首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The trimeric TolC protein of Escherichia coli comprises an outer membrane beta-barrel and a contiguous alpha-helical barrel projecting across the periplasm. This provides a single 140 A long pore for multidrug efflux and protein export. We have previously reported that trivalent cations such as hexammine cobalt can severely inhibit the conductivity of the TolC pore reconstituted in planar lipid bilayers. Here, isothermal calorimetry shows that Co(NH(3))(6)(3+) binds to TolC with an affinity of 20 nM. The crystal structure of the TolC-Co(NH(3))(6)(3+) complex was determined to 2.75 A resolution, and showed no significant difference in the protein when compared with unliganded TolC. An electron density difference map revealed that a single ligand molecule binds at the centre of the periplasmic entrance, the sole constriction of TolC. The octahedral symmetry of the ligand and the three-fold rotational symmetry of the TolC entrance determine a binding site in which the ligand forms hydrogen bonds with the Asp(374) residue of each monomer. When Asp(374) was substituted by alanine, high affinity ligand binding was abolished and inhibition of TolC pore conductivity in lipid bilayers was alleviated. Comparable effects followed independent substitution of the neighbouring Asp(371), indicating that this aspartate ring also contributes to the high affinity ligand binding site. As the electronegative entrance is widely conserved in the TolC family, it may be a useful target for the development of inhibitors against multidrug resistant pathogenic bacteria.  相似文献   

2.
TolC channel provides a route for the expelled drugs and toxins to cross the outer membrane of Escherichia coli. The puzzling feature of TolC structure is that the periplasmic entrance of the channel is closed by dense packing of 12 α‐helices. Efflux pumps exemplified by AcrAB are proposed to drive the opening of TolC channel. How interactions with AcrAB promote the close‐to‐open transition in TolC remains unclear. In this study, we investigated in vivo the functional and physical interactions of AcrAB with the closed TolC and its conformer opened by mutations in the periplasmic entrance. We found that the two conformers of TolC are readily distinguishable in vivo by characteristic drug susceptibility, thiol modification and proteolytic profiles. However, these profiles of TolC variants respond neither to the in vivo stoichiometry of AcrAB:TolC nor to the presence of vancomycin, which is used often to assess the permeability of TolC channel. We further found that the activity and assembly of AcrAB–TolC tolerates significant changes in amounts of TolC and that only a small fraction of intracellular TolC is likely used to support efflux needs of E. coli. Our findings explain why TolC is not a good target for inhibition of multidrug efflux.  相似文献   

3.
Drug efflux pumps of Gram-negative bacteria are tripartite export machineries located in the bacterial envelopes contributing to multidrug resistance. Protein structures of all three components have been determined, but the exact interaction sites are still unknown. We could confirm that the hybrid system composed of Pseudomonas aeruginosa channel tunnel OprM and the Escherichia coli inner membrane complex, formed by adaptor protein (membrane fusion protein) AcrA and transporter AcrB of the resistance nodulation cell division (RND) family, is not functional. However, cross-linking experiments show that the hybrid exporter assembles. Exchange of the hairpin domain of AcrA with the corresponding hairpin from adaptor protein MexA of P. aeruginosa restored the functionality. This shows the importance of the MexA hairpin domain for the functional interaction with the OprM channel tunnel. On the basis of these results, we have modeled the interaction of the hairpin domain and the channel tunnel on a molecular level for AcrA and TolC as well as MexA and OprM, respectively. The model of two hairpin docking sites per TolC protomer corresponding with hexameric adaptor proteins was confirmed by disulfide cross-linking experiments. The role of this interaction for functional efflux pumps is discussed.  相似文献   

4.
Escherichia coli TolC assembles into the unique channel-tunnel structure spanning the outer membrane and periplasmic space. The structure is constricted only at the periplasmic entrance of the tunnel and this must be opened to allow export of substrates bound by cognate inner membrane complexes. We have investigated the electrophysiological behavior of TolC reconstituted into planar lipid bilayers, in particular the influence of the membrane potential, the electrolyte concentration and pH. TolC inserted in one orientation into the membrane. The resultant pores were stable and showed no voltage-dependent opening or closing. Nevertheless, TolC could adopt up to three conductance substates. The pores were cation-selective with a permeability ratio of potassium to chloride ions of 16.5. The single-channel conductance was higher when the protein was inserted from the side with negative potential. It showed a nonlinear dependence on the concentration of the electrolyte in the bulk solution and decreased as the pH was lowered. The calculated pK of the apparent closing was 4.5. The electrophysiological characterization is discussed in relation to the TolC structure, in particular the periplasmic entrance.  相似文献   

5.
Drosophila Big Brain (BIB) is a transmembrane protein encoded by the neurogenic gene big brain (bib), which is important for early development of the fly nervous system. BIB expressed in Xenopus oocytes is a monovalent cation channel modulated by tyrosine kinase signaling. Results here demonstrate that the BIB conductance shows voltage- and dose-dependent block by extracellular divalent cations Ca(2+) and Ba(2+) but not by Mg(2+) in wild-type channels. Site-directed mutagenesis of negatively charged glutamate (Glu(274)) and aspartate (Asp(253)) residues had no effect on divalent cation block. However, mutation of a conserved glutamate at position 71 (Glu(71)) in the first transmembrane domain (M1) altered channel properties. Mutation of Glu(71) to Asp introduced a new sensitivity to block by extracellular Mg(2+); substitutions with asparagine or glutamine decreased whole-cell conductance; and substitution with lysine compromised plasma membrane expression. Block by divalent cations is important in other ion channels for voltage-dependent function, enhanced signal resolution, and feedback regulation. Our data show that the wild-type BIB conductance is attenuated by external Ca(2+), suggesting that endogenous divalent cation block might be relevant for enhancing signal resolution or voltage dependence for the native signaling process in neuronal cell fate determination.  相似文献   

6.
Recent mutagenesis experiments have confirmed our hypothesis that a segment between S5 and S6 forms the ion selective portion of voltage-gated ion channels. Based on these and other new data, we have revised previous models of the general folding pattern of voltage-gated channel proteins and have developed atomic scale models of the entire transmembrane region of the Shaker A K+ channel. In these models, the ion selective region is a beta-barrel that spans the outer half of the membrane. The inner half of the pore is larger. The voltage-dependent conformational changes of activation gating are modeled to occur by the "helical screw" mechanism, in which the four S4 segments move along and rotate about their axes. These changes are followed by a voltage-independent conformational change, in which the segments linking S4 to S5 move from blocking the intracellular entrance of the pore to forming part of the lining of the large inner portion of the pore. The NH2-terminal of the protein was modeled as an alpha-helix that plugs the intracellular half of the pore to inactivate the channel.  相似文献   

7.
The outer membrane proteins TolC and EefC from Enterobacter aerogenes are involved in multidrug resistance as part of two resistance-nodulation-division efflux systems. To gain more understanding in the molecular mechanism underlying drug efflux, we have undertaken an electrophysiological characterization of the channel properties of these two proteins. TolC and EefC were purified in their native trimeric form and then reconstituted in proteoliposomes for patch-clamp experiments and in planar lipid bilayers. Both proteins generated a small single channel conductance of about 80 pS in 0.5 M KCl, indicating a common gated structure. The resultant pores were stable, and no voltage-dependent openings or closures were observed. EefC has a low ionic selectivity (P(K)/P(Cl)= approximately 3), whereas TolC is more selective to cations (P(K)/P(Cl)= approximately 30). This may provide a possible explanation for the difference in drug selectivity between the AcrAB-TolC and EefABC efflux systems observed in vivo. The pore-forming activity of both TolC and EefC was severely inhibited by divalent cations entering from the extracellular side. Another characteristic of the TolC and EefC channels was the systematic closure induced by acidic pH. These results are discussed in respect to the physiological functions and structural models of TolC and EefC.  相似文献   

8.
Berger TK  Isacoff EY 《Neuron》2011,72(6):991-1000
In classical tetrameric voltage-gated ion channels four voltage-sensing domains (VSDs), one from each subunit, control one ion permeation pathway formed by four pore domains. The human Hv1 proton channel has a different architecture, containing?a VSD, but lacking a pore domain. Since its location is not known, we searched for the Hv permeation pathway. We find that mutation of the S4 segment's third arginine R211 (R3) compromises proton selectivity, enabling conduction of a metal cation and even of the large organic cation guanidinium, reminiscent of Shaker's omega pore. In the open state, R3 appears to interact with an aspartate (D112) that is situated in the middle of S1 and is unique to Hv channels. The double mutation of both residues further compromises cation selectivity. We propose that membrane depolarization reversibly positions R3 next to D112 in?the transmembrane VSD to form the ion selectivity filter in the channel's open conformation.  相似文献   

9.
Chunnel vision. Export and efflux through bacterial channel-tunnels   总被引:9,自引:0,他引:9  
The Escherichia coli TolC protein is central to toxin export and drug efflux across the inner and outer cell membranes and the intervening periplasmic space. The crystal structure has revealed that TolC assembles into a remarkable α-helical trans-periplasmic cylinder (tunnel) embedded in the outer membrane by a contiguous β-barrel (channel), so providing a large duct open to the outside environment. The channel-tunnel structure is conserved in TolC homologues throughout Gram-negative bacteria, and it is envisaged that they are recruited and opened, through a common mechanism, by substrate-specific inner-membrane complexes.  相似文献   

10.
To investigate the structural basis of anion selectivity of Drosophila GABA-gated Cl(-) channels, the permeation properties of wild-type and mutant channels were studied in Xenopus oocytes. This work focused on asparagine 319, which by homology is one amino acid away from a putative extracellular ring of charge that regulates cation permeation in nicotinic receptors. Mutation of this residue to aspartate reduced channel conductance, and mutation to lysine or arginine increased channel conductance. These results are consistent with an electrostatic interaction between this site and permeating anions. The lysine mutant, but not the arginine mutant, formed a channel that is permeable to cations, and this cannot be explained in terms of electrostatics. The lysine mutant had a 25-mV reversal potential in solutions with symmetrical Cl(-) and asymmetrical cations. The permeability ratio of K(+) to Cl(-) was determined as 0. 33 from reversal potential measurements in KCl gradients. Experiments with large organic cations and anions showed that cation permeation can only be seen in the presence of Cl(-), but Cl(-) permeation can be seen in the absence of permeant cations. Measurements of permeability ratios of organic anions indicated that the lysine mutant has an increased pore size. The cation permeability of the lysine-containing mutant channel cannot be accounted for by a simple electrostatic interaction with permeating ions. It is likely that lysine substitution causes a structural change that extends beyond this one residue to influence the positions of other channel-forming residues. Thus protein conformation plays an important role in enabling ion channels to distinguish between anions and cations.  相似文献   

11.
The periplasmic entrance of the TolC channel tunnel is sealed by close-packing of inner and outer coiled-coils, and it has been proposed that opening of the entrance is achieved by an iris-like realignment of the inner coiled-coils. This is supported by experimental disruption of the key links connecting them, which effects transition to the open state in TolC inserted into planar lipid bilayers. Here we provide in vivo evidence for this "twist to open" mechanism by constraining the coiled coils with disulphide bonds, either self-locking or bridged by a chemical cross-linker, and reconstituting the resulting TolC variants into the type I protein export system in Escherichia coli. Introducing an intermonomer disulphide bridge between Ala159 and Ser350 caused a fivefold reduction in export, and when the coiled coils were cross-linked at the entrance constriction, between Asp374 of adjacent monomers or between Asn156 and Ala375, TolC-dependent export was abolished. In vivo cross-linking showed that the locked non-exporting TolC variants were still recruited to assemble the type I export apparatus. The data show that untwisting the entrance helices is essential for the export function of TolC in E.coli, specifically to allow access and passage of substrates engaged at the inner membrane translocase.  相似文献   

12.
Channel-tunnels   总被引:1,自引:0,他引:1  
TolC and its many homologues comprise an alpha-helical transperiplasmic tunnel embedded in the bacterial outer membrane by a contiguous beta-barrel channel, providing a large exit duct for diverse substrates. The 'channel-tunnel' is closed at its periplasmic entrance, but can be opened by an 'iris-like' mechanism when recruited by substrate-engaged proteins in the cytosolic membrane.  相似文献   

13.
Bacteria, such as Escherichia coli, use multidrug efflux pumps to export toxic substrates through their cell membranes. Upon formation of an efflux pump, the aperture of its outer membrane protein TolC opens and thereby enables the extrusion of substrate molecules. The specialty of TolC is its ability to dock to different transporters, making it a highly versatile export protein. Within this study, the transition between two conformations of TolC that are both available as crystal structures was investigated using all-atom molecular dynamics simulations. To create a partially open conformation from a closed one, the stability of the periplasmic aperture was weakened by a double point mutation at the constricting ring, which removes some salt bridges and hydrogen bonds. These mutants, which showed partial opening in previous experiments, did not spontaneously open during a 20-ns equilibration at physiological values of the KCl solution. Detailed analysis of the constricting ring revealed that the cations of the solvent were able to constitute ionic bonds in place of the removed salt bridges, which inhibited the opening of the aperture in simulations. To remove the ions from these binding positions within the available simulation time, an extra force was applied onto the ions. To keep the effect of this additional force rather flexible, it was applied in form of an artificial external electric field perpendicular to the membrane. Depending on the field direction and the ion concentration, these simulations led to a partial opening. In experiments, this energy barrier for the ions can be overcome by thermal fluctuations on a longer timescale.  相似文献   

14.
Drug extrusion via efflux through a tripartite complex (an inner membrane pump, an outer membrane protein, and a periplasmic protein) is a widely used mechanism in Gram-negative bacteria. The outer membrane protein (TolC in Escherichia coli; OprM in Pseudomonas aeruginosa) forms a tunnel-like pore through the periplasmic space and the outer membrane. Molecular dynamics simulations of TolC have been performed, and are compared to simulations of Y362F/R367S mutant, and to simulations of its homolog OprM. The results reveal a complex pattern of conformation dynamics in the TolC protein. Two putative gate regions, located at either end of the protein, can be distinguished. These regions are the extracellular loops and the mouth of the periplasmic domain, respectively. The periplasmic gate has been implicated in the conformational changes leading from the closed x-ray structure to a proposed open state of TolC. Between the two gates, a peristaltic motion of the periplasmic domain is observed, which may facilitate transport of the solutes from one end of the tunnel to the other. The motions observed in the atomistic simulations are also seen in coarse-grained simulations in which the protein tertiary structure is represented by an elastic network model.  相似文献   

15.
This paper investigates the effects that surface dipole layers and surface charge layers along the pore mouth-water interface can have on the electrical properties of a transmembrane channel. Three specific molecular sources are considered: dipole layers formed by membrane phospholipids, dipole layers lining the mouth of a channel-forming protein, and charged groups in the mouth of a channel-forming protein. We find, consistent with previous work, that changing the lipid-water potential difference only influences channel conduction if the rate-limiting step takes place well inside the channel constriction. We find that either mouth dipoles or mouth charges can act as powerful ion attractors increasing either cation or anion concentration near the channel entrance to many times its bulk value, especially at low ionic strengths. The effects are sufficient to reconcile the apparently contradictory properties of high selectivity and high conductivity, observed for a number of K+ channel systems. We find that localizing the electrical sources closer to the constriction entrance substantially increases their effectiveness as ion attractors; this phenomenon is especially marked for dipolar distributions. An approximate treatment of electrolyte shielding is used to discriminate between the various mechanisms for increasing ionic concentration near the constriction entrance. Dipolar potentials are far less sensitive to ionic strength variation than potentials due to fixed charges. We suggest that the K+ channel from sarcoplasmic reticulum does not have a fixed negative charge near the constriction entrance; we suggest further that the Ca+2-activated K+ channel from transverse tubule does have such a charge.  相似文献   

16.
The outer membrane protein OprM of Pseudomonas aeruginosa is involved in intrinsic and mutational multiple-antibiotic resistance as part of two resistance-nodulation-division efflux systems. The crystal structure of TolC, a homologous protein in Escherichia coli, was recently published (V. Koronakis, A. Sharff, E. Koronakis, B. Luisl, and C. Hughes, Nature 405:914-919, 2000), demonstrating a distinctive architecture comprising outer membrane beta-barrel and periplasmic helical-barrel structures, which assemble differently from the common beta-barrel-only conformation of porins. Based on their sequence similarity, a similar content of alpha-helical and beta-sheet structure determined by circular dichroism spectroscopy, and our observation that OprM, like TolC, reconstitutes channels in planar bilayer membranes, OprM and TolC were considered to be structurally homologous, and a model of OprM was constructed by threading its sequence to the TolC crystal structure. Residues thought to be important for the TolC structure were conserved in space in this OprM model. Analyses of deletion mutants and previously isolated insertion mutants of OprM in the context of this model allowed us to propose roles for different protein domains. Our data indicate that the helical barrel of the protein is critical for both the function and the integrity of the protein, while a C-terminal domain localized around the equatorial plane of this helical barrel is dispensable. Extracellular loops appear to play a lesser role in substrate specificity for this efflux protein compared to classical porins, and there appears to be a correlation between the change in antimicrobial activity for OprM mutants and the pore size. Our model and channel formation studies support the "iris" mechanism of action for TolC and permit us now to form more focused hypotheses about the functional domains of OprM and its related family of efflux proteins.  相似文献   

17.
Neisseria meningitidis is the main causative agent of bacterial meningitis. In its outer membrane, the trimeric Neisserial porin PorB is responsible for the diffusive transport of essential hydrophilic solutes across the bilayer. Previous molecular dynamics simulations based on the recent crystal structure of PorB have suggested the presence of distinct solute translocation pathways through this channel. Although PorB has been electrophysiologically characterized as anion‐selective, cation translocation through nucleotide‐bound PorB during pathogenesis is thought to be instrumental for host cell death. As a result, we were particularly interested in further characterizing cation transport through the pore. We combined a structural approach with additional computational analysis. Here, we present two crystal structures of PorB at 2.1 and 2.65 Å resolution. The new structures display additional electron densities around the protruding loop 3 (L3) inside the pore. We show that these electron densities can be identified as monovalent cations, in our case Cs+, which are tightly bound to the inner channel. Molecular dynamics simulations reveal further ion interactions and the free energy landscape for ions inside PorB. Our results suggest that the crystallographically identified locations of Cs+ form a cation transport pathway inside the pore. This finding suggests how positively charged ions are translocated through PorB when the channel is inserted into mitochondrial membranes during Neisserial infection, a process which is considered to dissipate the mitochondrial transmembrane potential gradient and thereby induce apoptosis. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
E Reuveny  Y N Jan    L Y Jan 《Biophysical journal》1996,70(2):754-761
Inwardly rectifying K+ channels are highly selective for K+ ions and show strong interaction with ions in the pore. Both features are important for the physiological functions of these channels and pose intriguing mechanistic questions of ion permeation. The aspartate residue in the second putative transmembrane segment of the IRK1 inwardly rectifying K+ channel, previously implicated in inward rectification gating due to cytoplasmic Mg2+ and polyamine block, is found in this study to be crucial for the channel's ability to distinguish between K+ and Rb+ ions. Mutation of this residue also perturbs the interaction between the channel pore and the Sr2+ blocking ion. Our studies suggest that this aspartate residue contributes to a selectivity filter near the cytoplasmic end of the pore.  相似文献   

19.
Organic cation permeation through the channel formed by polycystin-2   总被引:1,自引:0,他引:1  
Polycystin-2 (PC2), a member of the transient receptor potential family of ion channels (TRPP2), forms a calcium-permeable cation channel. Mutations in PC2 lead to polycystic kidney disease. From the primary sequence and by analogy with other channels in this family, PC2 is modeled to have six transmembrane domains. However, most of the structural features of PC2, such as how large the channel is and how many subunits make up the pore of the channel, are unknown. In this study, we estimated the pore size of PC2 from the permeation properties of the channel. Organic cations of increasing size were used as current carriers through the PC2 channel after PC2 was incorporated into lipid bilayers. We found that dimethylamine, triethylamine, tetraethylammonium, tetrabutylammonium, tetrapropylammonium, and tetrapentylammonium were permeable through the PC2 channel. The slope conductance of the PC2 channel decreased as the ionic diameter of the organic cation increased. For each organic cation tested, the currents were inhibited by gadolinium and anti-PC2 antibody. Using the dimensions of the largest permeant cation, the minimum pore diameter of the PC2 channel was estimated to be at least 11 A. The large pore size suggests that the primary state of this channel found in vivo is closed to avoid rundown of cation gradients across the plasma membrane and excessive calcium leak from endoplasmic reticulum stores.  相似文献   

20.
The bacterial protein TolC assembles into an alpha-helical trans-periplasmic tunnel, which is embedded in the outer membrane by a contiguous beta-barrel channel. TolC and its homologues thus provide large exit ducts for a wide range of substrates, including protein toxins and antibacterial drugs, that are engaged by specific recognition proteins in the cytosolic membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号