE1 and PGB1 being less potent inhibitors of DNA synthesis. DmPGE2 caused a significant stimulation of DNA synthesis. S-49 cyc- variant cells exposed to (30–50 μm) dmPGA1, arrested in the G1 phase of the cell cycle within 24 h. This growth arrest was reversed when the prostaglandin was removed from the cultured cells; growth resumed within hours showing that this treatment is not toxic. The S-49 cyc? cells were chosen not only for their lack of adenylate cyclase activity, but also because their cell cycle has been extensively studied and time requirements for G1, S, G2, and M phases are known. Within hours after prostaglandin removal the cells resume active DNA synthesis, and cell number doubles within 15 h suggesting rapid entry into S-phase DNA synthesis from the G1 cell cycle block. The S-49 cyc? cells are known to have a G1/S boundary through M phase transition time of 14.8 h, making the location of the prostaglandin cell cycle arrest at or very near the G1/S interface. The oncogenes, c-fos and c-myc which are normally expressed during G1 in proliferating cells have a 2–3 fold enhanced expression in prostaglandin G1 arrested cells. These data using the S-49 variants demonstrate that dmPGA1 inhibits DNA synthesis and arrests the cell cycle independent of cAMP-mediated effects. The prostaglandin arrested cells maintain the gene expression of a G1 synchronous cell which suggests a unique molecular mechanism for prostaglandin action in arresting cell growth. These properties indicate that this compound may be an effective tool to study molecular mechanisms of regulation of the cell cycle.  相似文献   

7.
A family of small proline-rich proteins (SPR1s) is induced in cells undergoing squamous differentiation. Because SPR1 mRNA is detected in mesenchymal nasal cells of rats exposed to cigarette smoke, expression of this mRNA in other nonsquamous cells and tissues was investigated. Using PCR, low levels of SPR1 mRNA were identified in a number of nondifferentiating cell lines and in nonsquamous tissues. G0SPR1 mRNA, the hamster homologue of SPR1 mRNA, was increased 10-fold in Chinese hamster ovary (CHO) cells when the culture reached 80–90% confluence and was downregulated after cells ceased growing at 100% confluence. The deduced amino acid sequence of G0SPR1 showed a high homology to the family of SPR1 from different species. Affinity-purified antibodies to SPR1 reacted to about 50% of the CHO cell population, indicating that the protein is expressed at specific stages of the cell cycle. CHO cells that were switched to low-serum medium when they were at 60% confluence showed an increase in G0SPR1 levels before the cells entered G0, indicating that G0SPR1 may be a signal to cells entering G0. Because expression of the SPR1 family of proteins is associated with squamous differentiation, the observations in the nondifferentiating CHO cells indicate that these proteins may play a role in mediating the withdrawal from the cell cycle prior to the commitment to differentiation.  相似文献   

8.
The mechanism of cell cycle arrest of tumor cells induced by ganoderic acid Me (GA-Me) is not understood. In this work, GA-Me was found to possess remarkable cytotoxicity on highly metastatic lung carcinoma 95-D cell line in both dose- and time-dependent manners. The effect of GA-Me on cell cycle arrest was found in 95-D, p53-null lung cancer cells H1299, HCT-116 p53+/+ and HCT-116 p53?/? human colon cancer cells. To obtain an insight into the role of p53 in cell cycle arrest by GA-Me, 95-D, H1299, HCT-116 p53+/+ and HCT-116 p53?/? cells were used for further investigation. GA-Me arrested cell cycle at G1 phase in 95-D and HCT-116 p53+/+ cells while S phase or G1/S transition arrest in H1299 and HCT-116 p53?/? cells. The results suggested that p53 may be a target of GA-Me, and it may be looked at as a new promising candidate for the treatment of carcinoma cells.  相似文献   

9.
The Fanconi anemia DNA repair pathway is pivotal for the efficient repair of DNA interstrand cross-links. Here, we show that FA-defective (Fancc) DT40 cells arrest in G2 phase following cross-link damage and trigger apoptosis. Strikingly, cell death was reduced in Fancc cells by additional deletion of the BRCA1 tumor suppressor, resulting in elevated clonogenic survival. Increased resistance to cross-link damage was not due to loss of toxic BRCA1-mediated homologous recombination but rather through the loss of a G2 checkpoint. This proapoptotic role also required the BRCA1-A complex member ABRAXAS (FAM175A). Finally, we show that BRCA1 promotes G2 arrest and cell death by prolonging phosphorylation of Chk1 on serine 345 after DNA damage to sustain arrest. Our data imply that DNA-induced cross-link death in cells defective in the FA pathway is dependent on the ability of BRCA1 to prolong cell cycle arrest in G2 phase.  相似文献   

10.
By using synthetic protease inhibitors, several investigators have demonstrated that cysteine proteinases are required for cell proliferation. Kininogens are potent and specific physiological inhibitors of cysteine proteinases. We have used several mouse fibroblast-derived cell lines that express biologically active T-kininogen under the control of the mouse metallothionein promoter to test its effect on cell proliferation. Our results indicate that expression of T-kininogen results in diminished proliferative capacity, as measured by reduced cell numbers, both in logarithmically growing cultures and in G0 cells induced to proliferate in response to serum. Furthermore, both fluorescence-activated cell sorting (FACS) analysis and incorporation of radioactive precursors into DNA suggest that the cells are unable to progress from G0 through the S phase of the cell cycle in response to serum stimulation. However, we find that T-kininogen-expressing cell lines are still capable of responding to growth factors present in the serum, both by activating the ERK pathway and by expressing early genes, such as c-Fos and c-Jun. Thus, our results suggest that inhibition of cysteine proteinases by T-kininogen leads to inhibition of cell proliferation between the G1 and S phases of the cell cycle.  相似文献   

11.
The effect of light on the synchronization of cell cycling was investigated in several strains of the oceanic photosynthetic prokaryote Prochlorococcus using flow cytometry. When exposed to a light-dark (L-D) cycle with an irradiance of 25 μmol of quanta · m−2 s−1, the low-light-adapted strain SS 120 appeared to be better synchronized than the high-light-adapted strain PCC 9511. Submitting L-D-entrained populations to shifts (advances or delays) in the timing of the “light on” signal translated to corresponding shifts in the initiation of the S phase, suggesting that this signal is a key parameter for the synchronization of population cell cycles. Cultures that were shifted from an L-D cycle to continuous irradiance showed persistent diel oscillations of flow-cytometric signals (light scatter and chlorophyll fluorescence) but with significantly reduced amplitudes and a phase shift. Complete darkness arrested most of the cells in the G1 phase of the cell cycle, indicating that light is required to trigger the initiation of DNA replication and cell division. However, some cells also arrested in the S phase, suggesting that cell cycle controls in Prochlorococcus spp. are not as strict as in marine Synechococcus spp. Shifting Prochlorococcus cells from low to high irradiance translated quasi-instantaneously into an increase of cells in both the S and G2 phases of the cell cycle and then into faster growth, whereas the inverse shift induced rapid slowing of the population growth rate. These data suggest a close coupling between irradiance levels and cell cycling in Prochlorococcus spp.  相似文献   

12.
Phosphoinositide 3-kinase (PI3K) is a potential target in cancer therapy. Inhibition of PI3K is believed to induce apoptosis. We recently developed a novel PI3K inhibitor ZSTK474 with antitumor efficacy. In this study, we have examined the underlying mode of action by which ZSTK474 exerts its antitumor efficacy. In vivo, ZSTK474 effectively inhibited the growth of human cancer xenografts. In parallel, ZSTK474 treatment suppressed the expression of phospho-Akt, suggesting effective PI3K inhibition, and also suppressed the expression of nuclear cyclin D1 and Ki67, both of which are hallmarks of proliferation. However, ZSTK474 treatment did not increase TUNEL-positive apoptotic cells. In vitro, ZSTK474 induced marked G0/G1 arrest, but did not increase the subdiploid cells or activate caspase, both of which are hallmarks of apoptosis. These results clearly indicated that inhibition of PI3K by ZSTK474 did not induce apoptosis but rather induced strong G0/G1 arrest, which might cause its efficacy in tumor cells.  相似文献   

13.
Although it is understood that hydrogen peroxide (H2O2) promotes cellular proliferation, little is known about its role in endothelial cell cycle progression. To assess the regulatory role of endogenously produced H2O2 in cell cycle progression, we studied the cell cycle progression in mouse aortic endothelial cells (MAECs) obtained from mice overexpressing a human catalase transgene (hCatTg), which destroys H2O2. The hCatTg MAECs displayed a prolonged doubling time compared to wild-type controls (44.0  ±  4.7 h versus 28.6  ±  0.8 h, p < 0.05), consistent with a diminished growth rate and H2O2 release. Incubation with aminotriazole, a catalase inhibitor, prevented the observed diminished growth rate in hCatTg MAECs. Inhibition of catalase activity with aminotriazole abrogated catalase overexpression-induced antiproliferative action. Flow cytometry analysis indicated that the prolonged doubling time was principally due to an extended G0/G1 phase in hCatTg MAECs compared to the wild-type cells (25.0  ±  0.9 h versus 15.9  ±  1.4 h, p  <  0.05). The hCatTg MAECs also exhibited decreased activities of the cyclin-dependent kinase (Cdk) complexes responsible for G0/G1- to S-phase transition in the cell cycle, including the cyclin D–Cdk4 and cyclin E–Cdk2 complexes. Moreover, the reduction in cyclin–Cdk activities in hCatTg MAECs was accompanied by increased protein levels of two Cdk inhibitors, p21 and p27, which inhibit the Cdk activity required for the G0/G1- to S-phase transition. Knockdown of p21 and/or p27 attenuated the antiproliferative effect of catalase overexpression in MAECs. These results, together with the fact that catalase is an H2O2 scavenger, suggest that endogenously produced H2O2 mediates MAEC proliferation by fostering the transition from G0/G1 to S phase.  相似文献   

14.
Checkpoint kinases Chk1 and Chk2 are two key components in the DNA damage-activated checkpoint signaling pathways. To distinguish the roles of Chk1 and Chk2 in S and G2 checkpoints after DNA damage, derivatives of the human breast cancer cell line MDA-MB-231 were established that express short hairpin RNAs to selectively suppress Chk1 or Chk2 expression. DNA damage was induced with the topoisomerase I inhibitor SN38 which arrests cells in S or G2 phase depending on concentration. Depletion of Chk1 resulted in loss of S phase arrest upon incubation with SN38, but the cells still arrested in G2. Suppression of Chk2 had no impact on cell cycle arrest, while cells concurrently suppressed for both Chk1 and Chk2 still arrested primarily in G2 suggesting the presence of an alternate checkpoint regulator. One critical target for Chk1 is Cdc25A which is phosphorylated and degraded to prevent cell cycle progression. Cells arrested in G2 in the absence of Chk1/Chk2 still showed regulation of Cdc25A consistent with the action of an alternate kinase. One candidate for an alternate checkpoint kinase is MAPKAPK2 (MK2), yet this kinase was minimally activated by DNA damage and its inhibition did not facilitate either S or G2 progression. Furthermore, we were unable to substantiate the recent observation that the Chk1 inhibitor UCN-01 inhibits MK2. These results show that Chk1, but neither Chk2 nor MK2, is an important regulator of S phase arrest, and suggest that an additional kinase can contribute to the G2 arrest.  相似文献   

15.
A series of analogs were synthesized in a straightforward manner from naturally available sesquiterpenes ilicic acid and tessaric acid. The in vitro antiproliferative activities were examined in the human solid tumor cell lines A2780, HBL-100, HeLa, SW1573, T-47D and WiDr. The most potent analog induced considerably growth inhibition in the range 1.9–4.5 μM. Cell cycle studies for tessaric acid derivatives indicated a prominent arrest of the cell cycle at the G2/M phase. Damage to the cells was permanent as determine by the so called 24+24 drug schedule.  相似文献   

16.
The fate of cells arrested by Vincristine (VCR) in metaphase is of interest because of the wide use of this substance in cancer chemotherapy and, particularly, in relation to its use in so-called ‘synchronization’ therapy. The present study was designed to answer the question of whether cells blocked in metaphase by VCR subsequently proliferate further or whether they become infertile and die. By means of a double labelling technique with [3H] and [14C]thymidine (TdR) it was shown that all VCR-arrested metaphases in the JB-1 ascites tumour subsequently became necrotic. These cells did not re-enter a viable G2 phase following arrest and thus could not take part in a wave of synchronous proliferation. In agreement with earlier studies, VCR was found to lead to arrest in metaphase, not only of cells in or shortly prior to mitosis at the time of VCR administration, but also of the majority of cells which had at this time been in the S and G2 phase.  相似文献   

17.
Six human colon carcinoma cell lines were induced to enter stationary phase of growth by nutrient deprivation and cell crowding. Growth kinetics parameters (cell number, flow cytometric analysis of DNA distribution, and labelling and mitotic indices) were measured sequentially for all lines during the various stages of in vitro growth. Our results demonstrated that a substantial fraction of cells (9–18%) were located in G2, phase when they changed from an exponential to a stationary mode of growth. Moreover, a large number of cells in stationary phase of growth had an S-phase DNA content, as determined by flow cytometry, but failed to incorporate radioactive DNA precursors (up to 15-fold difference). to substantiate these findings. cells in stationary phase of growth were induced to enter exponential growth by re-seeding in fresh medium at a lower density. Subsequently observed changes in DNA-compartment distribution, and in labelling and mitotic indices were those expected from cells that had been arrested at different stages of the cycle during their previous stationary phase. Thus, the non-proliferating quiescent state (Q), traditionally located ‘somewhere’ in G1, phase, appears to be composed also of cells that can be arrested at other stages of the cycle (Qs, and QG). Although the proportion of such cells is rather small, their contribution to the growth kinetics behaviour of human in vivo tumours will become apparent following ‘recruiting’ or ‘synchronizing’ clinical manoeuvres and will prevent the formation of a clear-cut wave of synchronized cells.  相似文献   

18.
A natural predominant flavanone naringenin, especially abundant in citrus fruits, has a wide range of pharmacological activities. The search for antiproliferative agents that reduce skin carcinoma is a task of great importance. The objective of this study was to analyze the anti-proliferative and apoptotic mechanism of naringenin using MTT assay, DNA fragmentation, nuclear condensation, change in mitochondrial membrane potential, cell cycle kinetics and caspase-3 as biomarkers and to investigate the ability to induce reactive oxygen species (ROS) initiating apoptotic cascade in human epidermoid carcinoma A431 cells. Results showed that naringenin exposure significantly reduced the cell viability of A431 cells (p<0.01) with a concomitant increase in nuclear condensation and DNA fragmentation in a dose dependent manner. The intracellular ROS generation assay showed statistically significant (p<0.001) dose-related increment in ROS production for naringenin. It also caused naringenin-mediated epidermoid carcinoma apoptosis by inducing mitochondrial depolarization. Cell cycle study showed that naringenin induced cell cycle arrest in G0/G1 phase of cell cycle and caspase-3 analysis revealed a dose dependent increment in caspase-3 activity which led to cell apoptosis. This study confirms the efficacy of naringenin that lead to cell death in epidermoid carcinoma cells via inducing ROS generation, mitochondrial depolarization, nuclear condensation, DNA fragmentation, cell cycle arrest in G0/G1 phase and caspase-3 activation.  相似文献   

19.
Oridonin was reported to induce L929 cell apoptosis via ROS-mediated mitochondrial and ERK pathways; however, the precise mechanisms by which oridonin induces cell death remain unclear. Herein, we found that oridonin treatment induced an increase in G2/M phase cell percentage. And, G2/M phase arrest was associated with down-regulation of cell cycle related cdc2, cdc25c and cyclinB levels, as well as up-regulation of p21 and p-cdc2 levels. In addition, we discovered that interruption of p53 activation decreased oridonin-induced apoptosis, and blocking ERK by specific inhibitors or siRNA suppressed oridonin-induced p53 activation. Moreover, inhibition of PTK, protein kinase C, Ras, Raf or JNK activation increased oridonin-induced apoptosis. Also, the level of Ras, Raf or JNK was down-regulated by oridonin, and the inhibition of PTK, Ras, Raf activation decreased p-JNK level. In conclusion, oridonin induces L929 cell G2/M arrest and apoptosis, which is regulated by promoting ERK-p53 apoptotic pathway and suppressing PTK-mediated survival pathway.  相似文献   

20.
Nitracrine (Ledakrin) is an antitumor drug which is activated by cellular enzymes and binds covalently to DNA. Previous studies have shown that covalent binding and crosslinking of DNA is associated with the cytotoxic and antitumor activities of this compound. In this study, cell cycle perturbations, effects on DNA synthesis and the cell death process initiated by Nitracrine were studied in murine leukemia L1210 cells. We show that exposure of L1210 cells to Nitracrine at the IC99 concentration delayed progression through the S phase and transiently arrested cells in G2/M as found by flow cytometry. Higher drug concentration (2 × IC99) inhibited cell cycle progression in the S phase and induced rapid cell death. Both studied concentrations of the drug produced different effects on DNA synthesis as determined by bromodeoxyuridine incorporation, with a delay in the S phase progression at EC99 concentration and irreversible arrest in early S phase at the higher dose (2 × IC99). At both concentrations of Nitracrine cell death occurred preferentially in the S phase as revealed by the TUNEL assay. When cells treated with the drug for 4 hours were post-incubated in the presence of 1 mM caffeine this led to rapid cell death and suppression of the G2 arrest. This was associated with a about 10-fold increase in the cytotoxicity of Nitracrine. Similar effects were observed for another DNA crosslinking agent, cis-platinum, and to a lesser extent, for DNA topoisomerase I inhibitor, camptothecin. Together, our studies show that suppression of G2 arrest induced by Nitracrine greatly enhances its cytotoxicity toward L1210 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号