共查询到20条相似文献,搜索用时 15 毫秒
1.
Xylem ABA controls the stomatal conductance of field-grown maize subjected to soil compaction or soil drying 总被引:8,自引:1,他引:8
F. TARDIEU J. ZHANG N. KATERJI O. BETHENOD S. PALMER W. J. DAVIES 《Plant, cell & environment》1992,15(2):193-197
Stomatal conductance of individual leaves was measured in a maize field, together with leaf water potential, leaf turgor, xylem ABA concentration and leaf ABA concentration in the same leaves. Stomatal conductance showed a tight relationship with xylem ABA, but not with the current leaf water status or with the concentration of ABA in the bulk leaf. The relationship between stomatal conductance and xylem [ABA] was common for variations in xylem [ABA] linked to the decline with time of the soil water reserve, to simultaneous differences between plants grown on compacted, non-compacted and irrigated soil, and to plant-to-plant variability. Therefore, this relationship is unlikely to be fortuitous or due to synchronous variations. These results suggest that increased concentration of ABA in the xylem sap in response to stress can control the gas exchange of plants under field conditions. 相似文献
2.
BACKGROUND AND AIMS: Soil water deficit is a major abiotic stress with severe consequences for the development, productivity and quality of crops. However, it is considered a positive factor in grapevine management (Vitis vinifera), as it has been shown to increase grape quality. The effects of soil water deficit on organogenesis, morphogenesis and gas exchange in the shoot were investigated. METHODS: Shoot organogenesis was analysed by distinguishing between the various steps in the development of the main axis and branches. Several experiments were carried out in pots, placed in a greenhouse or outside, in southern France. Soil water deficits of various intensities were imposed during vegetative development of the shoots of two cultivars ('Syrah' and 'Grenache N'). KEY RESULTS: All developmental processes were inhibited by soil water deficit, in an intensity-dependent manner, and sensitivity to water stress was process-dependent. Quantitative relationships with soil water were established for all processes. No difference was observed between the two cultivars for any criterion. The number of leaves on branches was particularly sensitive to soil water deficit, which rapidly and strongly reduced the rate of leaf appearance on developing branches. This response was not related to carbon availability, photosynthetic activity or the soluble sugar content of young expanding leaves. The potential number of branches was not a limiting factor for shoot development. CONCLUSIONS: The particularly high sensitivity to soil water deficit of leaf appearance on branches indicates that this process is a major determinant of the adaptation of plant leaf area to soil water deficit. The origin of this particular developmental response to soil water deficit is unclear, but it seems to be related to constitutive characteristics of branches rather than to competition for assimilates between axes differing in sink strength. 相似文献
3.
H. R. SCHULTZ 《Plant, cell & environment》2003,26(8):1393-1405
A comparative study on stomatal control under water deficit was conducted on grapevines of the cultivars Grenache, of Mediterranean origin, and Syrah of mesic origin, grown near Montpellier, France and Geisenheim, Germany. Syrah maintained similar maximum stomatal conductance (gmax) and maximum leaf photosynthesis (Amax) values than Grenache at lower predawn leaf water potentials, Ψleaf, throughout the season. The Ψleaf of Syrah decreased strongly during the day and was lower in stressed than in watered plants, showing anisohydric stomatal behaviour. In contrast, Grenache showed isohydric stomatal behaviour in which Ψleaf did not drop significantly below the minimum Ψleaf of watered plants. When g was plotted versus leaf specific hydraulic conductance, Kl, incorporating leaf transpiration rate and whole‐plant water potential gradients, previous differences between varieties disappeared both on a seasonal and diurnal scale. This suggested that isohydric and anisohydric behaviour could be regulated by hydraulic conductance. Pressure‐flow measurements on excised organs from plants not previously stressed revealed that Grenache had a two‐ to three‐fold larger hydraulic conductance per unit path length (Kh) and a four‐ to six‐fold larger leaf area specific conductivity (LSC) in leaf petioles than Syrah. Differences between internodes were only apparent for LSC and were much smaller. Cavitation detected as ultrasound acoustic emissions on air‐dried shoots showed higher rates for Grenache than Syrah during the early phases of the dry‐down. It is hypothesized that the differences in water‐conducting capacity of stems and especially petioles may be at the origin of the near‐isohydric and anisohydric behaviour of g. 相似文献
4.
5.
The distribution frequency patterns of diameter of xylem vessels and percentage of total predicted axial conductances were studied in 190-day and 212-day-old main roots of grapevine (Vitis vinifera L. cv. Shiraz) grown under well-watered and stressed conditions. The protoxylem were the first to mature and were responsible for most of the theoretical conductance in root segments between the tip and 2.5 cm from the tip. Some large xylem vessels retained cross walls and protoplasm up to 22.5 cm from the tip. Statistical tests using the Kolmogorov-Smirnov two sample test showed that the pattern of distribution frequency of xylem vessels classified in different diameter classes varied with distance from the root tip. The distribution frequency of xylem vessels was similar in both well-watered and stressed plants from the tip up to 15 cm from the tip. At distances further from the tip the distribution frequency of xylem vessels of well-watered plants was significantly different from that of stressed plants, with the former having more larger vessels than the latter. The pattern of vessel distribution frequency was different from that of percent total axial conductance (Kh) predicted with fewer large vessels carrying most of the axial flow. 相似文献
6.
7.
8.
We studied the effects of drought on leaf conductance (g) and on the concentration of abscisic acid (ABA) in the apoplastic sap of Lupinus albus L. leaves. Withholding watering for 5d resulted in complete stomatal closure and in severe leaf water deficit. Leaf water potential fully recovered immediately after rewatering, but the aftereffect of drought on stomata persisted for 2d. ABA and sucrose were quantified in pressurized leaf xylem extrudates. We assumed that the xylem sucrose concentration is negligible and hence that the presence of sucrose in leaf extrudates indicated that they were contaminated by phloem. To eliminate this interference, the concentration of ABA in leaf apoplast was estimated by extrapolation to zero sucrose concentration, using the regression between ABA and sucrose concentrations. The estimated apoplastic ABA concentration increased by 100-fold with soil drying and did not return to pre-stress values immediately following rewatering. g was closely related to the concentration of ABA in leaf apoplast. Furthermore, the feeding of exogenous ABA to leaves detached from well-watered plants brought about the same degree of depression in g as resulted from the drought-induced increase in ABA concentration. We therefore conclude that the observed changes in the concentration of ABA in leaf apoplast were quantitatively adequate to explain drought-induced stomatal closure and the delay in stomatal reopening following rewatering. 相似文献
9.
The stomatal conductance of several anisohydric plant species, including field-grown sunflower, frequently correlates with leaf water potential (φ1), suggesting that chemical messages travelling from roots to shoots may not play an important role in stomatal control. We have performed a series of experiments in which evaporative demand, soil water status and ABA origin (endogenous or artificial) were varied in order to analyse stomatal control. Sunflower plants were subjected to a range of soil water potentials under contrasting air vapour pressure deficits (VPD, from 0.5 to 2.5 kPa) in the field, in the glasshouse or in a humid chamber. Sunflower plants were also fed through the xylem with varying concentrations of artificial ABA, in the glasshouse and in the field. Finally, detached leaves were fed directly with varying concentrations of ABA under three contrasting VPDs. A unique relationship between stomatal conductance (gs) and the concentration of ABA in the xylem sap (xylem [ABA]) was observed in all cases. In contrast, the relationship between φ1 and gs varied substantially among experiments. Its slope was positive for droughted plants and negative for ABA-fed whole plants or detached leaves, and also varied appreciably with air VPD. All observed relationships could be modelled on the basis of the assumption that φ1 had no controlling effect on gs. We conclude that stomatal control depended only on the concentration of ABA in the xylem sap, and that φ1 was controlled by water flux through the plant (itself controlled by stomatal conductance). The possibility is also raised that differences in stomatal ‘strategy’ between isohydric plants (such as maize, where daytime φ1 does not vary appreciably with soil water status) and anisohydric plants (such as sunflower) may be accounted for by the degree of influence of φ1 on stomatal control, for a given level of xylem [ABA]. We propose that statistical relationships between φ1 and gs are only observed when φ1 has no controlling action on stomatal behaviour. 相似文献
10.
Stomatal conductance in relation to xylem sap abscisic acid concentrations in two tropical trees, Acacia confusa and Litsea glutinosa 总被引:2,自引:0,他引:2
Two tropical trees, Acacia confusa and Litsea glutinosa, were grown under controlled conditions with their roots subjected to soil drying and soil compaction treatments. In both species, a decline in stomatal conductance resulting from soil drying took place much earlier than the decline of leaf water potential. Soil compaction treatment also resulted in a substantial decrease in stomatal conductance but had little effect on leaf water potential. A rapid and substantial increase in xylem abscisic acid (ABA) concenation ([ABA]), rather than hulk leaf ABA, was closely related to soil drying and soil compaction. A significant relationship between stomatal conductance (gs) and xylem [ABA] was observed in both species. Artificially feeding ABA solutions to excised leaves of both species showed that the relationship bet ween gs and [ABA] was very similar to that obtained from the whole plant, i.e. the relationship between gs and xylem [ABA]. These results suggest that xylem ABA may act as a stress signal in the control of stomatal conductance. 相似文献
11.
12.
F. TARDIEU N. KATERJI O. BETHENOD J. ZHANG W. J. DAVIES 《Plant, cell & environment》1991,14(1):121-126
Abstract. Stomatal conductance, leaf water potential, soil water potential and concentration of abscisic acid (ABA) in the xylem sap were measured on maize plants growing in the field, in two treatments with contrasting soil structures. Soil compaction affected the stomatal conductance, but this effect was no longer observed if the soil water potential was increased by irrigation. Differences in leaf water potential did not account for the differences in conductance between treatments. Conversely, the relationship between stomatal conductance and concentration of ABA in the xylem sap was consistent during the experiment. The proposed interpretation is that stomatal conductance was controlled by the root water potential via an ABA message. Control of the stomatal conductance by the leaf water potential or by an effect of mechanical stress on the roots is unlikely. 相似文献
13.
14.
Limitation of transpiration by hydraulic conductance and xylem cavitation in Betula occidentalis 总被引:13,自引:6,他引:13
The extent to which stomatal conductance (gs) was capable of responding to reduced hydraulic conductance (k)and preventing cavitation-inducing xylem pressures was evaluated in the small riparian tree, Betula occidentalis Hook. We decreased k by inducing xylem cavitation in shoots using an air-injection technique. From 1 to 18 d after shoot injection we measured midday transpiration rate (E), gs, and xylem pressure (Ψp-xylem) on individual leaves of the crown. We then harvested the shoot and made direct measurements of k from the trunk (2–3 cm diameter) to the distal tip of the petioles of the same leaves measured for E and gs. The k measurement was expressed per unit leaf area (kl, leaf-specific conductance). Leaves measured within 2 d of shoot injection showed reduced gs and E relative to non-injected controls, and both parameters were strongly correlated with kl At this time, there was no difference in leaf Ψp-xylem between injected shoots and controls, and leaf Ψp-xylem was not significantly different from the highest cavitation-inducing pressure (Ψp-cav) in the branch xylem (-1.43 ± 0.029 MPa, n=8). Leaves measured 7–18 d after shoots were injected exhibited a partial return of gs and E values to the control range. This was associated with a decrease in leaf Ψp-xylem below Ψp-cav and loss of foliage. The results suggest the stomata were incapable of long-term regulation of E below control values and that reversion to higher E caused dieback via cavitation. 相似文献
15.
BACKGROUND AND AIMS: A reliable protocol for flowering and fruiting in cuttings was developed with the aim of (a) studying inflorescence and flower development in grapevine cuttings and field plants, and (b) assisting haploid plant production. METHODS: Inflorescence and flower development was studied in 'Gewurztraminer' (GW) and 'Pinot Noir' (PN) grape vines and cuttings grown in a glasshouse, along with variations in starch in the flowers. As there is a strong relationship between flower development and starch, the starch content of reproductive structures was estimated. KEY RESULTS: Inflorescence and flower development were similar in the vines and cuttings with consistent differences between the two cultivars. Indeed, the ontogenesis of male and female organs is not synchronous in GW and PN, with both female and male meiosis occurring earlier in PN than in GW. Moreover, changes of starch reserves were similar in the two plant types. CONCLUSIONS: Cuttings have a similar reproductive physiology to vines, and can be used to study grape physiology and to develop haploid plants. 相似文献
16.
葡萄病程相关蛋白1基因的克隆和表达分析 总被引:1,自引:0,他引:1
以葡萄品种‘左优红’组培苗叶片为材料,利用同源克隆法获得其病程相关蛋白1基因VvPR1的cDNA全长序列。扩增片段大小为486bp,编码161个氨基酸,分子量17.5kDa,等电点PI=8.69,含有6个保守半胱氨酸,4个allergenV5/Tpx-1related保守结构域。VvPR1与多种植物PR1高度同源。实时定量PCR检测结果表明VvPR1在葡萄叶片中相对表达量最高;霜霉病菌、低温、盐和干旱胁迫均可显著诱导其表达;水杨酸、脱落酸、茉莉酸、一氧化氮、过氧化氢和硫化氢等亦可诱导其大量表达,据此推测,VvPR1参与了多种生物胁迫和非生物胁迫过程。 相似文献
17.
Regeneration of transgenic shape Vitis vinifera L. Sultana plants: genotypic and phenotypic analysis
Franks Tricia Gang He Ding Thomas Mark 《Molecular breeding : new strategies in plant improvement》1998,4(4):321-333
Different approaches to producing transgenic grapevines based on regeneration via embryogenesis were investigated. Embryogenic callus was initiated from anther tissue of Vitis vinifera cv. Sultana and three embryogenic culture types (embryogenic callus, tissue type I; proliferating embryos, tissue type II; and a suspension) were established. The three culture types were incolucaled with Agrobacterium tumefaciens harbouring a binary vector which contained a uidA reporter gene and either a hpt or nptII selectable marker gene or the cultures were bombarded with microprojectiles carrying a uidA/nptII binary vector. Transgenic plants were produced only from Agrobacterium transformation experiments. Transformed embryos were selected with kanamycin or hygromycin antibiotics and recovered with the highest efficiency from inoculated type I cultures. Southern analysis of genomic DNA extracted from ten transgenic plants showed that the number of T-DNA insertions in the genome ranged from 1 to at least 4. Evidence for methylation of the T-DNA at cytosine and adenine residues in transgenic plants was found by Southern analysis of DNA digested with two isoschizomer pairs of restriction endonucleases. No evidence for genotype alterations or somatic meiosis was found when DNA from 80 somatic embryos and seven plants regenerated from embryogenic culture were analysed at six sequence-tagged sites which are heterozygous in cv. Sultana. Expression of the uidA gene in in vitro grown leaves of transgenic plants was most often high and uniform but GUS staining was occasionally observed to be low and/or patchy. Transgenic plants and all plants regenerated from embryogenic culture produced red veined, lobed leaves which are uncharacteristic of the accepted ampelographic phenotype of Sultana. It is suggested that this phenotype may represent a juvenile growth stage. 相似文献
18.
The Granier-system, a relatively simple and continuous method for measuring sap flux density, has been adapted and evaluated
for its use in older, mature grapevines. The original calibration of Granier (1985, Annales Sciences Forestieres, 42, 193-200)
could be extended to a sap flux density of up to 400 10-6 m3 m-2 s-1 with only little error at high flux densities. A time lag of around 20 min was apparent between transpiration and calculated
sap flow which was attributed to the thermal mass of the sensors themselves. The time lag and the consequently dampened response
of the system caused a very low accuracy over short time periods thus reducing the value for detailed plant physiological
investigations. However, when integrating over longer time intervals, much of the error cancelled out. For daily values the
maximum error was within ±10% and after a period of 89 days only 1.5% error remained. This method is thus best suited for
long term measurements of total water use.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
19.
Grape seeds (GS) are one of the most important by-products of the winery and grape juice industry. GS contain a vast array of health-giving metabolites, including several polyphenols known for their remarkable antioxidant activity. In this study, it has been evaluated the nutraceutical potential of seeds from 15 grapevine cultivars/clones in terms of total phenols, monomeric, dimer, polymeric, gallate esters flavan 3-ols composition and in vitro antiradical activity. Considerable quali-quantitative differences in polyphenol content and AA had been observed among GS from different cultivars/clones collected in 2013 and 2014. In most of the investigated cultivars/clones, the better values of TP, FL and AA were recorded in GS collected in 2014. The polymeric procyanidins were significantly higher in 2014 in all the cultivars, while the gallate esters were significantly higher in 2013. These differences can be attributed to different climatic conditions in 2013 and 2014. In conclusion, the data here reported help to identify the best source of GS for the recovery of bioactive polyphenols and to valorize these waste materials. 相似文献
20.
Sap flow measurements in grapevines (Vitis vinifera L.) 1. Stem morphology and use of the heat balance method 总被引:4,自引:0,他引:4
The heat balance method was evaluated in detail for its use in older, mature grapevines with stems of 35 – 45 mm in diameter. Dye colouring of the xylem vessels revealed that even 21 year old grapevines did not show any development of heartwood and that xylem vessels of that age still have the capacity to transport water. A comparison of weight loss of potted vines on a balance and sap flow measurements demonstrated that the heat balance system reflected rapid changes in flow rate without any time delay. However, since even 20 year old xylem vessels of grapevines have the capacity to conduct water, the heater band was not able to heat the sap in all year rings evenly. Apparently, at low flow rates this effect was small and sap flow was calculated correctly. With increasing flow rates large thermal heterogeneities developed upsetting the calculation of the heat balance and mass flow. Consequently, actual sap flow was overestimated by 50 to 100% at high flow rates. This could be attributed to thermal gradients in these relatively thick stems excluding the use of this technique for measurements of long term as well as short term water use patterns in older grapevines. This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献