首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
K Watanabe  H Iha  A Ohashi    Y Suzuki 《Journal of bacteriology》1989,171(2):1219-1222
The gene for an extremely thermostable oligo-1,6-glucosidase (dextrin-6-alpha-D-glucanohydrolase; EC 3.2.1.10) of obligately thermophilic Bacillus thermoglucosidasius KP1006 was cloned within a 4.2-kilobase HindIII-PvuII fragment of DNA by using the plasmid pUC19 as a vector and Escherichia coli C600 as a host. The gene was transcribed, presumably from its own promoter, in E. coli. E. coli with the hybrid plasmid accumulated oligo-1,6-glucosidase mainly in the cytoplasm. The level of enzyme production was comparable to that observed for B. thermoglucosidasius. The enzyme coincided absolutely with the B. thermoglucosidasius enzyme in its molecular weight (60,000), in its electrophoretic behavior on denaturing and nondenaturing polyacrylamide gels, in the temperature dependency of its stability and activity, and in its antigenic determinants.  相似文献   

2.
Three active site residues (Asp199, Glu255, Asp329) and two substrate-binding site residues (His103, His328) of oligo-1,6-glucosidase (EC 3.2.1.10) from Bacillus cereus ATCC7064 were identified by site-directed mutagenesis. These residues were deduced from the X-ray crystallographic analysis and the comparison of the primary structure of the oligo-1,6-glucosidase with those of Saccharomyces carlsbergensis alpha-glucosidase, Aspergillus oryzae alpha-amylase and pig pancreatic alpha-amylase which act on alpha-1,4-glucosidic linkages. The distances between these putative residues of B. cereus oligo-1,6-glucosidase calculated from the X-ray analysis data closely resemble those of A. oryzae alpha-amylase and pig pancreatic alpha-amylase. A single mutation of Asp199-->Asn, Glu255-->Gln, or Asp329-->Asn resulted in drastic reduction in activity, confirming that three residues are crucial for the reaction process of alpha-1,6-glucosidic bond cleavage. Thus, it is identified that the basic mechanism of oligo-1,6-glucosidase for the hydrolysis of alpha-1,6-glucosidic linkage is essentially the same as those of other amylolytic enzymes belonging to Family 13 (alpha-amylase family). On the other hand, mutations of histidine residues His103 and His328 resulted in pronounced dissimilarity in catalytic function. The mutation His328-->Asn caused the essential loss in activity, while the mutation His103-->Asn yielded a mutant enzyme that retained 59% of the k0/Km of that for the wild-type enzyme. Since mutants of other alpha-amylases acting on alpha-1,4-glucosidic bond linkage lost most of their activity by the site-directed mutagenesis at their equivalent residues to His103 and His328, the retaining of activity by His103-->Asn mutation in B. cereus oligo-1,6-glucosidase revealed the distinguished role of His103 for the hydrolysis of alpha-1,6-glucosidic bond linkage.  相似文献   

3.
To identify the critical sites for protein thermostabilization by proline substitution, the gene for oligo-1,6- glucosidase from a thermophilic Bacillus coagulans strain, ATCC 7050, was cloned as a 2.4-kb DNA fragment and sequenced. In spite of a big difference in their thermostabilities, B. coagulans oligo-1,6-glucosidase had a large number of points in its primary structure identical to respective points in the same enzymes from a mesophilic Bacillus cereus strain, ATCC 7064 (57%), and an obligately thermophilic Bacillus thermoglucosidasius strain, KP1006 (59%). The number of prolines (19 for B. cereus oligo-1,6-glucosidase, 24 for B. coagulans enzyme, and 32 for B. thermoglucosidasius enzyme) was observed to increase with the rise in thermostabilities of the oligo-1,6-glucosidases. Classification of proline residues in light of the amino acid sequence alignment and the protein structure revealed by X-ray crystallographic analysis also supported this tendency. Judging from proline residues occurring in B. coagulans oligo-1,6-glucosidase and the structural requirement for proline substitution (second site of the beta turn and first turn of the alpha helix) (K. Watanabe, T. Masuda, H. Ohashi, H. Mihara, and Y. Suzuki, Eur. J. Biochem. 226:277-283, 1994), the critical sites for thermostabilization were found to be Lys-121, Glu-290, Lys-457, and Glu-487 in B. cereus oligo-1,6-glucosidase. With regard to protein evolution, the oligo-1,6-glucosidases very likely follow the neutral theory. The adaptive mutations of the oligo-1,6-glucosidases that appear to increase thermostability are consistent with the substitution of proline residues for neutrally occurring residues. It is concluded that proline substitution is an important factor for the selection of thermostability in oligo-1,6-glucosidases.  相似文献   

4.
Summary A p-nitrophenyl-α-d-glucopyranoside-hydrolysing oligo-1,6-glucosidase (dextrin 6-α-d-glucanohydrolase, EC 3.2.1.10) of Bacillus sp. KP 1071 capable of growing at 30°–66°C was purified to homogeneity. The molecular weight was estimated to be 62,000. The amino-terminal amino acid was methionine. The enzyme shared its antigenic groups in part with its homologous counterpart from Bacillus thermoglucosidasius KP 1006 (obligate thermophile), but did not at all with any one of oligo-1,6-glucosidases from Bacillus cereus ATCC 7064 (mesophile), Bacillus coagulans ATCC 7050 (facultative thermophile) and Bacillus flavocaldarius KP 1288 (extreme thermophile). A comparison of amino acid composition showed that the proline content increased greatly in a linearity with the rise in thermostability in the order, mesophile → facultative thermophile → KP 1071 → obligate thermophile → extreme thermophile enzymes. Presented at the Annual Meeting of the Agricultural Chemical Society of Japan, Kyoto, April 3, 1986  相似文献   

5.
A chimeric 3-isopropylmalate dehydrogenase, named 2T2M6T, made of parts from an extreme thermophile, Thermus thermophilus, and a mesophile, Bacillus subtilis, was found to be considerably more labile than the T. thermophilus wild-type isopropylmalate dehydrogenase. In order to identify the molecular basis of the thermal stability of the T. thermophilus isopropylmalate dehydrogenase, 11 amino acid residues in the mesophilic portion of the chimera were substituted by the corresponding residues of the T. thermophilus enzyme, and the effects of the side chain substitutions were analyzed by comparing the reaction rate of irreversible heat denaturation and catalytic parameters of the mutant chimeras with those of the original chimera, 2T2M6T. Four single-site mutants were successfully stabilized without any loss of the catalytic function. All these four sites are located in loop regions of the enzyme. Our results strongly suggest the importance of these loop structures to the extreme stability of the T. thermophilus isopropylmalate dehydrogenase.  相似文献   

6.
Recently the crystal structure of the DNA-unbound form of the full-length hexameric Bacillus stearothermophilus arginine repressor (ArgR) has been resolved, providing a possible explanation for the mechanism of arginine-mediated repressor-operator DNA recognition. In this study we tested some of these functional predictions by performing site-directed mutagenesis of distinct amino acid residues located in two regions, the N-terminal DNA-binding domain and the C-terminal oligomerization domain of ArgR. A total of 15 mutants were probed for their capacity to repress the expression of the reporter argC - lacZ gene fusion in Escherichia coli cells. Substitutions of highly conserved amino acid residues in the alpha2 and alpha3 helices, located in the winged helix-turn-helix DNA-binding motif, reduced repression. Loss of DNA-binding capacity was confirmed in vitro for the Ser42Pro mutant which showed the most pronounced effect in vivo. In E. coli, the wild-type B. stearothermophilus ArgR molecule behaves as a super-repressor, since recombinant E. coli host cells bearing B. stearothermophilusargR on a multicopy vector did not grow in selective minimal medium devoid of arginine and grew, albeit weakly, when l -arginine was supplied. All mutants affected in the DNA-binding domain lost this super-repressor behaviour. Replacements of conserved leucine residues at positions 87 and/or 94 in the C-terminal domain by other hydrophobic amino acid residues proved neutral or caused either derepression or stronger super-repression. Substitution of Leu87 by phenylalanine was found to increase the DNA-binding affinity and the protein solubility in the context of a double Leu87Phe/Leu94Val mutant. Structural modifications occasioned by the various amino acid substitutions were confirmed by circular dichroism analysis and structure modelling.  相似文献   

7.
Sequence analysis of left and right border integration sites of independent, single-copy T-DNA inserts in Arabidopsis thaliana revealed three previously unrecognized concomitants of T-DNA integration. First, genomic pre-insertion sites shared sequence similarity not only with the T-DNA left and right border regions, as was previously reported, but also at high frequency with the inverted complement of the T-DNA right border region. Second, palindromic sequences were frequently found to overlap or lie adjacent to genomic target sites, suggesting a high recombinogenic potential for palindromic elements during T-DNA integration and a possible role during the primary contact between the T-DNA and the target DNA. Third, “filler” DNA sequences between genomic pre-insertion site DNA and T-DNA often derive from sequences in the T-DNA left and right border regions that are clustered around palindromic sequences in these T-DNA regions, suggesting that these palindromic elements are “hot spots” for filler DNA formation. The discovery of inverted sequence similarities at the right border suggests a previously unrecognized mode of T-DNA integration that involves heteroduplex formation at both T-DNA borders and with opposite strands of the target DNA. Scanning for sequence similarities in both direct and inverted orientation may increase the probability and/or effectiveness of anchoring the T-DNA to the target DNA. Variations on this scheme may also account for inversion events at the target site of T-DNA integration and inverted T-DNA repeat formation, common sequence organization patterns associated with T-DNA integration. Electronic Supplementary Material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

8.
AIMS: Isolation and screening of extreme halophilic archaeon producing extracellular haloalkaliphilic protease and optimization of culture conditions for its maximum production. METHODS AND RESULTS: Halogeometricum sp. TSS101 was isolated from salt samples and screened for the secretion of protease on gelatin and casein plates containing 20% NaCl. The archaeon was grown aerobically in a 250 ml flask containing 50 ml of (w/v) NaCl 20%; MgCl(2) 1%; KCl 0.5%; trisodium citrate 0.3%; and peptone 1%; pH 7.2 at 40 degrees C on rotary shaker. The production of enzyme was investigated at various pH, temperatures, NaCl concentrations, metal ions and different carbon and nitrogen sources. The partially purified protease had activity in a broad pH range (7.0-10.0) with optimum activity at pH 10.0 and a temperature (60 degrees C). The enzyme was thermostable and retained 70% initial activity at 80 degrees C. Maximum protease production occurred at 40 degrees C in a medium containing 20% NaCl (w/v) and 1% skim milk powder after 84 h in shaking culture. Enzyme secretion was observed at a broad pH range of 7.0-10.0. Addition of CaCl(2) (200 mmol) to the culture medium enhanced the production of protease. Protein rich flours proved to be cheap and good alternative source for enzyme production. Different osmolytes were tested for the growth and production of haloalkaliphilc protease and found that betaine and glycerol enhanced growth without secretion of the protease. Immobilization studies showed that whole cells immobilized in 2% alginate beads were stable up to 10 batches and able to secrete the protease, which attained maximum production within 60 h under shaking conditions. CONCLUSIONS: Halogeometricum sp. TSS101 secreted an extracellular haloalkaliphilic and thermostable protease. The optimum conditions required for maximum production are 20% NaCl, 1% skim milk powder and temperature at 40 degrees C. Addition of CaCl(2) (200 mmol) enhanced the enzyme production. Immobilization of whole cells in absence of NaCl proved to be useful for continuous production of haloalkaliphilic protease. SIGNIFICANCE AND IMPACT OF THE STudy: The low cost protein rich flours were used as an alternative carbon and nitrogen sources for enzyme production. Immobilization of halophilic cells in alginate beads can be used in continuous production of halophilic enzyme. The halophilic and thermostable protease from Halogeometricum sp. TSS101 is good source for industrial applications and can be a suitable source for preparation of fish sauce.  相似文献   

9.
Wild-type plastocyanin from the cyanobacterium Synechocystis sp. PCC 6803 does not form any kinetically detectable transient complex with Photosystem I (PS I) during electron transfer, but the D44R/D47R double mutant of copper protein does [De la Cerda et al. (1997) Biochemistry 36: 10125–10130]. To identify the PS I component that is involved in the complex formation with the D44R/D47R plastocyanin, the kinetic efficiency of several PS I mutants, including a PsaF–PsaJ-less PS I and deletion mutants in the lumenal H and J loops of PsaB, were analyzed by laser flash absorption spectroscopy. The experimental data herein suggest that some of the negative charges at the H loop of PsaB are involved in electrostatic repulsions with mutant plastocyanin. Mutations in the J loop demonstrate that this region of PsaB is also critical. The interaction site of PS I is thus not as defined as first expected but much broader, thereby revealing how complex the evolution of intermolecular electron transfer mechanisms in photosynthesis has been. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Metachromatic leukodystrophy is a lysosomal storage disorder caused by the deficiency of arylsulfatase A. The disease occurs panethnically, with an estimated frequency of 1/40,000. Metachromatic leukodystrophy was found to be more frequent among Arabs living in two restricted areas in Israel. Ten families with affected children have been found, three in the Jerusalem region and seven in a small area in lower Galilee. Whereas all patients from the Jerusalem region are homozygous for a frequent mutant arylsulfatase A allele, five different mutations were found in the families from lower Galilee. In patients of Muslim Arab origin, we have found a G86-->D, a S96-->L, and a Q190-->H substitution. Two different defective arylsulfatase A alleles, characterized by a T274-->M and a R370-->W substitution, respectively, have been found among the Christian Arab patients. All mutations were introduced into the wild-type arylsulfatase A cDNA. No enzyme activity could be expressed from the mutagenized cDNAs after transfection into heterologous cells. In all instances, the patients were found to be homozygous for the mutations, and four of the five mutations occurred on different haplotypes. The clustering of this rare lysosomal storage disease in a small geographic area usually suggests a founder effect, so the finding of five different mutations is surprising.  相似文献   

11.
The amino-acid sequences of the lactate dehydrogenases (LDH) from B. stearothermophilus and B. caldolyticus differ at only 10 positions. The properties of these enzymes however show substantial differences. The LDH from B. stearothermophilus is activated by Fru-P2 and has a higher thermostability (10 degrees C) than the enzyme from B. caldolyticus which cannot be activated by Fru-P2. To correlate these functional differences to the structural properties, we have constructed a set of hybrid- and point-mutants of the two LDHs. The amino acids at positions 207, 209B, and 209C could be identified to confer the property of activation by Fru-P2 to the enzymes. This part of the enzyme is to a large extent also responsible for the different thermostabilities of these two proteins.  相似文献   

12.
Class II fructose 1,6-bisphosphate aldolases (FBP-aldolases) catalyse the zinc-dependent, reversible aldol condensation of dihydroxyacetone phosphate (DHAP) and glyceraldehyde 3-phosphate (G3P) to form fructose 1,6-bisphosphate (FBP). Analysis of the structure of the enzyme from Escherichia coli in complex with a transition state analogue (phosphoglycolohydroxamate, PGH) suggested that substrate binding caused a conformational change in the beta5-alpha7 loop of the enzyme and that this caused the relocation of two glutamate residues (Glu181 and Glu182) into the proximity of the active site. Site-directed mutagenesis of these two glutamate residues (E181A and E182A) along with another active site glutamate (Glu174) was carried out and the mutant enzymes characterised using steady-state kinetics. Mutation of Glu174 (E174A) resulted in an enzyme which was severely crippled in catalysis, in agreement with its position as a zinc ligand in the enzyme's structure. The E181A mutant showed the same properties as the wild-type enzyme indicating that the residue played no major role in substrate binding or enzyme catalysis. In contrast, mutation of Glu182 (E182A) demonstrated that Glu182 is important in the catalytic cycle of the enzyme. Furthermore, the measurement of deuterium kinetic isotope effects using [1(S)-(2)H]DHAP showed that, for the wild-type enzyme, proton abstraction was not the rate determining step, whereas in the case of the E182A mutant this step had become rate limiting, providing evidence for the role of Glu182 in abstraction of the C1 proton from DHAP in the condensation direction of the reaction. Glu182 lies in a loop of polypeptide which contains four glycine residues (Gly176, Gly179, Gly180 and Gly184) and a quadruple mutant (where each glycine was converted to alanine) showed that flexibility of this loop was important for the correct functioning of the enzyme, probably to change the microenvironment of Glu182 in order to perturb its pK(a) to a value suitable for its role in proton abstraction. These results highlight the need for further studies of the dynamics of the enzyme in order to fully understand the complexities of loop closure and catalysis in this enzyme.  相似文献   

13.
To produce xylobiose from xylan, high-level expression of an endoxylanase gene from Bacillus sp. was carried out in Bacillus subtilis DB104. A 1.62-kb SmaI DNA fragment, coding for an endoxylanase of Bacillus sp., was ligated into the Escherichia coli/B. subtilis shuttle vector pJH27Δ88, producing pJHKJ4, which was subsequently transformed into B. subtilis DB104. A maximum endoxylanase activity of 105 U/ml was obtained from the supernatant of B. subtilis DB104 harboring pJHKJ4. The endoxylanase was purified to homogeneity by ion-exchange chromatography and the production profile of xylooligosaccharides from xylan by the endoxylanase was examined by HPLC with a carbohydrate analysis column. Xylobiose was the major product from xylan at 40 °C and its proportion in the xylan hydrolyzates increased with the reaction time; at 12 h, over 60% of the reaction products was xylobiose. These results suggest that xylobiose, which has a stimulatory effect on the selective growth of the intestinal bacterium Bifidobacterium, can be mass-produced effectively by the endoxylanase of Bacillus sp. cloned in B. subtilis. Received: 2 January 1998 / Received revision: 4 March 1998 / Accepted: 4 March 1998  相似文献   

14.
The gene for an alkaline endoglucanase from the alkalophilic Bacillus sp. KSM-64 was cloned into the HindIII site of pBR322 and expressed in Escherichia coli HB101. The nucleotide sequence of a 4.1-kb region of the HindIII insert had two open reading frames, ORF-1 and ORF-2. The protein deduced from ORF-1 was composed of 244 amino acids with an M(r) of 27,865. Subcloning analysis proved that the alkaline endoglucanase was encoded by ORF-2 (822 amino acids with an M(r) of 91,040). Upstream from ORF-2, there were three consensus like sequences of the sigma A-type promoter of Bacillus subtilis, a putative Shine-Dalgarno sequence (AGGAGGT), and a catabolite repression operator-like sequence (TGTAAGCGGTTAACC). The HindIII insert was subcloned into a shuttle vector, pHY300PLK, and the encoded alkaline endoglucanase gene was highly expressed both in E. coli and B. subtilis. One of the three promoter-like sequences in ORF-2 could be suitable for high levels of enzyme expression in both host organisms.  相似文献   

15.
Cholera toxin (CT) produced by Vibrio cholerae and heat-labile enterotoxin (LT-I), produced by enterotoxigenic Escherichia coli, are AB5 heterohexamers with an ADP-ribosylating A subunit and a GM1 receptor binding B pentamer. These toxins are among the most potent mucosal adjuvants known and, hence, are of interest both for the development of anti-diarrheal vaccines against cholera or enterotoxigenic Escherichia coli diarrhea and also for vaccines in general. However, the A subunits of CT and LT-I are known to be relatively temperature sensitive. To improve the thermostability of LT-I an additional disulfide bond was introduced in the A1 subunit by means of the double mutation N40C and G166C. The crystal structure of this double mutant of LT-I has been determined to 2.0 A resolution. The protein structure of the N40C/G166C double mutant is very similar to the native structure except for a few local shifts near the new disulfide bond. The introduction of this additional disulfide bond increases the thermal stability of the A subunit of LT-I by 6 degrees C. The enhancement in thermostability could make this disulfide bond variant of LT-I of considerable interest for the design of enterotoxin-based vaccines.  相似文献   

16.
Heat-stable and fructose-1,6-bisphosphate-activated L-lactate dehydrogenase (EC 1.1.1.27) has been purified from an extremely thermophilic bacterium, Thermus caldophilus GK24 [Taguchi, H., Yamashita, M., Matsuzawa, H. and Ohta, T. (1982) J. Biochem. (Tokyo) 91, 1343-1348]. N-terminal sequence analysis of the first 34 amino acids of the enzyme indicates that the N-terminal arm region (first 1-20 residues) known for the vertebrate L-lactate dehydrogenases is completely missing in the T. caldophilus enzyme, while there is a high homology of sequence between the regions which are considered to be part of the NAD-binding domain. The C-terminal amino acid of the enzyme was phenylalanine. Analysis of the amino acid composition showed that T. caldophilus enzyme contained much more arginine and fewer lysine than other bacterial and vertebrate L-lactate dehydrogenases. On modification reaction with 2,3-butanedione in the presence of NADH and oxamate, an enhanced activity of the T. caldophilus L-lactate dehydrogenase was obtained independently of fructose 1,6-bisphosphate, and the modified enzyme was desensitized to fructose 1,6-bisphosphate. Amino acid analysis indicated that such a desensitization in the active state was caused by the modification of only one arginine residue per the enzyme subunit. Desensitization of the enzyme was inhibited in the presence of fructose 1,6-bisphosphate. A similar desensitization was observed using 1,2-cyclohexanedione instead of 2,3-butanedione. The enzyme was irreversibly modified with 2,3-butanedione and characterized. The irreversibly modified enzyme also showed an enhanced activity independently of fructose 1,6-bisphosphate, and its pyruvate saturation curve was similar to that of the native enzyme measured in the presence of fructose 1,6-bisphosphate. Fructose 1,6-bisphosphate, which increases the thermostability of the native enzyme, did not affect that of the modified enzyme, while thermostability of the modified enzyme slightly decreased. Amino acid analysis indicated that only the arginine content was decreased by the modification. These results show that arginine residue(s) exist in the binding site for fructose 1,6-bisphosphate on the enzyme, and that the arginine residue(s) play some important role in the allosteric regulation of the enzyme activity.  相似文献   

17.
The structure of the thermostable triosephosphate isomerase (TIM) from Bacillus stearothermophilus complexed with the competitive inhibitor 2-phosphoglycolate was determined by X-ray crystallography to a resolution of 2.8 A. The structure was solved by molecular replacement using XPLOR. Twofold averaging and solvent flattening was applied to improve the quality of the map. Active sites in both the subunits are occupied by the inhibitor and the flexible loop adopts the "closed" conformation in either subunit. The crystallographic R-factor is 17.6% with good geometry. The two subunits have an RMS deviation of 0.29 A for 248 C alpha atoms and have average temperature factors of 18.9 and 15.9 A2, respectively. In both subunits, the active site Lys 10 adopts an unusual phi, psi combination. A comparison between the six known thermophilic and mesophilic TIM structures was conducted in order to understand the higher stability of B. stearothermophilus TIM. Although the ratio Arg/(Arg+Lys) is higher in B. stearothermophilus TIM, the structure comparisons do not directly correlate this higher ratio to the better stability of the B. stearothermophilus enzyme. A higher number of prolines contributes to the higher stability of B. stearothermophilus TIM. Analysis of the known TIM sequences points out that the replacement of a structurally crucial asparagine by a histidine at the interface of monomers, thus avoiding the risk of deamidation and thereby introducing a negative charge at the interface, may be one of the factors for adaptability at higher temperatures in the TIM family. Analysis of buried cavities and the areas lining these cavities also contributes to the greater thermal stability of the B. stearothermophilus enzyme. However, the most outstanding result of the structure comparisons appears to point to the hydrophobic stabilization of dimer formation by burying the largest amount of hydrophobic surface area in B. stearothermophilus TIM compared to all five other known TIM structures.  相似文献   

18.
The active site cleft of the HIV-1 protease (PR) is bound by two identical conformationally mobile loops known as flaps, which are important for substrate binding and catalysis. The present article reports, for the first time, an HIV-1 PR inhibitor, ATBI, from an extremophilic Bacillus sp. The inhibitor is found to be a hydrophilic peptide with Mr of 1147, and an amino acid sequence of Ala-Gly-Lys-Lys-Asp-Asp-Asp-Asp-Pro-Pro-Glu. Sequence homology exhibited no similarity with the reported peptidic inhibitors of HIV-1 PR. Investigation of the kinetics of the enzyme-inhibitor interactions revealed that ATBI is a noncompetitive and tight binding inhibitor with the IC(50) and K(i) values 18.0 and 17.8 nm, respectively. The binding of the inhibitor with the enzyme and the subsequent induction of the localized conformational changes in the flap region of the HIV-1 PR were monitored by exploiting the intrinsic fluorescence of the surface exposed Trp-42 residues, which are present at the proximity of the flaps. We have demonstrated by fluorescence and circular dichroism studies that ATBI binds in the active site of the HIV-1 PR and thereby leads to the inactivation of the enzyme. Based on our results, we propose that the inactivation is due to the reorganization of the flaps impairing its flexibility leading toward inaccessibility of the substrate to the active site of the enzyme.  相似文献   

19.
Metal phytoextraction assisted by bacteria plays an important role in bioremediation systems. In this work, mercury-resistant bacterial strains were isolated from soils with high levels of mercury (San Joaquin, Queretaro State, Mexico) and identified as Bacillus sp. based on the 16S rDNA gene sequence analysis. The bacterial strains were found to exhibit different multiple mercury-resistance and carbon source utilization characteristics. The mercury reduction ability was tested through a volatilization assay. The bacterial isolates were also evaluated for their ability to promote growth and mercury uptake in tomato plants. In a roll towel assay, the maximum vigor index of tomato plants was obtained with the inoculation of Bacillus sp. A2, A12, B11, B15 and C1, while in a pot assay, the maximum vigor index was obtained with the inoculation of Bacillus sp. A6, A7 and B20, compared with un-inoculated controls in the presence of HgCl2. Maximum Hg accumulation in the roots and shoots of tomato plants was obtained only with Bacillus sp. A7 in the roll towel assay, whereas in the pot assay, maximum accumulation was obtained with Bacillus sp. A12 compared with un-inoculated controls. Our results show that mercury accumulation in tissue is enhanced by these plant growth promoting bacterial strains, which recommends their possible use as microbe-assisted phytoremediation systems in mercury-polluted soils.  相似文献   

20.
A novel alkaline mannanase Man26A has been found in the culture of an alkaliphilic Bacillus sp. strain JAMB-750 and the optimal pH for the mannanase activity of the enzyme was around pH 10 (J Biol Macromol 4: 67–74, 2004). This optimal pH is the highest among those of the mannanases reported to date. The gene man26A coding the enzyme was cloned from the genomic DNA of strain JAMB-750 and sequenced. It encodes a protein of 997 amino acids including a signal peptide. The N-terminal half (Glu27–Val486) of the enzyme exhibited moderate similarities to other mannanases belonging to glycoside hydrolase family 26, such as the enzymes from Cellvibrio japonicus (37% identity), Cellulomonas fimi (33% identity), and Bacillus sp. strain AM-001 (28% identity). The C-terminal half was found to contain four domains. The first, second, third, and fourth domains exhibited similarities to the carbohydrate-binding module, the mannan-binding module, the Homo sapiens collagen type IX alpha I chain, and the membrane anchor region of Gram-positive surface proteins, respectively. Its recombinant mannanase was produced extracellularly using Bacillus subtilis as the host. The optimal pH for the mannanase activity of the recombinant enzyme was around pH 10. The enzyme was very resistant to surfactants, for example, SDS up to 2.0% (w/v).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号