首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dietary lipid supplements high in either saturated fat derived from sheep kidney fat or unsaturated fat derived from sunflower seed oil, and a low mixed fat reference diet were fed to marmoset monkeys for 20 months and the effects on cardiac membrane lipid composition, and myocardial catecholamine-stimulated adenylate cyclase and beta-adrenergic receptor binding activity were investigated. For cardiac membranes enriched for beta-adrenergic binding activity, the dietary lipid treatment resulted in small changes in the proportion of saturated to unsaturated fatty acids and substantial changes in the (n - 6) to (n - 3) series of unsaturated fatty acids in the membrane phospholipids. The sheep kidney fat diet increased the cholesterol-to-phospholipid ratio in cardiac membranes in comparison to the other diets. This diet also significantly elevated basal and isoproterenol-, epinephrine- and norepinephrine-stimulated adenylate cyclase activity. The value of the dissociation constant (Kd) and the receptor number (Bmax) for the binding of [125I]ICYP to the beta-adrenergic receptor was significantly reduced in marmosets fed the sheep kidney fat diet. These results suggest that dietary lipids can influence the activity of the beta-adrenergic/adenylate cyclase system of the heart. Modulation of this transmembrane signalling system may be induced by changes in the properties of the associated membrane lipids, particularly by alteration in the membrane cholesterol-to-phospholipid ratio. This effect may be limited to those animal species in which the nature of the dietary fatty acid intake may be influencing cardiac membrane cholesterol homeostasis, which is in agreement with previous results in rats following dietary cholesterol supplementation (McMurchie et al. (1987) Biochim. Biophys. Acta 898, 137-153). ICYP, (-)-iodocyanopindolol.  相似文献   

2.
Diets supplemented with high levels of saturated or unsaturated fatty acids supplied by addition of sheep kidney fat or sunflower seed oil, respectively, were fed to rats with or without dietary cholesterol. The effects of these diets on cardiac membrane lipid composition, catecholamine-stimulated adenylate cyclase and beta-adrenergic receptor activity associated with cardiac membranes, were determined. The fatty acid-supplemented diets, either with or without cholesterol, resulted in alterations in the proportion of the (n-6) to (n-3) series of unsaturated fatty acids, with the sunflower seed oil increasing and the sheep kidney fat decreasing this ratio, but did not by themselves significantly alter the ratio of saturated to unsaturated fatty acids. However, cholesterol supplementation resulted in a decrease in the proportion of saturated and polyunsaturated fatty acids and a dramatic increase in oleic acid in cardiac membrane phospholipids irrespective of the nature of the dietary fatty acid supplement. The cholesterol/phospholipid ratio of cardiac membrane lipids was also markedly increased with dietary cholesterol supplementation. Although relatively unaffected by the nature of the dietary fatty acid supplement, catecholamine-stimulated adenylate cyclase activity was significantly increased with dietary cholesterol supplementation and was positively correlated with the value of the membrane cholesterol/phospholipid ratio. Although the dissociation constant for the beta-adrenergic receptor, determined by [125I](-)-iodocyanopindolol binding, was unaffected by the nature of the dietary lipid supplement, the number of beta-adrenergic receptors was dramatically reduced by dietary cholesterol and negatively correlated with the value of the membrane cholesterol/phospholipid ratio. These results indicate that the activity of the membrane-associated beta-adrenergic/adenylate cyclase system of the heart can be influenced by dietary lipids particularly those altering the membrane cholesterol/phospholipid ratio and presumably membrane physico-chemical properties. In the face of these dietary-induced changes, a degree of homeostasis was apparent both with regard to membrane fatty acid composition in response to an altered membrane cholesterol/phospholipid ratio, and to down regulation of the beta-adrenergic receptor in response to enhanced catecholamine-stimulated adenylate cyclase activity.  相似文献   

3.
Variations in the fatty acid composition of lipids in the heart alter its function and susceptibility to ischaemic injury. We investigated the effect of sex and dietary fat intake on the fatty acid composition of phospholipids and triacylglycerol in rat heart. Rats were fed either 40 or 100 g/kg fat (9:1 lard:soybean oil) from weaning until day 105. There were significant interactive effects of sex and fat intake on the proportions of fatty acids in heart phospholipids, dependent on phospholipid classes. 20:4n-6, but not 22:6n-3, was higher in phospholipids in females than males fed a low, but not a high, fat diet. There was no effect of sex on the composition of triacylglycerol. These findings suggest that sex is an important factor in determining the incorporation of dietary fatty acids into cardiac lipids. This may have implications for sex differences in susceptibility to heart disease.  相似文献   

4.
The modulation of rat brain microsomal and synaptosomal membrane lipid by diet fat was examined. Brain synaptosomal and microsomal membrane composition was compared for rats fed on diets containing either soya-bean oil (SBO), SBO plus choline, SBO lecithin, sunflower oil (SFO), chow or low-erucic acid rape-seed oil (LER) for 24 days. Cholesterol and phosphatidylcholine levels in both membranes were altered by diet. Diet fat also affected the microsomal content of sphingomyelin. Change in membrane phosphatidylcholine level was related to the relative balance of omega-6, omega-3 and monounsaturated fatty acids within the diets fed. The highest phosphatidylcholine levels appeared in membranes of animals fed on SBO lecithin and the lowest in those fed on LER. Microsomal membrane cholesterol and sphingomyelin content increased by feeding on SBO lecithin. In both synaptosomal and microsomal membranes a highly significant correlation was observed between membrane phosphatidylcholine and cholesterol content. The fatty acyl composition of phospholipids from both membranes also altered with diet and age. Alteration in fatty acid composition was observed in response to dietary levels of omega-6, omega-3 and monounsaturated fatty acids, but the unsaturation index of each phospholipid remained constant for all diet treatments. These changes in lipid composition suggest that dietary fat may be a significant modulator in vivo of the physicobiochemical properties of brain synaptosomal and microsomal membranes.  相似文献   

5.
Rats were fed diets containing a high level of saturated fatty acids (hydrogenated beef tallow) versus a high level of linoleic acid (safflower oil) at both low and high levels of fish oil containing 7.5% (w/w) eicosapentaenoic and 2.5% (w/w) docosahexaenoic acids for a period of 28 days. The effect of feeding these diets on the cholesterol content and fatty acid composition of serum and liver lipids was examined. Feeding diets high in fish oil with safflower oil decreased the cholesterol content of rat serum, whereas feeding fish oil had no significant effect on the cholesterol content of serum when fed in combination with saturated fatty acids. The serum cholesterol level was higher in animals fed safflower oil compared to animals fed saturated fat without fish oil. Consumption of fish oil lowered the cholesterol content of liver tissue regardless of the dietary fat fed. Feeding diets containing fish oil reduced the arachidonic acid content of rat serum and liver lipid fractions, the decrease being more pronounced when fish oil was fed in combination with hydrogenated beef tallow than with safflower oil. These results suggest that dietary n-3 fatty acids of fish oil interact with dietary linoleic acid and saturated fatty acids differently to modulate enzymes of cholesterol and fatty acid metabolism.  相似文献   

6.
High fat intake is associated with fat mass gain through fatty acid activation of peroxisome proliferator-activated receptors delta and gamma, which promote adipogenesis. We show herein that, compared to a combination of specific agonists to both receptors or to saturated, monounsaturated, and omega-3 polyunsaturated fatty acids, arachidonic acid (C20:4, omega-6) promoted substantially the differentiation of clonal preadipocytes. This effect was blocked by cyclooxygenase inhibitors and mimicked by carbacyclin, suggesting a role for the prostacyclin receptor and activation of the cyclic AMP-dependent pathways that regulate the expression of the CCAAT enhancer binding proteins beta and delta implicated in adipogenesis. During the pregnancy-lactation period, mother mice were fed either a high-fat diet rich in linoleic acid, a precursor of arachidonic acid (LO diet), or the same isocaloric diet enriched in linoleic acid and alpha-linolenic acid (LO/LL diet). Body weight from weaning onwards, fat mass, epididymal fat pad weight, and adipocyte size at 8 weeks of age were higher with LO diet than with LO/LL diet. In contrast, prostacyclin receptor-deficient mice fed either diet were similar in this respect, indicating that the prostacyclin signaling contributes to adipose tissue development. These results raise the issue of the high content of linoleic acid of i) ingested lipids during pregnancy and lactation, and ii) formula milk and infant foods in relation to the epidemic of childhood obesity.  相似文献   

7.
We previously reported differences in protein and carbohydrate selection patterns in post-weanling rats fed beef tallow or soybean oil-based diets. Two experiments were designed to determine the characteristic of the dietary fat which mediates the selection behavior. For each experiment, dietary fat was 20% (w/w) of diets and fatty acid profiles were obtained by blending fat sources. Rats were randomly assigned to diets (24% protein, 40% carbohydrate) which varied only in fatty acid composition. After 2 weeks, rats selected from 2 diets with the fat composition previously fed, but varying in their protein and carbohydrate composition (55% protein, 4% carbohydrate and 5% protein, 61% carbohydrate). Experiment 1 was designed to test the effect of relative (omega 6: omega 3 ratios of 1 and 20) and absolute (15% or 4% omega 6, 0.7% or 0.2% omega 3) differences in essential fatty acids on macronutrient selection patterns. Differences in dietary essential fatty acids had no effect on energy intake or the proportion of energy consumed as protein and carbohydrate. Experiment 2 examined the effect of differences in the level of saturated fat (3-10% diet (w/w] on protein and carbohydrate selection. Animals selecting from diets with higher levels of saturated fat consumed more energy as protein and less as carbohydrate than rats selecting from diets with lower levels of saturated fat (p less than 0.0001). Regression analysis was used to examine the relationship between percent protein or carbohydrate energy and classes of dietary fat. The strongest relationship existed between percent dietary saturated fat and percent protein or carbohydrate energy (p less than 0.0001). Polyunsaturated:saturated fat ratio was also weakly associated with percent protein and carbohydrate energy (p less than 0.05). Polyunsaturated, monounsaturated, omega 6 and omega 3 fatty acids were not significantly related to percent protein or carbohydrate energy. These results indicated that protein and carbohydrate selection patterns are altered in response to qualitatively different dietary fatty acids, and that the amount of saturated fat in the diet is the important characteristic of dietary fat mediating the behavioral alteration.  相似文献   

8.
We investigated the effects of various dietary fibers or their likenesses on the apparent fat digestibility by rats fed on a high-fat diet. Each of 23 different fibers was added at 5% (w/w) to a purified diet containing 20% (w/w) corn oil. The rats were fed these diets for 2 weeks, and the feces were collected from each animal during the last 3 days. When compared with cellulose (control), 10 of the tested fibers significantly increased the fecal lipid excretion. Among these fibers, chitosan markedly increased the fecal lipid excretion and reduced the apparent fat digestibility to about a half relative to the control. The apparent protein digestibility was not greatly affected by chitosan. The fatty acid composition of the fecal lipids closely reflected that of the dietary fat. These results suggest that chitosan has potency for interfering with fat digestion and absorption in the intestinal tract, and for facilitating the excretion of dietary fat into the feces.  相似文献   

9.
Effects of dietary fats differing in fatty acid composition on insulin-stimulated glucose metabolism in adipocytes isolated from rat white adipose tissue were compared. Rats were fed experimental diets containing various fats differing in fatty acid composition for 7 days. In the first experiment, rats were fed palm oil mainly consisting of palmitic (45.3%) and oleic acids (39.1%) or safflower oil rich in linoleic acid (71.6%). In the second trial, rats were fed palm oil, or a fat mixture rich in linoleic acid or mold oil rich in gamma-linolenic acid. Contents of fatty acids except for linoleic and gamma-linolenic acid were comparable between the fat mixture and mold oil. The former was devoid of gamma-linolenic acid and contained 42.0% linoleic acid, while the latter contained 25.9% gamma-linolenic and 15.7% linoleic acids. In the first experiment, the insulin-dependent increase in glucose oxidation and incorporation into lipids was higher in rats fed safflower oil compared to those fed palm oil. In the second experiment, the insulin-dependent increase in glucose oxidation and incorporation into lipids was higher in rats fed the fat mixture and mold oil than in those fed palm oil. However, the extent of the increase in these parameters was much greater in rats fed mold oil than in those fed the fat mixture. Therefore, dietary gamma-linolenic acid compared to linoleic acid increases glucose metabolism in response to insulin stimuli in isolated rat adipocytes.  相似文献   

10.
A partially purified calmodulin (CaM)-sensitive adenylate cyclase from bovine cerebral cortex was reconstituted with a series of phosphatidylcholine liposomes having variable fatty acid composition. The enzyme was successfully associated with dimyristoyl, dipalmitoyl, distearoyl, and dioleoylphosphatidylcholine liposomes. The specific activity of the enzyme in the various liposomes varied over a 4.6-fold range indicating some degree of specificity for fatty acid composition. The adenylate cyclase-liposome preparation retained sensitivity to both CaM and 5'-guanylylimidodiphosphate (GppNHp). Arrhenius plots of enzyme activity in the four different liposome preparations all exhibited a pronounced discontinuity at 30 degrees C +/- 2, even though the bulk-phase thermal transition points for the liposomes varied from -20 to 54 degrees C. Fluorescence anisotropy studies of reconstituted liposome systems illustrated that incorporation of protein did not alter the normal-phase transition point of these lipids. Since Arrhenius plots of the enzyme in Lubrol PX, prior to reconstitution with lipids, were strictly linear, it is concluded that the breaks at 30 degrees C may be the effect of a local enzyme-phospholipid environment. It appears that this adenylate cyclase is not particularly sensitive to phase transitions of the bulk lipid phase. The phospholipid reconstituted enzyme system appears suitable for examination of the influence of lipids on the CaM-sensitive adenylate cyclase.  相似文献   

11.
Diets supplemented with relatively high levels of either saturated fatty acids derived from sheep kidney fat (sheep kidney fat diet) or unsaturated fatty acids derived from sunflower seed oil (sunflower seed oil diet) were fed to rats for a period of 16 weeks and changes in the thermotropic behaviour of liver and heart mitochondrial lipids were determined by differential scanning calorimetry (DSC). The diets induced similar changes in the fatty acid composition in both liver and heart mitochondrial lipids, the major change being the omega 6 to omega 3 unsaturated fatty acid ratio, which was elevated in mitochondria from animals on the sunflower seed oil diet and lowered with the mitochondria from the sheep kidney fat dietary animals. When examined by DSC, aqueous buffer dispersions of liver and heart mitochondrial lipids exhibited two independent, reversible phase transitions and in some instances a third highly unstable transition. The dietary lipid treatments had their major effect of the temperature at which the lower phase transition occurred, there being an inverse relationship between the transition temperature and the omega 6 to omega 3 unsaturated fatty acid ratio. No significant effect was observed for the temperature of the higher phase transition. These results indicate that certain domains of mitochondrial lipids, probably containing some relatively higher melting-point lipids, independently undergo formation of the solidus or gel phase and this phenomenon is not greatly influenced by the lipid composition of the mitochondrial membranes. Conversely, other domains, representing the bulk of the membrane lipids and which probably contain the relatively lower melting point lipids, undergo solidus phase formation at temperatures which reflect changes in the membrane lipid composition which are in turn, a reflection of the nature of the dietary lipid intake. These lipid phase transitions do not appear to correlate directly with those events considered responsible for the altered Arrhenius kinetics of various mitochondrial membrane-associated enzymes.  相似文献   

12.
Increasing evidence suggests that fetal and neonatal nutrition impacts later health. Aims of the present study were to determine the effect of maternal dietary fat composition on intestinal phospholipid fatty acids and responsiveness to experimental colitis in suckling rat pups. Female rats were fed isocaloric diets varying only in fat composition throughout gestation and lactation. The oils used were high (8%) in n-3 [canola oil (18:3n-3)], n-6 (72%) [safflower oil (18:2n-6)], or n-9 (78%) [high oleic acid safflower oil (18:1n-9)] fatty acids, n = 6/group. Colitis was induced on postnatal day 15 by intrarectal 2,4-dinitrobenzene sulfonic acid (DNBS) administration with vehicle (50% ethanol) and procedure (0.9% saline) controls. Jejunal and colonic phospholipids and milk fatty acids were determined. The distal colon was assessed for macroscopic damage, histology, and MPO activity. The 18:2n-6 maternal diet increased n-6 fatty acids, whereas the 18:3n-3 diet increased n-3 fatty acids in milk and pup jejunal and colonic phospholipids. Maternal diet, milk, and pup intestinal n-6-to-n-3 fatty acid ratios increased significantly in order: high 18:3n-3 < high 18:1n-9 < high 18:2n-6. DNBS administration in pups in the high 18:2n-6 group led to severe colitis with higher colonic damage scores and MPO activity than in the 18:1n-9 and 18:3n-3 groups. High maternal dietary 18:3n-3 intake was associated with colonic damage scores and MPO activity, which were not significantly different from ethanol controls. We demonstrate that maternal dietary fat influences the composition of intestinal lipids and responsiveness to experimental colitis in nursing offspring.  相似文献   

13.
Accurate assessment of fat intake is essential to examine the relationships between diet and disease risk but the process of estimating individual intakes of fat quality by dietary assessment is difficult. Tissue and blood fatty acids, because they are mainly derived from the diet, have been used as biomarkers of dietary intake for a number of years. We review evidence from a wide variety of cross-sectional and intervention studies and summarise typical values for fatty acid composition in adipose tissue and blood lipids and changes that can be expected in response to varying dietary intake. Studies in which dietary intake was strictly controlled confirm that fatty acid biomarkers can complement dietary assessment methodologies and have the potential to be used more quantitatively. Factors affecting adipose tissue and blood lipid composition are discussed, such as the physical properties of triacylglycerol, total dietary fat intake and endogenous fatty acid synthesis. The relationship between plasma lipoprotein concentrations and total plasma fatty acid composition, and the use of fatty acid ratios as indices of enzyme activity are also addressed.  相似文献   

14.
This study was conducted to determine whether dietary ganglioside (GG) increases the content of ether phospholipids (EPL) in intestinal mucosa. Weanling Sprague-Dawley rats were fed a semipurified diet consisting of 20% fat as a control diet. Two experimental diets were formulated by adding either 0.1% (w/w fat) GGs (GG diet) or 1.0% (w/w fat) sphingomyelin (SM diet) to the control diet. Fatty acid methyl esters from the alkenylacyl, alkylacyl and diacyl subclasses of phospholipids were measured to determine total and molecular percentage of EPL comprising the choline phosphoglyceride (CPG) and ethanolamine phosphoglyceride (EPG) fraction. Animals fed the GG diet significantly increased total EPL content both in CPG (by 36%) and in EPG (by 66%), and the molecular percentage of EPL in CPG (by 76%) and in EPG (by 59%) compared to animals fed the control diet. Dietary GG-induced increase in EPL resulted in a higher level of polyunsaturated fatty acids (PUFA) specifically in 20:4n-6 and 22:6n-3 compared to control animals, leading to a decrease in the ratio of saturated fatty acids (SFA) to PUFA both in CPG and in EPG. Feeding animals the SM diet showed a higher level of EPL than control animals with a concomitant increase in 22:6n-3 in EPL. The present data demonstrate that dietary GG increases the content and composition of EPL containing PUFA in the weanling rat intestine.  相似文献   

15.
The 3-thia fatty acid tetradecylthioacetic acid (TTA) is a synthetic modified fatty acid, which, similar with dietary fish oil (FO), influences the regulation of lipid metabolism, the inflammatory response and redox status. This study was aimed to penetrate the difference in TTA's mode of action compared to FO in a long-term experiment (50 weeks of feeding). Male Wistar rats were fed a control, high-fat (25% w/v) diet or a high-fat diet supplemented with either TTA (0.375% w/v) or FO (10% w/v) or their combination. Plasma fatty acid composition, hepatic lipids and expression of relevant genes in the liver and biomarkers of oxidative damage to protein were assessed at the end point of the experiment. Both supplements given in combination demonstrated an additive effect on the decrease in plasma cholesterol levels. The FO diet alone led to removal of plasma cholesterol and a concurrent cholesterol accumulation in liver; however, with TTA cotreatment, the hepatic cholesterol level was significantly reduced. Dietary FO supplementation led to an increased oxidative damage, as seen by biomarkers of protein oxidation and lipoxidation. Tetradecylthioacetic acid administration reduced the levels of these biomarkers confirming its protective role against lipoxidation and protein oxidative damage. Our findings explore the lipid reducing effects of TTA and FO and demonstrate that these bioactive dietary compounds might act in a different manner. The experiment confirms the antioxidant capacity of TTA, showing an improvement in FO-induced oxidative stress.  相似文献   

16.
Evolutionary aspects of omega-3 fatty acids in the food supply   总被引:4,自引:0,他引:4  
Information from archaeological findings and studies from modern day hunter-gatherers suggest that the Paleolithic diet is the diet we evolved on and for which our genetic profile was programmed. The Paleolithic diet is characterized by lower fat and lower saturated fat intake than Western diets; a balanced intake of omega-6 and omega-3 essential fatty acids; small amounts of trans fatty acids, contributing less than 2% of dietary energy; more green leafy vegetables and fruits providing higher levels of vitamin E and vitamin C and other antioxidants than today's diet and higher amounts of calcium and potassium but lower sodium intake. Studies on the traditional Greek diet (diet of Crete) indicate an omega-6/omega-3 ratio of about 1/1. The importance of a balanced ratio of omega-6:omega-3, a lower saturated fatty acid and lower total fat intake (30-33%), along with higher intakes of fruits and vegetables leading to increases in vitamin E and C, was tested in the Lyon Heart study. The Lyon study, based on a modified diet of Crete, confirmed the importance of omega-3 fatty acids from marine and terrestrial sources, and vitamin E and vitamin C, in the secondary prevention of coronary heart disease, and cancer mortality.  相似文献   

17.
Peroxisome proliferator-activated receptors (PPARs) are important in the regulation of lipid and glucose metabolism. Recent studies have shown that PPARα-activation by WY 14,643 regulates the metabolism of amino acids. We investigated the effect of PPAR activation on plasma amino acid levels using two PPARα activators with different ligand binding properties, tetradecylthioacetic acid (TTA) and fish oil, where the pan-PPAR agonist TTA is a more potent ligand than omega-3 polyunsaturated fatty acids. In addition, plasma L-carnitine esters were investigated to reflect cellular fatty acid catabolism. Male Wistar rats (Rattus norvegicus) were fed a high-fat (25% w/w) diet including TTA (0.375%, w/w), fish oil (10%, w/w) or a combination of both. The rats were fed for 50 weeks, and although TTA and fish oil had hypotriglyceridemic effects in these animals, only TTA lowered the body weight gain compared to high fat control animals. Distinct dietary effects of fish oil and TTA were observed on plasma amino acid composition. Administration of TTA led to increased plasma levels of the majority of amino acids, except arginine and lysine, which were reduced. Fish oil however, increased plasma levels of only a few amino acids, and the combination showed an intermediate or TTA-dominated effect. On the other hand, TTA and fish oil additively reduced plasma levels of the L-carnitine precursor γ-butyrobetaine, as well as the carnitine esters acetylcarnitine, propionylcarnitine, valeryl/isovalerylcarnitine, and octanoylcarnitine. These data suggest that while both fish oil and TTA affect lipid metabolism, strong PPARα activation is required to obtain effects on amino acid plasma levels. TTA and fish oil may influence amino acid metabolism through different metabolic mechanisms.  相似文献   

18.
This study investigates the effects of monounsaturated and polyunsaturated fatty acids from different fat sources (High Oleic Canola, Canola, Canola–Flaxseed (3:1 blend), Safflower, or Soybean Oil, or a Lard-based diet) on adipose tissue function and markers of inflammation in Obese Prone rats fed high-fat (55% energy) diets for 12 weeks. Adipose tissue fatty acid composition reflected the dietary fatty acid profiles. Protein levels of fatty acid synthase, but not mRNA levels, were lower in adipose tissue of all groups compared to the Lard group. Adiponectin and fatty acid receptors GPR41 and GPR43 protein levels were also altered, but other metabolic and inflammatory mediators in adipose tissue and serum were unchanged among groups. Overall, rats fed vegetable oil- or lard-based high-fat diets appear to be largely resistant to major phenotypic changes when the dietary fat composition is altered, providing little support for the importance of specific fatty acid profiles in the context of a high-fat diet.  相似文献   

19.
Rats were fed a low-fat diet containing 2% safflower oil or 20% fat diets containing either safflower oil rich in linoleic acid, borage oil containing 25% gamma (gamma)-linolenic acid or enzymatically prepared gamma-linolenic acid enriched borage oil containing 47% gamma-linolenic acid for 14 days. Energy intake and growth of animals were the same among groups. A high safflower oil diet compared with a low-fat diet caused significant increases in both epididymal and perirenal white adipose tissue weights. However, high-fat diets rich in gamma-linolenic acid failed to do so. Compared with a low-fat diet, all the high-fat diets increased mRNA levels of uncoupling protein 1 and lipoprotein lipase in brown adipose tissue. The extents of the increase were greater with high-fat diets rich in gamma-linolenic acid. Various high-fat diets, compared with a low-fat diet, decreased glucose transporter 4 mRNA in white adipose tissue to the same levels. The amount and types of dietary fat did not affect the leptin mRNA level in epididymal white adipose tissue. However, a high safflower oil diet, but not high-fat diets rich in gamma-linolenic acid relative to a low-fat diet, increased perirenal white adipose tissue leptin mRNA levels. All high-fat diets, relative to a low-fat diet, increased the hepatic mitochondrial fatty acid oxidation rate and fatty acid oxidation enzyme mRNA abundances to the same levels. High-fat diets also increased these parameters in the peroxisomal pathway, and the increases were greater with high-fat diets rich in gamma-linolenic acid. The physiological activity in increasing brown adipose tissue gene expression and peroxisomal fatty acid oxidation was similar between the two types of borage oil differing in gamma-linolenic acid content. It was suggested that dietary gamma-linolenic acid attenuates body fat accumulation through the increase in gene expressions of uncoupling protein 1 in brown adipose tissue. An increase in hepatic peroxisomal fatty acid oxidation may also contribute to the physiological activity of gamma-linolenic acid in decreasing body fat mass.  相似文献   

20.
Japanese quail were maintained on synthetic diets containing 15% corn oil, 15% tallow, and zero fat, and were later exposed at 3.5 degrees C for 21 days. A distinct influence of dietary fat composition upon the adipose tissue triglyceride fatty acid composition was detected, but no change in fatty acid composition was produced with cold exposure. The fatty acid composition of adipose tissue from quail acclimatized to winter temperatures showed no trend towards a greater degree of unsaturation. There was no evidence of a gross selective mobilization of certain fatty acids from the depot lipids. Regional variation in the fatty acid composition of avian fats is discussed with respect to the level of food intake and body temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号