首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. A difference has been found between rats and mice in their sensitivity to the porphyrogenic effect of drugs. Mice are more sensitive than rats to 3,5-diethoxycarbonyl-1,4-dihydrocollidine, but less sensitive than rats to 2-allyl-2-isopropylacetamide. 2. Use has been made of this difference in sensitivity to ascertain the importance of the decrease of liver porphyrin-metal chelatase activity in porphyria caused by 3,5-diethoxycarbonyl-1,4-dihydrocollidine. Mice, which are more sensitive than rats to the stimulation of 5-aminolaevulinate caused by this drug, are also more sensitive with respect to the decrease of chelatase activity. 3. In both species, after treatment with 3,5-diethoxycarbonyl-1,4-dihydrocollidine, the ratio between chelatase activity and 5-aminolaevulinate activity is linear with respect to the reciprocal of the liver porphyrin concentration. This suggests that under these conditions the degree of porphyrin accumulation depends on the balance between rate of porphyrin formation and rate of porphyrin utilization. 4. Compound SKF 525-A (2-diethylaminoethyl 3,3-diphenylpropylacetate) when given before 3,5-diethoxycarbonyl-1,4-dihydrocollidine prevents the appearance of porphyria in the rat and also largely prevents the decrease of chelatase activity. In the mouse it is much less effective in preventing porphyria and it is almost completely inactive in protecting the chelatase from a decrease in activity. 5. Cycloheximide, when given before 3,5-diethoxycarbonyl-1,4-dihydrocollidine also inhibits the induction of 5-aminolaevulinate synthetase and the appearance of porphyria in the rat, but does not prevent the decrease of chelatase activity. These results suggest that two successive stages can be distinguished in the induction process: a first stage leading to inhibition of haem synthesis and a second stage requiring synthesis of protein in the liver and leading to stimulation of 5-aminolaevulinate synthetase.  相似文献   

2.
1. Drugs such as phenobarbitone and phenylbutazone, which increase the concentration of microsomal haem and cytochrome P-450, also increase the saturation of rat liver apo-(tryptophan pyrrolase) with its haem activator, as does the haem precursor 5-aminolaevulinate. 2. At 4h after the administration of the porphyrogens 2-allyl-2-isopropylacetamide, 3,5-diethoxycarbonyl-1,4-dihydrocollidine and griseofulvin, the total pyrrolase activity is increased whereas the haem saturation of the apoenzyme is decreased. This decreased saturation is prevented by pretreatment of the animals with the inhibitor of drug-metabolizing enzymes, SKF 525-A. 3. Pretreatment of rats with the above porphyrogens inhibits the rise in holo-(tryptophan pyrrolase) activity produced by subsequent administration of cortisol, tryptophan and 5-aminolaevulinate with two single exceptions, the possible reasons for which are discussed. 4. At 24h after the administration, in starved rats, of a single daily injection of the above porphyrogens for 1 or 2 days, the holoenzyme activity is significantly increased. 5. It is suggested that the saturation of rat liver apo-(tryptophan pyrrolase) with its haem activator can be modified by treatment known to cause destruction, inhibition of synthesis, increased utilization and enhanced synthesis of liver haem. The possible involvement of the latter phenomenon in the aetiology of mental disorders in some patients with porphyria is discussed.  相似文献   

3.
Griseofulvin and isogriseofulvin cause, like 3,5-diethoxycarbonyl-1,4-dihydrocollidine, a fall in the activity of the hepatic enzyme porphyrin-metal chelatase and accumulation of protoporphyrin in the liver. Analogues of either griseofulvin or 3,5-diethoxycarbonyl-1,4-dihydrocollidine which do not decrease the chelatase activity are not porphyrogenic on their own, but can potentiate the porphyria caused by 3,5-diethoxycarbonyl-1,4-dihydrocollidine. This suggests the existence of two basically different mechanisms by which drugs stimulate the pathway of porphyrin synthesis in the liver.  相似文献   

4.
The effects of two porphyrogenic agents, 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) and 3,5-diethoxycarbonyl-2,6-dimethyl-4-ethyl-1,4-dihydropyridine (DDEP), have been studied in rats. The administration of these compounds leads to the formation and accumulation in the liver of N-methylprotoporphyrin IX and N-ethylprotoporphyrin IX, respectively. In each case, the alkyl group of the porphyrin is derived from the 4-alkyl group of the porphyrogenic chemical. Each N-alkylporphyrin is a potent inhibitor of protoheme ferrolyase (EC 4.99.1.1) (ferrochelatase) activity. N-Methylprotoporphyrin IX is somewhat more potent than N-ethylprotoporphyrin IX as an inhibitor of ferrochelatase activity in vitro. However, more N-ethylprotoporphyrin IX accumulates in rat liver than does the N-methyl analog. Since alkylporphyrins are formed during the catabolism of heme (or hemoprotein), the effects of DDC and DDEP on hepatic microsomal cytochrome P-450 were also studied. Whereas DDC treatment led to only a slight decrease in cytochrome P-450 levels (25%), DDEP administration led to a marked decrease (75%) in the total cytochrome P-450 level. In phenobarbital- and 3-methylcholanthrene-treated rats, DDC administration did not alter the hepatic microsomal cytochrome P-450 content, while administration of DDEP to either phenobarbital-treated or 3-methylcholanthrene-treated rats led to marked reduction of levels in cytochrome P-450. Although the N-methylprotoporphyrin IX level was not increased following DDC administration to either phenobarbital- or 3-methylcholanthrene-treated rats, there was a marked increase in N-ethylprotoporphyrin IX accumulation in both phenobarbital- and 3-methylcholanthrene-treated rats after the administration of DDEP. These results suggest that DDC and DDEP react with different forms of rat hepatic microsomal cytochrome P-450.  相似文献   

5.
The effect of DL-propranolol on 3′,5′-diethoxycarbonyl-1,4-dihydrocollidine-induced experimental porphyria was studied.dl-Propranolol, a beta-adrenergic blocking agent with non-specific membrane effects, partially inhibited 3′,5′-diethoxycarbonyl-1,4-dihydrocollidine-induced delta-aminolevulinate synthetase activity both in rats and in chick embryo liver cells in culture.In rats, DL-propranolol decreased urinary delta-aminolevulinate and porphobilinogen but no change occurred in the 24-h urinary excretion of total porphyrins and in the concentration of porphyrins in the liver. In cultured chick embryo liver cells treated with 3′,5′-diethoxycarbonyl-1,4-dihydrocollidine, DL-propranolol decreased accumulation of porphyrins in the medium.d-Propranolol, oxprenolol and quinidine acted like dl-propranolol in chick embryo liver cells in culture treated with 3′,5′-diethoxycarbonyl-1,4-dihydrocollidine. Pindolol, practolol and lidocaine had no effect.Phenobarbitone had a synergistic effect on the induction of delta-aminolevulinate synthetase by 3′,5′-diethoxycarbonyl-1,4-dihydrocollidine in cultures of chick embryo liver cells. This induction was partially inhibited by propranolol. However, the increased accumulation of porphyrins in the medium caused by 3′,5′-diethoxycarbonyl-1,4-dihydrocollidine was inhibited by the addition of phenobarbitone. This inhibited induction was further decreased by propranolol.Most of our results indicate that the drugs tested act mainly by their effects on membranes.  相似文献   

6.
Administration of the porphyrogenic agent, 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) to mice, leads to the accumulation of N-methylprotoporphyrin IX in liver. This porphyrin is a potent inhibitor of ferrochelatase activity and accounts for the porphyria produced after DDC administration. The N-methylprotoporphyrin IX extracted from DDC-treated mice is primarily of one isomeric form, as shown by nuclear magnetic resonance spectroscopy. The methyl group of N-methylprotoporphyrin IX isolated from DDC-treated mice is derived mostly from the 4-methyl group of DDC. The transfer of this methyl group and its subsequent covalent attachment to protoporphyrin IX may be mediated by a form of hepatic microsomal cytochrome P-450. N-Methylprotoporphyrin IX is also found in livers of untreated mice at levels that are low but significant.  相似文献   

7.
The effects of inducers of cytochrome P-450 on haem biosynthesis from 5-aminolaevulinate were examined by using cultured chick-embryo hepatocytes. Cultures treated with either 2-propyl-2-isopropylacetamide or 3-methylcholanthrene contained increased amounts of cytochrome P-450 and haem. After treatment for 3 h with 5-amino[4-14C]laevulinate, the relative amounts of radioactivity accumulating as haem corresponded to the relative amounts of total cellular haem, but not to increases in the amounts of cytochrome P-450. Treatment with 5-aminolaevulinate did not alter cellular haem or cytochrome P-450 concentrations in either control or drug-treated cultures. The mechanism of the enhanced accumulation of radioactivity in haem was investigated. Although 2-propyl-2-isopropylacetamide enhanced the uptake of 5-aminolaevulinate and increased the cellular concentration of porphobilinogen 1.5-fold, these changes did not account for the increases in haem radioactivity. The inducing drugs had no effect on the rates of degradation of radioactive haem, but appeared to enhance conversion of protoporphyrin into haem. This latter effect was shown by: (1) a decreased accumulation of protoporphyrin from 5-aminolaevulinate in cells treated with inducers, and (2) complete prevention of this decrease if the iron chelator desferrioxamine was present. We conclude that inducers of cytochrome P-450 may increase haem synthesis not only by increasing activity of 5-aminolaevulinate synthase, but also by increasing conversion of protoporphyrin into haem.  相似文献   

8.
The administration of acetate or sulfanilamide depressed the porphyric response of rats to 3,5-dicarbethoxy-1,4-dihydrocollidine. The induction of δ-aminolevulinate synthetase (EC 2.3.1.37) in porphyric rats was decreased by acetate administration and δ-aminolevulinate synthetase activity in hepatic homogenates was inhibited by acetate. Succinate reversed the inhibition by acetate in vitro. Since an alteration of heme biosynthesis by acetate was observed, the effect of acetate on the induction of hepatic microsomal cytochrome P-450 and microsomal mixed-function oxidase by phenobarbital was examined. Acetate prevented the induction of hepatic mixed-function oxidase and cytochrome P-450 by phenobarbital. Unlike the action of other inhibitors of hepatic heme biosynthesis, acetate also prevented the induction by phenobarbital of NADPH-cytochrome c reductase (EC 1.6.99.3). These findings suggest that acetate may be inhibiting heme biosynthesis by effects on δ-aminolevulinate synthetase, the rate-limiting step in heme biosynthesis, by alteration of the induction of this enzyme and by a direct effect on the enzymic reaction itself. It is suggested that acetate may be involved in the glucose effect related to the inhibition of the induction of δ-aminolevulinate synthetase.  相似文献   

9.
Administration of allylisopropylacetamide to rats caused a marked decline in the concentrations of reduced and oxidized glutathione in the liver. However, this decrease occurred in the presence of uninhibited activities of gamma-glutamylcysteine synthase and glutathione reductase, and unaltered activities of glutathione transferases A, B and C. The administration of cysteine, the rate-limiting precursor of glutathione formation, to rats treated with allylisopropylacetamide potentiated the inductive effects of the agent on 5-aminolaevulinate synthase, and markedly decreased the extent of decrease in glutathione concentrations by the agent. Conversely, the administration of diethyl maleate, which depletes the hepatic glutathione concentrations, to allylisopropylacetamide-pretreated rats (1h) diminished the extent of 5-aminolaevulinate synthase induction and the production of porphyrins by nearly 50%, when measured at 16h. This treatment did not alter the extent of non-enzymic degradation of liver haem by allylisopropylacetamide. When diethyl maleate was administered to the animals possessing high 5-aminolaevulinate synthase activity (at 3, 7 and 15h after allylisopropylacetamide), in 1h the enzyme activity was markedly decreased. Diethyl maleate had no effect on induction of 5-aminolaevulinate synthase by 3,5-diethoxycarbonyl-1,4-dihydrocollidine, also a potent porphyrinogenic agent. Diethyl maleate alone neither inhibited 5-aminolaevulinate synthase activity nor decreased the cellular content of porphyrins and haem. The data suggest that the decreases observed in the glutathione concentrations after allylisopropylacetamide administration are not the result of decreased production of the tripeptide. Rather, they most likely reflect the increased utilization of glutathione. The findings further suggest that the inhibition by diethyl maleate of allylisopropylacetamide-stimulated 5-aminolaevulinate synthase involves the inhibition of induction processes.  相似文献   

10.
The ability of drugs to cause uroporphyria in hepatocytes from 17-day-old chick embryos has been investigated and the response of the cells in culture compared with that of the intact liver of the embryos in ovo. In this chick-embryo system, drugs that cause accumulation of uroporphyrin within 19-24 h can only do so in culture; in contrast, 2-allyl-2-isopropylacetamide and 3,5-diethoxycarbonyl-1,4-dihydrocollidine, which stimulate production of protoporphyrin, are effective both in culture and in ovo. A role of exogenous iron in worsening drug-induced uroporphyria was demonstrated in cultures of hepatocytes; iron also caused preferential accumulation of uroporphyrin from added 5-aminolaevulinate in the absence of a porphyrogenic chemical. Uroporphyria was induced in cultures of hepatocytes by drugs of widely different structures, suggesting that the primary molecular target with which they interact may be relatively aspecific in its binding characteristics. These results are briefly discussed, and two alternative hypotheses for the drug-induced effect in uroporphyrinogen metabolism are considered.  相似文献   

11.
Female Agus rats developed hepatic porphyria at a much faster rate than female Porton-Wistar rats when fed a diet containing 0.01% of hexachlorobenzene (HCB). They also showed a greater inhibition of liver uroporphyrinogen decarboxylase [EC 4.1.1.37] activity and a marked stimulation of 5-aminolaevulinate synthetase [EC 2.3.1.37]. The difference between the two strains could not be correlated with differences in the liver concentrations of HCB. However, control Agus rats were found to possess significantly higher levels of total non-haem iron in their livers than the Porton animals. This was particularly apparent after 24 h of starvation and is further evidence for the involvement of iron in the pathogenesis of HCB-induced porphyria. The posterior lobes of the livers from the Agus rats given HCB became porphyric more slowly than the remainder with less severe inhibition of uroporphyrinogen decarboxylase. In contrast to their increased susceptibility to HCB, the Agus rats were less susceptible to another prophyrogenic agent, 3,5-diethoxycarbonyl-1,4-dihydrocollidine.  相似文献   

12.
The role of haem synthesis during induction of hepatic cytochrome P-450 haemoproteins was studied in chick embryo in ovo and in chick embryos hepatocytes cultured under chemically defined conditions. 1. Phenobarbitone caused a prompt increase in the activity of 5-aminolaevulinate synthase, the rate-limiting enzyme of haem biosynthesis, and in the concentration of cytochrome P-450. This induction response occurred without measurable initial destruction of the haem moiety of cytochrome P-450. 2. When intracellular haem availability was enhanced by exogenous haem or 5-aminolaevulinate, phenobarbitone-medicated induction of cytochrome P-450 was not affected in spite of the well known repression of 5-aminolaevulinate synthase by haem. These data are consistent with the concept that haem does not regulate the synthesis of cytochrome P-450 haemoproteins. 3. Acetate inhibited haem biosynthesis at the level of 5-aminolaevulinate formation. When intracellular haem availability was diminished by treatment with acetate, phenobarbitone-medicated induction was decreased. 4. This inhibitory effect of acetate on cytochrome P-450 induction was reversed by exogenous haem or its precursor 5-aminolaevulinate. These data suggest that inhibition of haem biosynthesis does not decrease synthesis of apo-cytochrome P-450. Moreover, they indicate that exogenous haem can be incorporated into newly formed aop-cytochrome P-450.  相似文献   

13.
Isolated rat hepatocytes incubated with two suicide substrates of cytochrome P-450, 2-allyl-2-isopropylacetamide and 3,5-diethoxycarbonyl-4-ethyl-1,4-dihydro-2,6-dimethylpyridine(4-ethyl-DD C), convert exogenous mesohaem and deuterohaem into N-alkylated mesoporphyrins and deuteroporphyrins respectively. The N-alkylated mesoporphyrins can be separated by h.p.l.c. from the corresponding N-alkylated protoporphyrins originating from endogenous haem; in this way the contribution of both endogenous and exogenous pools of haem can be studied in the same experiment. N-Alkylated mesoporphyrin exhibits chiral properties, and its isomeric composition and/or amount are dependent on the particular cytochrome P-450 enzyme predominating in the cell. These findings provide additional and more direct evidence that exchangeable haem is taken up by cytochrome P-450 before being N-alkylated.  相似文献   

14.
Colchicine at the concentrations of 5 X 10(-7) - 5 X 10(-6) M decreased significantly both delta-aminolevulinic acid synthase activity and accumulation of porphyrins in monolayers of chick embryo liver cells induced by allyl-isopropylacetamide, by 3,5-diethoxycarbonyl-1,4-dihydrocollidine or by phenobarbitone. No effect was noted in non-induced cells. In rats, colchicine 0.3 mg/kg, reduced significantly the allyl-isopropylacetamide induced increase in the activity of delta-aminolevulinic acid synthase in the liver and the concentration of urinary porphyrins while it did not affect these parameters in non-induced rats.  相似文献   

15.
The activities of 5-aminolaevulinate (5-ALA) synthetase and of various microsomat drug-metabolising enzymes have been determined in the livers of rats pretreated with different drugs and chemicals containing the allyl group. Safrole, isosafrole and secobarbital gave rise to slight increases in 5-ALA synthetase, whereas alclophenac and triallyl cyanurate almost doubled the enzyme activity and the known porphyrogenic agents, allylisopropylacetamide (AIA) and allobarbital caused increases of 1.5- and 2.5-fold, respectively. Allobarbital induced the microsomal drug-metabolising enzymes while secobarbital had only a weak effect and alclophenac and triallyl cyanurate had no effect at all. From these results it is suggested that induction of the synthesis of cytochrome P-450 is not rate dependent on the synthesis haem and induction of porphyrin biosynthesis.  相似文献   

16.
17.
1. The olfactory epithelium of male hamsters has been found to be extremely active in the cumene hydroperoxide-supported oxidation of tetramethylphenylenediamine, and this peroxidase activity has been shown to be cytochrome P-450-dependent. 2. The interaction of a series of suicide substrates of cytochrome P-450 with the hepatic and olfactory mono-oxygenase systems has been assessed by determination of peroxidase, 7-ethoxycoumarin O-de-ethylase (ECOD) and 7-ethoxyresorufin O-de-ethylase (EROD) activities after treatment in vivo with these compounds. Chloramphenicol, OOS-trimethylphosphorothiolate and two dihydropyridines [DDC (3,5-diethoxycarbonyl-1,4-dihydrocollidine) and 4-ethyl DDC (3,5-diethoxycarbonyl-4-ethyl-1,4-dihydro-2,6-dimethylpyridine)] all caused similar percentage inhibitions of hepatic and olfactory activities, but the absolute amounts of enzymic activity lost were considerably greater in the latter tissue. In contrast, halothane had little effect upon hepatic cytochrome P-450-dependent reactions, whereas it severely inhibited those of the olfactory epithelium. 3. The time course of loss and recovery of hepatic and olfactory peroxidase, ECOD and EROD activities after a single dose of 4-ethyl DDC was studied. The rates of loss of activity observed were very similar, irrespective of tissue or reaction examined. In the olfactory epithelium, all three activities recovered concurrently and at a rate similar to that of the hepatic peroxidase activity. In contrast, the hepatic de-ethylation of 7-ethoxycoumarin and 7-ethoxy-resorufin recovered significantly more rapidly. 4. It is suggested that this behaviour is due to 4-ethyl DDC acting not only as a suicidal inhibitor but also as an inducer of certain forms of cytochrome P-450 in the liver; in the olfactory epithelium, however, inactivation, but not induction, occurs. Classical inducing agents were reported to have no effect upon olfactory cytochrome P-450, and in the present study neither phenobarbitone nor beta-naphthoflavone treatment had any effect upon olfactory cytochrome P-450-dependent reactions, although it induced those of the liver.  相似文献   

18.
Effects of a series of antihypertensive drugs on the activity of δ-aminolevulinate synthase and on the formation of porphyrins and cytochrome P-450 were examined in the 18-day-old chick embryo liver in ovo. Hydralazine, pargyline, phenoxybenzamine, clonidine, and spironolactone were found to induce δ-aminolevulinate synthase in this system. These drugs therfore have the potential to precipitate clinical expression in human hereditary hepatic porphyrias and should be avoided or used with caution in patients with these disorders. Differential effects of these and other drugs were observed in the avian liver, in that δ-aminolevulinate synthase was more commonly induced thatn were porphyrins and cytochrome -450; the synthase was usually highest 6–12 h after injection, whereas porphyrins and cytochrome P-450 were highest at 24 h. Furthermore marked porphyrin accumulation was not seen with many drugs that induce σ-aminolevulinate synthase and cytochrome P-450 but was more characteristic of compounds that reduced the metabolism of protoporphyrin to heme, such as 1,4-dihydro-3,5-dicarbethoxycollidne (DDC) and high dose of hydralazine. A sensitive and convenient method to test for capacity to induce heme biosynthesis was adapted for use in the chick embryo liver. This employed a relatively small “priming” dose (0.25 mg) of DDC given with a drug being tested and a fluorometric assay of porphyrins in a liver homogenate obtained at 24 h. This simple method should facilitate screening for those drugs which induce the synthesis of δ-aminolevulinate synthase and/or cytochrome P-450 and are potentially dangerous to patients with hereditary hepatic porphyria.  相似文献   

19.
The induction of cytochrome P450 in chick embryo liver has been studied using three different porphyrinogenic drugs, 2-allyl-2-isopropylacetamide, 3,5-diethoxycarbonyl-1,4-dihydrocollidine and phenobarbital. Pulse-labelling studies have shown that for each drug the cytochrome P450 synthesized either in ovo or in a wheat germ translation system reacted immunologically with antibody raised against the purified 2-allyl-2-isopropylacetamide-induced enzyme (Mr = 50000). To investigate whether this is due to the three drugs inducing the same protein or different proteins with common immunological determinants, nucleic acid hybridization studies have been carried out using a recently characterised 2-allyl-2-isopropylacetamide-induced cytochrome P450 cloned cDNA probe [Brooker, J. D. et al. (1982) Eur. J. Biochem. 129, 325-333]. It has been shown that the mRNA induced by each drug hybridizes with this probe and all are of similar size. The melting profile of the mRNA . cDNA hybrids indicates that the mRNAs induced by the three drugs have at least 98% homology with the cDNA probe. Restriction endonuclease digestions of total chick embryo genomal DNA and a chick cytochrome P450 genomal clone indicates that the cytochrome P450 gene homologous with the cDNA probe is represented in the genome only once. These results strongly suggest that the three drugs cause increased levels of the same cytochrome P450 mRNA, possibly due to enhanced expression of the same gene. Results are also presented which show that other cytochrome-P450-inducing drugs, 3-methylcholanthrene, beta-naphthoflavone or pregnenolone-16 alpha-carbonitrile do not increase the level of the 2-allyl-2-isopropylacetamide-inducible mRNA but rather reduce it to a level which was lower than that of the untreated controls.  相似文献   

20.
Role of haem in the synthesis and assembly of cytochrome P-450   总被引:2,自引:2,他引:0       下载免费PDF全文
By using 3-amino-1,2,4-triazole, an inhibitor of haem synthesis, and 2-allyl-2-isopropylacetamide, a drug that degrades the haem moiety of cytochrome P-450, the involvement of haem in cytochrome P-450 synthesis and assembly was investigated. Phenobarbital was used to stimulate apo-(cytochrome P-450) synthesis. Degradation of preformed cytochrome P-450 haem does not result in a concomitant release of the apoprotein from the endoplasmic reticulum. The availability of haem for cytochrome P-450 synthesis in the normal animal is not rate-limiting. Prolonged inhibition of haem synthesis in vivo decreases the rate of apo-(cytochrome P-450) synthesis, although this effect is not discernible under conditions of short-term inhibition of haem synthesis. Under the former conditions exogenous haemin is able to counteract the decrease in the rate of apoprotein synthesis. In animals receiving successive injections of phenobarbital plus 3-amino-1,2,4-triazole, compared with those receiving phenobarbital only, the holo-(cytochrome P-450) content measured spectrally shows a greater decrease than could be accounted for by the decrease in the content of the total apoprotein. In addition to less haem being available under these conditions, the free apoprotein appears to have undergone some modification, such that its haem-binding capacity is considerably decreased. This particular effect could be due to a direct interaction of 3-amino-1,2,4-triazole or its metabolites with cytochrome P-450 rather than a consequence of haem deficiency. Apo-(cytochrome P-450) is capable of binding to the endoplasmic reticulum in a form and at a site, which can be reconstituted with haemin to yield the functional protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号