首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aggregating cartilage proteoglycan core protein contains two globular domains near the N terminus (G1 and G2) and one near the C terminus (G3). The G1-G3 domains contain 10, 8, and 10 cysteine residues, respectively. The disulfide assignments of the G1 domain have previously been deduced (Neame, P. J., Christner, J. E., and Baker, J. R. (1987) J. Biol. Chem. 262, 17768-17778) as Cys1-Cys2, Cys3-Cys6, Cys4-Cys5, Cys7-Cys10, and Cys8-Cys9, in which the numbers cited after the half-cystine residues are their relative positions from the N terminus. Here we describe a method for the isolation of disulfide-bonded peptides from tryptic digests of bovine nasal cartilage monomer. Sequence analysis of these peptides has allowed us to confirm the pairings previously determined for the G1 domain and to assign a disulfide pattern for the G2 domain of Cys11-Cys14, Cys12-Cys13, Cys15-Cys18, and Cys16-Cys17, in which the Cys15-Cys18 pairing was deduced indirectly. Similarly, for the G3 domain, a pattern of Cys19-Cys20, Cys21-Cys24, Cys22-Cys23, Cys25-Cys27, and Cys26-Cys28 was assigned, in which the Cys22-Cys23 pair was deduced indirectly. The G2 domain therefore contains disulfide bonding which is characteristic of the tandem repeat structures found in the G1 domain and link protein, and the G3 domain contains the three disulfide linkages previously assigned to the family of C-type animal lectins. The method described here, which combines anion-exchange, cation-exchange, and reversed-phase chromatography, should have broad application to the isolation of disulfide-bonded peptides from other heavily glycosylated proteins and proteoglycans.  相似文献   

2.
3.
4.
A sensitive radioactive assay has been developed to facilitate study of the binding to and precipitation of soluble collagen by embryonic proteoglycans. Using this assay it has been found (a) that chick embryo cartilageproteoglycan is reactive with types I, II, and III soluble collagen; and (b) that both the core-protein and chondroitin sulfate chains of the proteoglycan are necessary for this interaction.  相似文献   

5.
A procedure is described for the isolation of enzymatically active nuclei from chick embryo liver. It consists of the homogenization of the pooled tissue in 0.32 M sucrose-3 mM MgCl2 followed by a slow centrifugation. The resulting nuclear pellet is then purified further in a discontinuous density gradient composed of sucrose solutions containing Mg2+ ions, the lower portion of the gradient being 2.2 M sucrose-1 mM MgCl2. Based on DNA recovery, the nuclear fraction isolated by the procedure described contained an average of 62% of the nuclei in the original filtered homogenate. Light and electron microscope examinations showed that 90% of the isolated nuclei were derived from hepatocytes. They appeared intact with well preserved nucleoplasmic and nucleolar components, nuclear envelope, and pores. The isolated nuclei were quite pure, having a very low level of cytoplasmic contamination as indicated by cytoplasmic enzyme marker activities and electron microscope studies. The nuclear fraction consisted of 19.9% DNA, 6.2% RNA, 74% protein, the average RNA/DNA ratio being 0.32. Biosynthetic activities of the two nuclear enzymes NAD-pyrophosphorylase and DNA-dependent RNA polymerase were preserved. The specific activities of these enzymes were: NAD-pyrophosphorylase, 0.049 µmoles nicotinamide adenine dinucleotide (NAD) synthesized/min per mg protein; Mg2+ activated RNA polymerase, 4.3 µµmoles UMP-2-C14 incorporated into RNA/µg DNA per 10 min; and Mn2+-(NH4)2SO4 activated RNA-polymerase, 136 µµmoles UMP-2-C14 incorporated into RNA/µg DNA per 45 min.  相似文献   

6.
7.
8.
A purification of up to 4000-fold is reported for lysyl hydroxylase (EC 1.14.11.4) from extract of chick-embryo homogenate and one of about 300-fold from extract of chick-embryo cartilage. Multiple forms of the enzyme were observed during purification from whole chick embryos. In gel filtration the elution positions of the two main forms corresponded to average molecular weights of about 580000 and 220000. These two forms could also be clearly separated in hydroxyapatite chromatography. In addition, some enzyme activity was always eluted between the two main peaks both in gel filtration and in hydroxyapatite chromatography. The presence of the two main forms was also observed when purifying enzyme from chick embryo cartilage. Both forms of the enzyme hydroxylated lysine in arginine-rich histone, which does not contain any -X-Lys-Gly- sequence. No difference was found between the enzyme from whole chick embryos and from chick embryo cartilage in this respect. Lysyl hydroxylase was found to have affinity for concanavalin A, indicating the presence of some carbohydrate residues in the enzyme molecule. Lysyl and prolyl hydroxylase activities increased when the chick embryo homogenate was assayed in the presence of lysolecithin. Preincubation of the homogenate either with lysolecithin or with Triton X-100 increased lysyl hydroxylase activity in homogenate, and in the 1500 x g and 150000 x g supernatants, suggesting that the increase in the enzyme activity was due to liberation of the enzyme from the membranes. Divalent cations were found to inhibit the activity of lysyl and prolyl hydroxylases in vitro. An inhibition of about 50% was achieved with 15 mM calcium 60 muM copper and 3 muM zinc concentrations. The mode of inhibition was tested with Cu2+, and was found to be competitive with Fe2+.  相似文献   

9.
Large aggregating chondroitin sulfate proteoglycan (CSPG/aggrecan) is one of the major extracellular matrix components in cartilage. The core protein is also large, over 200 kDa, and modular with a distinct correspondence between protein structural domains and the encoding exons. Here we report the isolation, using chick CSPG cDNA probes and the ensuing sequencing, of genomic clones containing exons encoding the chick CSPG core protein. The 5 two globular domains, G1 and G2, are encoded by four and three exons, respectively, and the interglobular domain is encoded by a single exon. The chondroitin sulfate attachment domain is encoded by the largest exon, 3,216 bp, which is approximately 50% of the total coding sequence. Combined with the previous report (Tanaka, T., Har-el, R. Tanzer, M.L. 1988 J. Biol. Chem. 263, 15831–15835), these data reveal that the chick CSPG gene contains at least 18 exons spanning a genome which is greater than 30 kb. No evidence was obtained for multiple genes for aggrecan in the chick genome. Elucidation of the chick genomic structure allows comparison of the avian and mammalian link protein genes to the homologous portions of avian and mammalian core protein genes (hyaluronate binding domain) with respect to their origins and paths of duplication and divergence. Correspondence to: N.B. Schwartz  相似文献   

10.
11.
A lectin is isolated from the microsomal fraction of chick embryo kidney after initial extraction with 1 M urea and 0.3 M lactose. To exhibit hemagglutination activity, the lectin in the microsomal fraction requires prior activation by solublization with deoxycholate or by treatment with trypsin, chymotrypsin or phospholipase c. The lectin is partially purified by hydrophobic interaction chromatography about 200 fold from the microsomal fraction. The lectin binds strongly to de-sialated embryonic carbohydrates and shows low affinity toward glucosamine, galactosamine and mannosamine, as judged by the inhibition of hemagglutination. Comparison of the lectin activity from kidneys of embryos at different ages shows that the lectin is developmentally regulated.  相似文献   

12.
Type IX collagen from chick embryonic cartilage is a proteoglycan bearing a single chondroitin sulfate chain covalently linked to the alpha 2(IX) polypeptide chain. We have isolated type IX collagen metabolically labeled with [3H]proline using an antibody to type IX collagen and have found that the molecule is synthesized in two forms, a collagen form (COLIX) and a proteoglycan form (PGIX). In cultured chondrocytes, the two forms of type IX collagen showed a different ability to be deposited in the matrix. We have suggested the possibility that both forms may arise from an alternative substitution of a chondroitin sulfate chain to the NC3 domain of the alpha 2(IX) chain. Based on the reported amino acid sequence at the NC3 domain of alpha 2(IX), we have synthesized undecapeptides containing the sequence around the glycosaminoglycan attachment site of the alpha 2(IX) chain. Antibody against the peptide, which was raised in rabbit, only recognized COLIX and made it possible to distinguish COLIX from PGIX. Evidence shows that this could be due to a difference in antigenicity of the NC3 domain of the alpha 2(IX) chain between COLIX and PGIX caused by the substitution of a chondroitin sulfate chain to the serine residue in this domain. Therefore, this antibody may be useful as a probe for studies on the functions of glycosaminoglycan substitution in type IX collagen.  相似文献   

13.
Two distinct sulfotransferases (chondroitin 6-sulfotransferase and chondroitin 4-sulfotransferase), which catalyzed transfer of sulfate to position 6 and position 4 of acetylgalactosamine residues of chondroitin, were extracted from epiphyseal cartilage of 14-day-old chick embryos and separated by gel chromatography on Sephacryl S-200 in the presence of 3 M guanidine-HCl. When the enzyme solutions containing 3 M guanidine-HCl were dialyzed against 0.02 M Tris-HCl, pH 7.2, containing 10% glycerol, chondroitin 4-sulfotransferase became almost insoluble, whereas chondroitin 6-sulfotransferase remained soluble. Endogenous acceptors for sulfate transfer were completely removed from both enzyme preparations. Addition of basic proteins and polyamines as well as Mn2+ to the incubation medium caused a stimulation of both sulfotransferases; the stimulation of chondroitin 6-sulfotransferase with these cations was higher than that of chondroitin 4-sulfotransferase. The Km values for 3′-phosphoadenylyl sulfate of both enzymes were much smaller in the presence of protamine or spermine than in the presence of Mn2+. The two sulfotransferases differed in the requirement for sulfhydryl compounds; in the absence of sulfhydryl compounds, the activity of chondroitin 4-sulfotransferase was very low, whereas the activity of chondroitin 6-sulfotransferase was essentially unaffected. These observations indicate that at least two sulfotransferases are involved in the biosynthesis of chondroitin sulfate, and suggest that the production of the isomers of chondroitin sulfate in chondrocytes is affected by various factors such as the intracellular concentration of sulfhydryl compounds and basic substances.  相似文献   

14.
Minor disulfide-bonded collagen (previously termed X1-X7 and now called type IX collagen) was isolated from foetal calf cartilage after pepsin treatment. At least three native fractions, containing, respectively, the X1X2X3, X4, and X5X6X7 chains, were separated; and from further biochemical and physicochemical experiments (differential scanning calorimetry, electrical birefringence, rotary shadowing), we propose a tentative model for their organization within a parent molecule. X1 and X2 are molecules composed of three chains of apparent Mr 62,000 and 50,000 linked by interchain disulfide bonds and containing pepsin-sensitive regions. The cleavage of at least three of these sites, present within X2, gives rise to the X3 and X5X6X7 fractions composed of molecules 80-100 nm and 40-55 nm in length, respectively. The X5X6X7 fraction is not digested by pepsin at 30 degrees C owing to its high thermal stability (certainly explained by its high hydroxyproline + proline content). This organization is in good accordance with that proposed for chicken cartilage type IX collagen; differences could only exist in the number and (or) the location of the pepsin-sensitive sites.  相似文献   

15.
Enzymatic activities capable of degrading double-stranded RNA have been solubilized from whole 9-day-old chick embryos and separated by ion exchange chromatography on DEAE-cellulose into two classes, designated nucleases DI and DII. Nuclease DI exhibits an absolute requirement for Mn2+ in the range of 5 to 10 mM. Monovalent cations, including K+, Na+, and NH4+, are inhibitory. The molecular weight of DI is 60,000 to 62,500 as estimated from sedimentation in sucrose density gradients. Following gradient fractionation, nuclease DI possesses the ability to degrade several substrates exhibiting a 250-fold preference for poly(rC) as compared to poly(rC)-poly(rG). The activity responsible for degrading double-stranded RNA functions as an endonuclease generating oligonucleotides with 5'-phosphate termini. Nuclease DII requires both monovalent and divalent cations. Optimal degradation of poly[r(A-U)] is seen at 75 to 100 mM salt and 0.5 to 1.0 mM MgCl2 or MnCl2. The molecular weight estimated from sucrose gradient sedimentation is in the range of 38,000 to 40,000. Nuclease DII acts endonucleolytically producing oligonucleotides terminating in 5'-phosphates. During the isolation and characterization of nucleases DI and DII, a third activity was detected which degrades single-stranded RNA substrates but which, in the presence of either DII or RNase H, significantly enhances the degradation of poly[r(A-U)] or poly(rA)-poly(dT) substrates.  相似文献   

16.
Isolation of two distinct collagens from chick cartilage   总被引:19,自引:0,他引:19  
  相似文献   

17.
18.
Chondrocytes from the presumptive calcification region of 20 day old embryonic chick sternum were found to synthesize a 70 Kd Type X procollagen precursor in addition to the previously described 59 Kd Type X collagen molecules. The 70 Kd molecules exhibited an additional cyanogen bromide peptide, contained a disulfide-bonded domain, and were converted into the 59 Kd moieties during pulse-chase experiments. The conversion of the 70 Kd to the 59 Kd Type X collagen was prevented upon microtubular transport inhibition with colchicine and resulted in tissue accumulation of the 70 Kd Type X procollagen.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号