首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Primary plant cell walls contain highly hydrated biopolymer networks, whose major chemistry is known but whose relationship to architectural and mechanical properties is poorly understood. Nuclear magnetic resonance spectroscopy has been used to characterize segmental mobilities via relaxation and anisotropy effects in order to add a dynamic element to emerging models for cell wall architecture. For hydrated onion cell wall material, single pulse excitation revealed galactan (pectin side chains), provided that dipolar decoupling was used, and some of the pectin backbone in the additional presence of magic angle spinning. Cross-polarization excitation revealed the remaining pectin backbones, which exhibited greater mobility (contact time dependence, dipolar dephasing) than the cellulose component, whose noncrystalline and crystalline fractions showed no mobility discrimination. 1HT2 behavior could be quantitatively interpreted in terms of high resolution observabilities. Mobility-resolved spectroscopy of cell walls from tomato fruit, pea stem, and tobacco leaf showed similar general effects. Nuclear magnetic resonance study of the sequential chemical extraction of onion cell wall material suggests that galactans fill many of the network pores, that extractability of pectins is not dependent on segmental mobility, and that some pectic backbone (and not side chain) is strongly associated with cellulose. Analysis of the state of cellulose in four hydrated cell walls suggests a noncrystalline content of 60–80% and comparable amounts of Iα and Iβ polymorphs in the crystalline fraction. Comparison with micrographs for onion cell walls shows that noncrystalline cellulose does not equate to chains on fibril surfaces, and chemical shifts show that fully solvated cellulose is not a significant component in cell walls. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
Molecular Rigidity in Dry and Hydrated Onion Cell Walls   总被引:4,自引:0,他引:4       下载免费PDF全文
Solid-state nuclear magnetic resonance relaxation experiments can provide information on the rigidity of individual molecules within a complex structure such as a cell wall, and thus show how each polymer can potentially contribute to the rigidity of the whole structure. We measured the proton magnetic relaxation parameters T2 (spin-spin) and T1p (spin-lattice) through the 13C-nuclear magnetic resonance spectra of dry and hydrated cell walls from onion (Allium cepa L.) bulbs. Dry cell walls behaved as rigid solids. The form of their T2 decay curves varied on a continuum between Gaussian, as in crystalline solids, and exponential, as in more mobile materials. The degree of molecular mobility that could be inferred from the T2 and T1p decay patterns was consistent with a crystalline state for cellulose and a glassy state for dry pectins. The theory of composite materials may be applied to explain the rigidity of dry onion cell walls in terms of their components. Hydration made little difference to the rigidity of cellulose and most of the xyloglucan shared this rigidity, but the pectic fraction became much more mobile. Therefore, the cellulose/xyloglucan microfibrils behaved as solid rods, and the most significant physical distinction within the hydrated cell wall was between the microfibrils and the predominantly pectic matrix. A minor xyloglucan fraction was much more mobile than the microfibrils and probably corresponded to cross-links between them. Away from the microfibrils, pectins expanded upon hydration into a nonhomogeneous, but much softer, almost-liquid gel. These data are consistent with a model for the stress-bearing hydrated cell wall in which pectins provide limited stiffness across the thickness of the wall, whereas the cross-linked microfibril network provides much greater rigidity in other directions.  相似文献   

3.
The impact of homogalacturonans deficiency on the cell wall porosity of Arabidopsis thaliana QUA1 mutant was investigated using NMR measurements of protons mobility interpreted in terms of pore size variations at nanometer and micrometer scales. Isolation and purification of wild type and mutant stems and calli cell walls permitted to exacerbate the putative impact of the mutation on cellulose-hemicelluloses assembly in highly and poorly organised cell walls, respectively. NMR relaxation measurements of water and exchangeable biopolymer protons and self-diffusion processes of polyethylene glycol in walls informed about the porosity network density and heterogeneity. The role of pectins and proteins as well as the growth status of the cells on the wall porosity regulation are discussed.  相似文献   

4.
Distribution of pectins in cell walls of maturing anther of Allium cepa L. was investigated. The monoclonal antibodies against defined epitopes of pectin were used: JIM5 recognizing unesterified pectin and JIM7 recognizing esterified pectin. It has been found that the cell walls of all anther tissues mainly contain esterified pectins. In the somatic tissues only small amounts of unesterified pectins are present in the cell wall junctions and adjacent middle lamellae and in the cell walls of the connective tissue. Thickening of the epiderm cell walls and growth of trabeculae in endothecium are completed through deposition of esterified pectins. In the cell walls of the middle layer and tapetum, unesterified pectins have been found only prior to their disintegration. The primary wall of microsporocytes is made up mainly of esterified pectins. Unesterified pectins occur outside microsporocytes only prior to the callose isolation stage. The presence of esterified pectins has also been detected on the surface of the callose wall surrounding dividing microsporocytes. Lysis of those pectins takes place after microsporogenesis, simultaneously with the lysis of the callosic walls. Before these processes pectins are unesterified. In the sporoderm of pollen grains mainly esterified pectins occur. They have been localized in the intine and aperture. The level of unesterified pectins in the intine is markedly lower.  相似文献   

5.
Summary Calcium distribution and pectin esterification patterns in the cambial zone of poplar branches were studied with ionic microscopy and immunological tools respectively. Dynamic changes correlating with cell growth and cell differentiation were observed both on the xylem and on the phloem sides. In expanding cell walls of xylem derivatives, unesterified pectins were restricted to cell junctions and middle lamellae, occasionally accompanied by calcium ions. In contrast, in differentiating and mature phloem cells, acidic pectins and Ca2+ were present all over the walls leading to early stiffening of the polysaccharide network. Significant labelling was detected with JIM5 antibodies in some dictyosomes suggesting exocytosis of low methylated polymers towards the cell walls. At cell junctions, unesterified pectins might originate from the activity of pectinmethylesterases localized in these areas. Thus un- and deesterified pectins might be located in different cell wall domains whose distribution, varying with cell type, will confer specific extensibility to the wall matrix.Abbreviations BSA bovine serum albumin - DM degree of methylation - FITC fluorescein isothiocyanate - HM highly methylated pectins - LM low methylated pectins - PME pectin methylesterase - SIMS secondary ion mass spectrometry - TBS tris-buffered saline  相似文献   

6.
Polymer mobility in cell walls of cucumber hypocotyls   总被引:3,自引:0,他引:3  
Cell walls were prepared from the growing region of cucumber (Cucumis sativus) hypocotyls and examined by solid-state 13C NMR spectroscopy, in both enzymically active and inactivated states. The rigidity of individual polymer segments within the hydrated cell walls was assessed from the proton magnetic relaxation parameter, T2, and from the kinetics of cross-polarisation from 1H to 13C. The microfibrils, including most of the xyloglucan in the cell wall, as well as cellulose, behaved as very rigid solids. A minor xyloglucan fraction, which may correspond to cross-links between microfibrils, shared a lower level of rigidity with some of the pectic galacturonan. Other pectins, including most of the galactan side-chain residues of rhamnogalacturonan I, were much more mobile and behaved in a manner intermediate between the solid and liquid states. The only difference observed between the enzymically active and inactive cell walls, was the loss of a highly mobile, methyl-esterified galacturonan fraction, as the result of pectinesterase activity.  相似文献   

7.
The white part of citrus peel, the albedo, has a special role in water relations of both fruit and leaves from early on in fruit development. In times of drought, this tissue acts as a water reservoir for juice sacs, seeds and leaves. When water was injected into the albedo, free water was undetectable using magnetic resonance imaging. Microscopy showed tightly packed cells with little intercellular space, and thick cell walls. Cell wall material comprised 21% of the fresh albedo weight, and contained 26.1% galacturonic acid, the main constituent of pectin. From this, we postulated that pectin of the cell wall was responsible for the high water-binding capacity of the immature lemon albedo. Cell wall material was extracted using mild procedures that keep polymers intact, and four pectic fractions were recovered. Of these fractions, the SDS and chelator-soluble fractions showed viscosities ten and twenty times higher than laboratory-grade citrus pectin or the other albedo-derived pectins. The yield of these two pectins represented 28% of the cell walls and 62% of the galacturonic acid content of immature lemon albedo. We concluded that, from viscosity and abundance, these types of pectin account for the high water-binding capacity of this tissue. Compositional analyses showed that the two highly viscous pectic fractions differ in galacturonic acid content, degree of branching and length of side chains from the less viscous albedo-derived pectins. The most striking feature of these highly viscous pectins, however, was their high molecular weight distribution compared to the other pectic fractions.  相似文献   

8.
Changes in broadline proton nuclear magnetic resonance parameters of cell walls during growth of etiolated hypocotyls of bean (Phaseolus vulgaris L.) indicate that cell wall structure becomes more rigid during development. Most of the changes are completed in the first 6 cm below cotyledon insertion and are correlated with increased restriction of proton movements in regions of dense polymer packing.Abbreviations FID free induction decay - M2 second moment - M2interpair interpair second moment - NMR nuclear magnetic resonance - T1D dipolar relaxation time - T2 spin-spin relaxation time This work was supported by grants from Natural Sciences and Engineering Research Council of Canada to A.L.M., I.E.P.T. and M. Bloom.  相似文献   

9.
Growth-induced water potentials may mobilize internal water for growth   总被引:5,自引:2,他引:3  
Abstract. Wphen there is no external source of water, plants can grow by mobilizing internal water from nongrowing tissues. We investigated how this internal water moves by measuring continuously and simultaneously the water potential (ψw) of soybean ( Glycine max L. Merr.) seedlings in the upper, growing stem tissues and the lower, non-growing stem tissues. When external water was available to the roots, the stems grew rapidly and the ψw of the growing tissue was continually below that of the nongrowing tissue and the medium around the roots. This indicated that a growth-induced gradient in ψw favoured water movement from the external source to the growing cells. When the external source was removed, the ψw of the growing tissue remained constant for a time and the ψw of the nongrowing tissue decreased somewhat. Growth took place slowly as water was withdrawn from the nongrowing tissue but ψw gradients continued to favour water transport to the growing cells. On the other hand, if this internal source was removed by excision, growth ceased abruptly. In this case, the cell walls relaxed and the ψw of the growing tissue decreased by about 0.1 MPa instead of remaining constant. The ψw of the detached nongrowing tissues remained constant instead of decreasing. This indicates not only that water mobilization required attached nongrowing or slowly growing tissues but also that mobilization affected wall relaxation. Thus, ψw differences may mobilize internal water, may explain the continued growth of plants and plant parts removed from external sources of water, and may account for discrepancies in measurements of cell wall properties in growing tissues.  相似文献   

10.
Solid-state 13C nuclear magnetic resonance was used to characterize the molecular ordering of cellulose in a cell-wall preparation containing mostly primary walls obtained from the leaves of Arabidopsis thaliana. Proton and 13C spin relaxation time constants showed that the cellulose was in a crystalline rather than a paracrystalline state or amorphous state. Cellulose chains were distributed between the interiors (40%) and surfaces (60%) of crystallites, which is consistent with crystallite cross-sectional dimensions of about 3 nm. Digital resolution enhancement revealed signals indicative of triclinic and monoclinic crystalline forms of cellulose mixed in similar proportions. Of the five nuclear spin relaxation processes used, proton rotating-frame relaxation provided the clearest distinction between cellulose and other cell-wall components for purposes of editing solid-state 13C nuclear magnetic resonance spectra.  相似文献   

11.
In contrast to the typical type I cell wall of the dicot plants, the type II cell wall of the commelinoid monocot plants is known to be relatively poor in pectins. Assuming a critical role for the remaining pectins in terms of cell wall architecture and/or as a reservoir of signalling molecules, we have compared different protocols for the isolation of the main pectin polymer, homogalacturonan, from wheat leaf cell walls. Pectin was detected in these cell walls immunochemically using the monoclonal antibodies JIM5 and JIM7, and biochemically by monosaccharide analysis. The Ca(++)-chelators CDTA and imidazole extracted a pectin rich fraction from isolated cell walls which was however contaminated with significant amounts of hemicelluloses. Pretreatment of the cell walls with anhydrous hydrogen fluoride at controlled low temperatures followed by HF/ether- and water-extraction prior to imidazole-extraction of pectins yielded a purer homogalacturonan fraction. The near absence of rhamnosyl residues proved that the isolated homogalacturonan fraction was free of rhamnogalacturonans. If HF-solvolysis was performed at -23 degrees C, the resulting homogalacturonan had a degree of methyl esterification identical to that of the pectins in the initial wheat cell wall. The antibodies JIM5 and JIM7 as well as PAM1 and LM5 proved that the isolated homogalacturonan had a low methyl ester content, was polymeric and free of galactan side chains. We can thus isolate native homogalacturonan from the type II wheat cell walls with the original in muro pattern of methyl esterification still intact, to further investigate e.g., its degradability by plant or microbial pectic enzymes.  相似文献   

12.
Flax plantlets, cultivated from day 3 in liquid medium and undercontinuous light showed linear growth. Electron microscopy observationsshowed that treatment of the cell walls with cdta-Na2 clearedout the middle lamella and the cell junctions, whereas boilingwater extracted pectic polysaccharides from the primary cellwall in each tissue (epidermis, cortical parenchyma and phloem). Pulse-chase experiments showed that there was during the growthof flax plantlets a continuous redistribution of radioactivityin all parts of the cell walls: 1) from pectins to hemicellulosesand even to the cellulosic residues. 2) from oligomers to polymers.3) from neutral to acidic polymers in the core of the middlelamella. 4) from acidic to neutral pectins in the primary cellwalls. The elongation zone which was restricted to a small zoneback from the tip, involved strong synthesis of neutral pectinsin all the cell walls. Conversely, the redistribution of radioactivitywas related mainly to the plant cell maturation, and especiallyto the acidification of the cell wall. Demethylation of someneutral pectins occurred in the middle lamella whereas stronglyacidic pectins were synthetized in the primary cell wall. (Received October 1, 1990; Accepted April 9, 1991)  相似文献   

13.
Summary Two monoclonal antibodies were used to reveal the nature and distribution of pectins in cell walls and in the secretion of the style inBrugmansia (Datura) suaveolens at the light and electron microscope level. The antibodies JIM 5 and JIM 7 distinguish between unesterified and methylesterified pectins. Unesterified pectins occur in the walls of both transmitting tissue and cortex. The high methylesterified pectin is limited to cell walls in the cortex. The intercellular substance contains only unesterified pectins.  相似文献   

14.
Renard CM  Jarvis MC 《Plant physiology》1999,119(4):1315-1322
Solid-state nuclear magnetic resonance relaxation experiments were used to study the rigidity and spatial proximity of polymers in sugar beet (Beta vulgaris) cell walls. Proton T decay and cross-polarization patterns were consistent with the presence of rigid, crystalline cellulose microfibrils with a diameter of approximately 3 nm, mobile pectic galacturonans, and highly mobile arabinans. A direct-polarization, magic-angle-spinning spectrum recorded under conditions adapted to mobile polymers showed only the arabinans, which had a conformation similar to that of beet arabinans in solution. These cell walls contained very small amounts of hemicellulosic polymers such as xyloglucan, xylan, and mannan, and no arabinan or galacturonan fraction closely associated with cellulose microfibrils, as would be expected of hemicelluloses. Cellulose microfibrils in the beet cell walls were stable in the absence of any polysaccharide coating.  相似文献   

15.
Summary Pectic polysaccharides are major components of the plant cell wall matrix and are known to perform many important functions for the plant. In the course of our studies on the putative role of pectic polysaccharides in the control of cell elongation, we have examined the distribution of polygalacturonans in the epidermal and cortical parenchyma cell walls of flax seedling hypocotyls. Pectic components have been detected with (1) the nickel (Ni2+) staining method to visualize polygalacturonates, (2) monoclonal antibodies specific to low (JIM5) and highly methylesterified (JIM7) pectins and (3) a combination of subtractive treatment and PATAg (periodic acid-thiocarbohydrazide-silver proteinate) staining. In parallel, calcium (Ca2+) distribution has been imaged using SIMS microscopy (secondary ion mass spectrometry) on cryo-prepared samples and TEM (transmission electron microscopy) after precipitation of calcium with potassium pyroantimonate. Our results show that, at the tissular level, polygalacturonans are mainly located in the epidermal cell walls, as revealed by the Ni2+ staining and immunofluorescence microscopy with JIM5 and JIM7 antibodies. In parallel, Ca2+ distribution points to a higher content of this cation in the epidermal walls compared to cortical parenchyma walls. At the ultrastructural level, immunogold labeling with JIM5 and JIM7 antibodies shows a differential distribution of pectic polysaccharides within cell walls of both tissues. The acidic polygalacturonans (recognized by JIM5) held through calcium bridges are mainly found in the outer part of the external wall of epidermal cells. In contrast, the labeling of methylesterified pectins with JIM7 is slightly higher in the inner part than in the outer part of the wall. In the cortical parenchyma cells, acidic pectins are restricted to the cell junctions and the wall areas in contact with the air-spaces, whereas methylesterified pectins are evenly distributed all over the wall. In addition, the pyroantimonate precipitation method reveals a clear difference in the Ca2+ distribution in the epidermal wall, suggesting that this cation is more tightly bound to acidic pectins in the outer part than in the inner part of that wall. Our findings show that the distribution of pectic polysaccharides and the nature of their linkages differ not only between tissues, but also within a single wall of a given cell in flax hypocotyls. The differential distribution of pectins and Ca2+ in the external epidermal wall suggests a specific control of the demethylation of pectins and a central role for Ca2+ in this regulation.Abbreviations Cdta diamino-1,2-cyclohexane tetra-acetic acid - PATAg periodic acid-thiocarbohydrazide-silver proteinate - PGA polygalacturonic acid - PME pectin methylesterase - RG I rhamnogalacturonan I - SIMS secondary ion mass spectrometry - TEM transmission electron microscopy  相似文献   

16.
Maturation of potato (Solanum tuberosum L.) tuber native and wound periderm and development of resistance to periderm abrasion were investigated utilizing cytological and histochemical techniques. Both native and wound periderm consist of three different tissues: phellem, phellogen and phelloderm. It was previously determined that the phellogen walls of immature native periderm are thin and prone to fracture during harvest, leading to periderm abrasion (excoriation). Phellogen walls thicken and become less susceptible to fracture upon maturation of the periderm, leading to resistance to excoriation. We now demonstrate that phellogen cells of immature wound periderm also have thin radial walls and that wound periderm abrasion is due to fracture of these walls. Maturation of the wound periderm is also associated with an increase in the thickness of the phellogen radial walls. Histological analysis with ruthenium red and hydroxylamine-FeCI2, which stain unesterified and highly methyl-esterified pectins, respectively, indicates that the phellogen cell walls of native and wound periderm differ significantly regardless of the stage of maturity. Results obtained by staining with ruthenium red and hydroxylamine-FeCI2 imply that phellogen cell walls of immature native periderm contain methyl-esterified pectin, but are lacking in unesterified (acidic) pectins. Maturation of native periderm is accompanied by an apparent increase in unesterified pectins in the walls of phellogen cells, which may allow for the strengthening of phellogen cell walls via calcium pectate formation. Histological staining of the phellogen walls of wound periderm, on the other hand, implies that these walls are deficient in pectins. Moreover, maturation of wound periderm is not accompanied by an increase in unesterified pectins in these walls. Since peroxidase is known to catalyse the cross-linking of cell wall polymers, we stained native and wound periderm for the presence of peroxidase utilizing guaiacol as a substrate. Peroxidase staining was strong in the phellogen walls of both immature and mature native periderm and we could not detect any differences in staining between them. Peroxidase staining was weak in the phellogen walls of immature wound periderm and was not detectably different in mature wound periderm. Peroxidase data imply that there are distinct differences between native and wound periderm, though our data do not indicate that changes in peroxidase activity are involved in the development of resistance to periderm abrasion that occurs upon maturation of the periderm. However, we cannot rule out the involvement in this process of peroxidase isozymes that have low affinity for the substrates utilized here.  相似文献   

17.
By using immunofluorescence microscopy, we observed rapidly altered distribution patterns of cell wall pectins in meristematic cells of maize (Zea mays) and wheat (Triticum aestivum) root apices. This response was shown for homogalacturonan pectins characterized by a low level (up to 40%) of methylesterification and for rhamnogalacturonan II pectins cross-linked by a borate diol diester. Under boron deprivation, abundance of these pectins rapidly increased in cell walls, whereas their internalization was inhibited, as evidenced by a reduced and even blocked accumulation of these cell wall pectins within brefeldin A-induced compartments. In contrast, root cells of species sensitive to the boron deprivation, like zucchini (Cucurbita pepo) and alfalfa (Medicago sativa), do not internalize cell wall pectins into brefeldin A compartments and do not show accumulation of pectins in their cell walls under boron deprivation. For maize and wheat root apices, we favor an apoplastic target for the primary action of boron deprivation, which signals deeper into the cell via endocytosis-mediated pectin signaling along putative cell wall-plasma membrane-cytoskeleton continuum.  相似文献   

18.
Plant cell walls provide form and mechanical strength to the living plant, but the relationship between their complex architecture and their remarkable ability to withstand external stress is not well understood. Primary cell walls are adapted to withstand tensile stresses while secondary cell walls also need to withstand compressive stresses. Therefore, while primary cell walls can with advantage be flexible and elastic, secondary cell walls must be rigid to avoid buckling under compressive loads. In addition, primary cell walls must be capable of growth and are subjected to cell separation forces at the cell corners. To understand how these stresses are resisted by cell walls, it will be necessary to find out how the walls deform internally under load, and how rigid are specific constituents of each type of cell wall. The most promising spectroscopic techniques for this purpose are solid-state nuclear magnetic resonance (NMR), and Fourier-transform infrared (FTIR) and Raman microscopy. By NMR relaxation experiments, it is possible to probe thermal motion in each cell-wall component. Novel adaptations of FTIR and Raman spectroscopy promise to allow mechanical stress and strain upon specific polymers to be examined in situ within the cell wall.  相似文献   

19.
The primary cell wall of dicotyledonous plants can be considered as a concentrated polymer assembly, containing in particular polysaccharides among which cellulose and pectins are known to be the major components. In order to understand and control the textural quality of plant-derived foods, it is highly important to elucidate the rheological and microstructural properties of these components, individually and in mixture, in order to define their implication for structural and mechanical properties of primary plant cell wall. In this study, the rheological and microstructural properties of model systems composed of sugar-beet microfibrillated cellulose and HM pectins from various sources, with varied degrees of methylation and containing different amounts of neutral sugar side chains, were investigated. The influence of the presence of calcium and/or sodium ions and the biopolymer concentrations on the properties of the mixed systems were also studied. The characterizations of the mixed system, considered as a simplified model of primary plant cell wall, showed that whatever the structural characteristics of the pectins, the ionic conditions of the medium and the biopolymer concentrations, the gelation of the composite was mainly controlled by cellulose. Thus, the cellulose network would be the principal component governing the mechanical properties of the cell walls. However, the neutral sugar side chains of the pectins seem to play a part in the interactions with cellulose, as shown by the interesting viscoelastic properties of cellulose/apple HM pectins systems. The rigidity of cellulose/pectins composite was strongly influenced by the structural characteristics of pectins. The particular properties of primary plant cell walls would thus result from the solid viscoelastic properties of cellulose, its interactions with pectins according to their structural characteristics (implication of the neutral sugar side chains and the specific potential calcic interactions) and of the distribution of the components in separate phases.  相似文献   

20.
The main load-bearing network in the primary cell wall of most land plants is commonly depicted as a scaffold of cellulose microfibrils tethered by xyloglucans. However, a xyloglucan-deficient mutant (xylosyltransferase1/xylosyltransferase2 [xxt1/xxt2]) was recently developed that was smaller than the wild type but otherwise nearly normal in its development, casting doubt on xyloglucan's role in wall structure. To assess xyloglucan function in the Arabidopsis (Arabidopsis thaliana) wall, we compared the behavior of petiole cell walls from xxt1/xxt2 and wild-type plants using creep, stress relaxation, and stress/strain assays, in combination with reagents that cut or solubilize specific components of the wall matrix. Stress/strain assays showed xxt1/xxt2 walls to be more extensible than wild-type walls (supporting a reinforcing role for xyloglucan) but less extensible in creep and stress relaxation processes mediated by α-expansin. Fusicoccin-induced "acid growth" was likewise reduced in xxt1/xxt2 petioles. The results show that xyloglucan is important for wall loosening by α-expansin, and the smaller size of the xxt1/xxt2 mutant may stem from the reduced effectiveness of α-expansins in the absence of xyloglucan. Loosening agents that act on xylans and pectins elicited greater extension in creep assays of xxt1/xxt2 cell walls compared with wild-type walls, consistent with a larger mechanical role for these matrix polymers in the absence of xyloglucan. Our results illustrate the need for multiple biomechanical assays to evaluate wall properties and indicate that the common depiction of a cellulose-xyloglucan network as the major load-bearing structure is in need of revision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号