首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Photocleavage of dsDNA by the fluorescent DNA stains oxazole yellow (YO), its dimer YOYO) and the dimer TOTO of thiazole orange (TO) has been investigated as a function of binding ratio. On visible illumination, both YO and YOYO cause single-strand cleavage, with an efficiency that varies with the dye/DNA binding ratio in a manner which can be rationalized in terms of free dye being an inefficient photocleavage reagent and externally bound dye being more efficient than intercalated dye. Moreover, the photocleavage mechanism changes with binding mode. Photocleavage by externally bound dye is, at least partly, oxygen dependent with scavenger studies implicating singlet oxygen as the activated oxygen intermediate. Photocleavage by intercalated dye is essentially oxygen-independent but can be inhibited by moderate concentrations of beta- mercaptoethanol--direct attack on the phosphoribose backbone is a possible mechanism. TOTO causes single-strand cleavage approximately five times less efficiently than YOYO. No direct double-strand breaks (dsb) are detected with YO or YOYO, but in both cases single-strand breaks (ssb) are observed to accumulate to eventually produce double-strand cleavage. With intercalated YO the accumulation occurs in a manner consistent with random generation of strand lesions, while with bisintercalated YOYO the yield of double-strand cleavage (per ssb) is 5-fold higher. A contributing factor is the slow dissociation of the bis-intercalated dimer, which allows for repeated strand-attack at the same binding site, but the observation that the dsb/ssb yield is considerably lower for externally bound than for bis-intercalated YOYO at low dye/DNA ratios indicates that the binding geometry and/or the cleavage mechanism are also important for the high dsb-efficiency. In fact, double-strand cleavage yields with bis-intercalated YOYO are higher than those predicted by simple models, implying a greater than statistical probability for a second cleavage event to occur adjacent to the first (i.e. to be induced by the same YOYO molecule). With TOTO the efficiency of the ssb-accumulation is comparable to that observed with YOYO.  相似文献   

2.
Photochemical cleavage of DNA by nitrobenzamides linked to 9-aminoacridine   总被引:1,自引:0,他引:1  
Nitrobenzamido ligands linked to the DNA intercalator 9-aminoacridine via poly(methylene) chains induce single-strand nicks in DNA upon irradiation with long-wavelength ultraviolet light (lambda greater than or equal to 300 nm). Optimal photocleavage activity was found for the reagent 9-[[6-(4-nitrobenzamido)hexyl]amino]-acridine. Removal of the acridinyl ligand or changing the position of the nitro group from the 4- to the 2-position caused a 10-fold decrease in photocleavage efficiency, whereas a change to the 3-position caused a 30-fold reduction. The DNA cleavage was 5-fold enhanced by subsequent piperidine treatment and showed some sequence dependency with predominant cleavage at G and T residues. Furthermore, significant differences in cleavage preference were observed when the poly(methylene) linker length was changed.  相似文献   

3.
Clerocidin, a diterpenoid with antibacterial and antitumor activity, stimulates in vitro DNA cleavage mediated by mammalian and bacterial topoisomerase (topo) II. Different from the classical topoisomerase poisons, clerocidin-stimulated breaks at guanines immediately preceding the sites of DNA cleavage are not resealed upon heat or salt treatment. To understand the mechanism of irreversible trapping of the topo II-cleavable complex, we have investigated the reactivity of clerocidin per se towards DNA. We show here that the drug is able to nick negatively supercoiled plasmids. DNA cleavage by clerocidin in enzyme-free medium is due to the ability of the drug to form covalent adducts with guanines. Indeed, clerocidin was able to specifically react with short oligonucleotides when the guanines were unpaired and exposed as in bulges or in the single-strand form. The clerocidin epoxy group attacks the nitrogen at position 7 of guanines, leading to strand scission at the modified site. Our findings also demonstrate that trapping of topoisomerases by clerocidin is specific for type II enzymes. The guanine-alkylating ability of clerocidin suggests an unprecedented mechanism of topo II poisoning, according to which the enzyme renders the drug reactive toward DNA by distorting the double-helical structure of the nucleic acid at the cleavage site.  相似文献   

4.
Intercalating complexes of rhodium(III) are strong photo-oxidants that promote DNA strand cleavage or electron transfer through the double helix. The 1.2 A resolution crystal structure of a sequence-specific rhodium intercalator bound to a DNA helix provides a rationale for the sequence specificity of rhodium intercalators. It also explains how intercalation in the center of an oligonucleotide modifies DNA conformation. The rhodium complex intercalates via the major groove where specific contacts are formed with the edges of the bases at the target site. The phi ligand is deeply inserted into the DNA base pair stack. The primary conformational change of the DNA is a doubling of the rise per residue, with no change in sugar pucker from B-form DNA. Based upon the five crystallographically independent views of an intercalated DNA helix observed in this structure, the intercalator may be considered as an additional base pair with specific functional groups positioned in the major groove.  相似文献   

5.
Yu H  Kwok Y  Hurley LH  Kerwin SM 《Biochemistry》2000,39(33):10236-10246
The quinobenzoxazines, a group of structural analogues of the antibacterial fluoroquinolones, are topoisomerase II inhibitors that have demonstrated promising anticancer activity in mice. It has been proposed that the quinobenzoxazines form a 2:2 drug-Mg(2+) self-assembly complex on DNA. The quinobenzoxazine (S)-A-62176 is photochemically unstable and undergoes a DNA-accelerated photochemical reaction to afford a highly fluorescent photoproduct. Here we report that the irradiation of both supercoiled DNA and DNA oligonucleotides in the presence of (S)-A-62176 results in photochemical cleavage of the DNA. The (S)-A-62176-mediated DNA photocleavage reaction requires Mg(2+). Photochemical cleavage of supercoiled DNA by (S)-A-62176 is much more efficient that the DNA photocleavage reactions of the fluoroquinolones norfloxacin, ciprofloxacin, and enoxacin. The photocleavage of supercoiled DNA by (S)-A-62176 is unaffected by the presence of SOD, catalase, or other reactive oxygen scavengers, but is inhibited by deoxygenation. The photochemical cleavage of supercoiled DNA is also inhibited by 1 mM KI. Photochemical cleavage of DNA oligonucleotides by (S)-A-62176 occurs most extensively at DNA sites bound by drug, as determined by DNase I footprinting, and especially at certain G and T residues. The nature of the DNA photoproducts, and inhibition studies, indicate that the photocleavage reaction occurs by a free radical mechanism initiated by abstraction of the 4'- and 1'-hydrogens from the DNA minor groove. These results lend further support for the proposed DNA binding model for the quinobenzoxazine 2:2 drug-Mg(2+) complex and serve to define the position of this complex on the minor groove of DNA.  相似文献   

6.
It is shown that, when irradiated in the visible, ethidium bromide (EB) engages in direct photochemistry with its DNA binding site. At the photochemical end point, an average of one single-strand break is produced per bound EB molecule in a reaction which also bleaches the dye chromophore. Using high-resolution electrophoresis, we have mapped the distribution of EB photocleavage sites on DNA, at one-base resolution. It is argued that because the photocleavage is stoichiometric, the resulting pattern is similar to, if not identical with, the local distribution of EB binding affinity. When interpreted in the context of the extensive thermodynamic and structural data which are available for EB, a binding distribution of that kind can be used to infer details of DNA structure variation within the underlying helix. As a first application of the method, we have used EB to probe the structure of a 265 bp fragment of DNA, which had been described as being bent as the result of a periodic array of oligo(A) segments [Kitchin et al. (1986) J. Biol. Chem. 261, 11302]. The EB mapping data provide evidence that the oligo(A) elements in this fragment assume a local secondary structure which is different than that assumed by isolated ApA nearest neighbors and that the ends of the oligo(A) elements comprise a junctional domain with EB binding properties which differ from those of the oligo(A) element or of random-sequence DNA.  相似文献   

7.
Isolation of altered recA polypeptides and interaction with ATP and DNA   总被引:10,自引:0,他引:10  
In this paper we describe the partial proteolytic digestion of recA proteins from Escherichia coli and Proteus mirabilis and the production and isolation of truncated recA polypeptides. A proteolytic fragment of the P. mirabilis recA protein bound single-strand DNA and ATP normally but has altered duplex DNA binding properties. This protein was shown to initiate but not complete DNA strand transfer from a DNA duplex to a complementary single strand. The product of the E. coli recA1 allele bound but could not hydrolyze ATP and the protein bound single-strand but not double-strand DNA. This protein did not appear to initiate the transfer of a strand from a linear duplex to a single-strand circle and inhibited the wild-type recA protein from performing strand transfer. We report that recA protein binds linear duplex DNA in a manner that enhances the rate of ligation by T4 DNA ligase. When heterologous single-strand DNA was added in addition to the duplex DNA large stable aggregates of protein and DNA were formed that could easily be sedimented from solution.  相似文献   

8.
The prototypic type IB topoisomerase isolated from vaccinia virus cleaves the phosphodiester backbone of duplex DNA at the sequence 5'-(C/T)CCTT, forming a covalent 3'-phosphotyrosyl adduct. A precleavage conformational change in which the enzyme clamps circumferentially around the DNA has been implicated on the basis of structural and biochemical studies. However, no direct measurements to elucidate this key step have been obtained to date. To address this shortcoming we have developed two new fluorescence assays that allow detection of conformational changes in both the enzyme and substrate DNA, and allow determination of the thermodynamic and kinetic mechanism for noncovalent DNA binding and phosphodiester cleavage. The results indicate that clamp closing occurs in a rapid step (>25 s(-1)) that is at least 14-fold faster than the maximal rate of DNA cleavage. Opening of the clamp to release the noncovalently bound substrate is also 5-8-fold more rapid than DNA cleavage. We propose a model in which DNA cleavage and religation are connected through a single high energy transition state involving covalent bond breaking. Alternative models that involve a slow precleavage conformational step are not easily reconciled with the available data.  相似文献   

9.
The rutin–nickel (II) complex (RN) was synthesized and characterized by elemental analysis, UV–visible spectroscopy, IR, mass spectrometry, 1H NMR, TG-DSC, SEM, and molar conductivity. The low molar conductivity value investigates the non-electrolyte nature of the complex. The elemental analysis and other physical and spectroscopic methods reveal the 1:2 stoichiometric ratio (metal/ligand) of the complex. An antioxidant study of rutin and its metal complex against DPPH radical showed that the complex has more radical scavenging activity than free rutin. The interaction of complex RN with DNA was determined using fluorescence spectra and agarose gel electrophoresis. The results showed that RN can intercalate moderately with DNA, quench a strong intercalator ethidium bromide (EB), and compete for the intercalative binding sites. The complex showed significant cleavage of pBR 322 DNA from supercoiled form (SC) to nicked circular form (NC), and these cleavage effects were dose-dependent. Moreover, the mechanism of DNA cleavage indicated that it was a hydrolytic cleavage pathway. These results revealed the potential nuclease activity of the complex to cleave DNA.  相似文献   

10.
o,o'-Diphenylenehalonium (DPH) cations represent a novel class of DNA-affinic compounds characterized by binding constants within the range of 10(5)-10(6) M(-1). The maximum binding capacity of 2-2.5 base pairs per DPH cation and about 30% hypochromic reduction in the optical absorption of DPH cations upon binding to DNA suggest intercalation as a likely binding mode. In a DNA-bound form, DPH cations induce strand breaks upon reduction by radiation-produced electrons in aqueous solutions. In keeping with this mechanism, the cleavage is strongly inhibited by oxygen and is not affected by OH radical scavengers in the bulk. The yields of DPH-mediated base release significantly exceed the yield of base release caused by hydroxyl radical (in the absence of scavenger) in anoxic solutions. The yields are weakly dependent on DNA loading within the range from 5 to 50 base pairs per intercalator, which indicates the ability of excess electrons in DNA to react with a scavenger separated by tens of base pairs from the electron attachment site. The question regarding the mechanism by which the distant reactants reach each other in DNA remains unanswered, although it most likely involves electron hopping rather than a single-step long-distance tunneling. The latter conclusion is based on our finding that the electron affinity of DPH cations does not affect their properties as electron scavengers in DNA as would be expected if the direct long-distance tunneling is involved.  相似文献   

11.
Bacterial insertion sequences (IS) play an important role in restructuring their host genomes. IS608, from Helicobacter pylori, belongs to a newly recognized and widespread IS group with a unique transposition mechanism. We have reconstituted the entire set of transposition cleavage and strand transfer reactions in vitro and find that, unlike any other known transposition system, they strictly require single-strand DNA. TnpA, the shortest identified transposase, uses a nucleophilic tyrosine for these reactions. It recognizes and cleaves only the IS608 "top strand." The results support a transposition model involving excision of a single-strand circle with abutted left (LE) and right (RE) IS ends. Insertion occurs site specifically 3' to conserved and essential TTAC tetranucleotide and appears to be driven by LE. This single-strand transposition mode has important implications not only for dispersion of IS608 but also for the other members of this very large IS family.  相似文献   

12.
Parker C  Zhang XL  Henderson D  Becker E  Meyer R 《Plasmid》2002,48(3):7254-192
Strand-replacement synthesis during conjugative mating has been characterized by introducing into donor cells R1162 plasmid DNA containing a base-pair mismatch. Conjugative synthesis in donors occurs in the absence of vegetative plasmid replication, but with a lag between rounds of transfer, and with most strands being initiated at the normal site within the replicative origin. These characteristics argue against the idea that multiple plasmid copies are generated for successive rounds of transfer by rolling-circle replication. However, the R1162 relaxase protein can process molecules containing multiple transfer origins in the manner expected for the conversion of single-strand multimers, generated by rolling-circle replication, to unit-length molecules. This capability appears to be the result of a secondary cleavage reaction carried out by the protein. The possibility is raised that the processing of molecules with more than one origin of transfer might be a repair mechanism directed against adventitious DNA synthesis during transfer.  相似文献   

13.
This paper provides evidence that dietary flavonoids can repair a range of oxidative radical damages on DNA, and thus give protection against radical-induced strand breaks and base alterations. We have irradiated dilute aqueous solutions of plasmid DNA in the absence and presence of flavonoids (F) in a "constant *OH radical scavenging environment", k of 1.5 x 10(7) s(-1) by decreasing the concentration of TRIS buffer in relation to the concentration of added flavonoids. We have shown that the flavonoids can reduce the incidence of single-strand breaks in double-stranded DNA as well as residual base damage (assayed as additional single-strand breaks upon post-irradiation incubation with endonucleases) with dose modification factors of up to 2.0+/-0.2 at [F] < 100 microM by a mechanism other than through direct scavenging of *OH radicals. Pulse radiolysis measurements support the mechanism of electron transfer or H* atom transfer from the flavonoids to free radical sites on DNA which result in the fast chemical repair of some of the oxidative damage on DNA resulting from *OH radical attack. These in vitro assays point to a possible additional role for antioxidants in reducing DNA damage.  相似文献   

14.
S N Ali  H D Zeller  M K Calisto  M S Jorns 《Biochemistry》1991,30(45):10980-10986
Sarcosine oxidase contains 1 mol of covalently bound plus 1 mol of noncovalently bound FAD per active site. The first phase of the anaerobic reduction of the enzyme with sarcosine converts oxidized enzyme to an equilibrium mixture of two-electron-reduced forms (EH2) and occurs at a rate (2700 min-1, pH 8.0) similar to that determined for the maximum rate of aerobic turnover in steady-state kinetic studies (2600 min-1). The second phase of the anaerobic half-reaction converts EH2 to the four-electron-reduced enzyme (EH4) and occurs at a rate (k = 350 min-1) which is 7-fold slower than aerobic turnover. Reaction of EH2 with oxygen is 1.7-fold faster (k = 4480 min-1) than aerobic turnover and 13-fold faster than the anaerobic conversion of EH2 to EH4. The results suggest that the enzyme cycles between fully oxidized and two-electron-reduced forms during turnover with sarcosine. The long wavelength absorbance observed for EH2 is attributable to a flavin biradical (FADH.FAD.-) which is generated in about 50% yield at pH 8.0 and in nearly quantitative yield at pH 7.0. The rate of biradical formation is determined by the rate of electron transfer from sarcosine to the noncovalent flavin since electron equilibration between the two flavins (k = 750 s-1 or 45,000 min-1, pH 8.0) is nearly 20-fold faster, as determined in pH-jump experiments. Only two of the three possible isoelectronic forms of EH2 are likely to transfer electrons to oxygen since the reaction is known to occur at the covalent flavin. However, equilibration among EH2 forms is probably maintained during reoxidation, consistent with the observed monophasic kinetics, since interflavin electron transfer is 10-fold faster than electron transfer to oxygen.  相似文献   

15.
Effects of root treatment with 5-aminolevulinic acid (ALA) on leaf photosynthesis in strawberry (Fragaria ananassa Duch.) plants were investigated by rapid chlorophyll fluorescence and modulated 820 nm reflection using 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) and methyl viologen (MV). Our results showed that ALA treatments increased the net photosynthetic rate and decreased the intercelluar CO2 concentration in strawberry leaves. Under DCMU treatment, trapping energy for QA reduction per PSII reaction center increased greatly, indicating DCMU inhibited electron transfer from QA ?. The maximum photochemical efficiency of PSII (Fv/Fm) decreased under the DCMU treatment, while a higher Fv/Fm remained in the ALA-pretreated plants. Not only the parameters related to a photochemical phase, but also that one related to a heat phase remained lower after the ALA pretreatment, compared to the sole DCMU treatment. The MV treatment decreased PSI photochemical capacity. The results of modulated 820 nm reflection analysis showed that DCMU and MV treatments had low re-reduction of P700 and plastocyanin (PSI). However, the strawberry leaf discs pretreated with ALA exhibited high re-reduction of PSI under DCMU and MV treatments. The results of this study suggest that the improvement of photosynthesis by ALA in strawberry was not only related to PSII, but also to PSI and electron transfer chain.  相似文献   

16.
17.
The bleomycins (BLMs) are natural products that in the presence of iron and oxygen bind to and cause single-strand and double-strand cleavage of DNA. The mode(s) of binding of the FeBLMs that leads to sequence-specific cleavage at pyrimidines 3′ to guanines and chemical-specific cleavage at the C-4′ H of the deoxyribose of the pyrimidine has remained controversial. 2D NMR studies using the hydroperoxide of CoBLM (HOO-CoBLM) have demonstrated that its bithiazole tail binds by partial intercalation to duplex DNA. Studies with ZnBLM demonstrate that the bithiazole tail binds in the minor groove. Phleomycins (PLMs) are BLM analogs in which the penultimate thiazolium ring of the bithiazole tail is reduced. The disruption of planarity of this ring and the similarities between FePLM- and FeBLM-mediated DNA cleavage have led Hecht and co-workers to conclude that a partial intercalative mode of binding is not feasible. The interaction of HOO-CoPLM with d(CCAGGCCTGG)2 has therefore been investigated. Binding studies indicate a single site with a Kd of 16 µM, 100-fold greater than HOO-CoBLM for the same site. 2D NMR methods and molecular modeling using NMR-derived restraints have led to a structural model of HOO-CoPLM complexed to d(CCAGGCCTGG)2. The model reveals a partial intercalative mode of binding and the basis for sequence specificity of binding and chemical specificity of cleavage. The importance of the bithiazoles and the partial intercalative mode of binding in the double-strand cleavage of DNA is discussed.  相似文献   

18.
Hiller DA  Perona JJ 《Biochemistry》2006,45(38):11453-11463
The carboxy-terminal subdomains of the homodimeric EcoRV restriction endonuclease each bear a net charge of +4 and are positioned on the inner concave surface of the 50 degree DNA bend that is induced by the enzyme. A complete kinetic and structural analysis of a truncated EcoRV mutant lacking these domains was performed to assess the importance of this diffuse charge in facilitating DNA binding, bending, and cleavage. At the level of formation of an enzyme-DNA complex, the association rate for the dimeric mutant enzyme was sharply decreased by 10(3)-fold, while the equilibrium dissociation constant was weakened by nearly 10(6)-fold compared with that of wild-type EcoRV. Thus, the C-terminal subdomains strongly stabilize the enzyme-DNA ground-state complex in which the DNA is known to be bent. Further, the extent of DNA bending as observed by fluorescence resonance energy transfer was also significantly decreased. The crystal structure of the truncated enzyme bound to DNA and calcium ions at 2.4 A resolution reveals that the global fold is preserved and suggests that a divalent metal ion crucial to catalysis is destabilized in the active site. This may explain the 100-fold decrease in the rate of metal-dependent phosphoryl transfer observed for the mutant. These results show that diffuse positive charge associated with the C-terminal subdomains of EcoRV plays a key role in DNA association, bending, and cleavage.  相似文献   

19.
To analyse the mechanism and kinetics of DNA strand cleavages catalysed by the serine recombinase Tn3 resolvase, we made modified recombination sites with a single-strand nick in one of the two DNA strands. Resolvase acting on these sites cleaves the intact strand very rapidly, giving an abnormal half-site product which accumulates. We propose that these reactions mimic second-strand cleavage of an unmodified site. Cleavage occurs in a synapse of two sites, held together by a resolvase tetramer; cleavage at one site stimulates cleavage at the partner site. After cleavage of a nicked-site substrate, the half-site that is not covalently linked to a resolvase subunit dissociates rapidly from the synapse, destabilizing the entire complex. The covalent resolvase–DNA linkages in the natural reaction intermediate thus perform an essential DNA-tethering function. Chemical modifications of a nicked-site substrate at the positions of the scissile phosphodiesters result in abolition or inhibition of resolvase-mediated cleavage and effects on resolvase binding and synapsis, providing insight into the serine recombinase catalytic mechanism and how resolvase interacts with the substrate DNA.  相似文献   

20.
Photolytic cleavage of the nitrogen-nitrogen single bond in benzaldehyde phenylhydrazones produced aminyl (R2N*) and iminyl (R2C=N*) radicals. This photochemical property was utilized in the development of hydrazones as photo-induced DNA-cleaving agents. Irradiation with 350 nm UV light of arylhydrazones bearing substituents of various types in a phosphate buffer solution containing the supercoiled circular phiX174 RFI DNA at pH 6.0 resulted in single-strand cleavage of DNA. Attachment of the electron-donating OMe group to arylhydrazones increased their DNA-cleaving activity. Results from systematic studies indicate that both the aminyl and the iminyl radicals possessed DNA-cleaving ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号