首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lu N  Yu HY  Wang R  Zhu YC 《生理学报》2012,64(2):142-148
Central urotensin II (UII) may participate in the regulation of cardiovascular functions by stimulating sympathy pathway. However, the central mechanism remained unknown. Recent studies have shown that brain reactive oxygen species (ROS) mediate the sympatho-excitatory effects. In the present study, we tested the hypothesis that ROS mediate central cardiovascular effects of UII. Experiments were conducted in Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR). Immunocytochemistry, intracerebroventricular (icv) infusion and lucigenin-enhanced chemiluminescence assay were employed to detect UII receptor expression and ROS level, respectively. The following results were obtained: (1) Expressions of UII receptors of rostral ventrolateral medulla (RVLM) and nucleus tractus solitarii (NTS) were increased in SHR rats compared with WKY rats (P < 0.05). (2) UII (icv) significantly increased mean arterial pressure (MAP) (P < 0.05), and the effect of UII was significantly more pronounced in SHR rats than that in WKY rats (P < 0.05); (3) Tempol (a superoxide dismutase mimic) or Urantide (an antagonist of UII receptor) pretreatments eliminated the pressor effect of UII (P < 0.05) in SHR rats; (4) Brain superoxide level was increased in UII-treated SHR rats compared with that in cerebrospinal fluid (CSF)-treated SHR rats (P < 0.05). These results indicate that ROS mediate central cardiovascular effects of UII in SHR rats and provide evidence for a novel relationship between UII and ROS.  相似文献   

2.
We examined whether xanthine oxidase (XO)-derived reactive oxygen species (ROS) contribute to the development of D-galactosamine (D-GaIN)-induced liver injury in rats. In rats treated with D-GaIN (500 mg/kg), liver injury appeared 6 h after treatment and developed until 24 h. Hepatic XO and myeloperoxidase activities increased 12 and 6 h, respectively, after D-GalN treatment and continued to increase until 24 h. D-GalN-treated rats had increased hepatic lipid peroxide (LPO) content and decreased hepatic reduced glutathione (GSH) and ascorbic acid contents and superoxide dismutase (SOD), catalase and Se-glutathione peroxidase (Se-GSHpx) activities at 24 h, but not 6 h, after treatment. Allopurinol (10, 25 or 50 mg/kg) administered at 6 h after D-GalN treatment attenuated not only the advanced liver injury and increased hepatic XO activity but also all other changes observed at 24 h after the treatment dose-dependently. These results suggest that XO-derived ROS contribute to the development of D-GaIN-induced liver injury in rats.  相似文献   

3.
We investigated the effect of xanthine (X) plus xanthine oxidase (XO) on pulmonary microvascular endothelial permeability in isolated rabbit lungs perfused with Krebs buffer containing bovine serum albumin (5 g/100 ml). Addition of five mU/ml XO and 500 microM X to the perfusate caused a twofold increase in the pulmonary capillary filtration coefficient (Kf,c) 30 min later without increasing the pulmonary capillary pressure. This increase was prevented by allopurinol or catalase but not by superoxide dismutase or dimethyl sulfoxide. Because these data implicated hydrogen peroxide (H2O2) as the injurious agent, we measured its concentration in the perfusate after the addition of X and XO for a 60-min interval. In the absence of lung tissue and albumin, H2O2 increased with time, reaching a concentration of approximately 250 microM by 60 min. If albumin (5 g/100 ml) was added to the perfusate, or in the presence of lung tissue, the corresponding values were 100 microM and less than 10 microM, respectively. To understand the mechanisms of H2O2 scavenging by lung tissue, we added a 250 microM bolus of H2O2 to the lung perfusate. We found that H2O2 was removed rapidly, with a half-life of 0.31 +/- 0.04 (SE) min. This variable was not increased significantly by inhibition of lung catalase activity with sodium azide or inhibition of the lung glutathione redox cycle with 1-chloro-2,4-dinitrobenzene. However, inhibition of both enzymatic systems increased the half-life of H2O2 removal to 0.71 +/- 0.09 (SE) min (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Zheng  Min  Zhu  Chunyan  Yang  Tingting  Qian  Jie  Hsu  Yi-Feng 《Plant molecular biology》2020,102(1-2):39-54
Plant Molecular Biology - Arabidopsis ETHYLENE RESPONSE FACTOR12 (ERF12), the rice MULTIFLORET SPIKELET1 orthologue pleiotropically affects meristem identity, floral phyllotaxy and organ initiation...  相似文献   

5.
6.
We carried out this experiment to evaluate the relationship between isoforms of cytochrome P450 (P450) and liver injury in lipopolysaccharide (LPS)-induced endotoxemic rats. Male rats were intraperitoneally administered phenobarbital (PB), a P450 inducer, for 3 days, and 1 day later, they were intravenously given LPS. PB significantly increased P450 levels (200% of control levels) and the activities (300-400% of control) of the specific isoforms (CYP), CYP3A2 and CYP2B1, in male rats. Plasma AST and ALT increased slightly more in PB-treated rats than in PB-nontreated (control) rats with LPS treatment. Furthermore, either troleandomycin or ketoconazole, specific CYP3A inhibitors, significantly inhibited LPS-induced liver injury in control and PB-treated male rats. To evaluate the oxidative stress in LPS-treated rats, in situ superoxide radical detection using dihydroethidium (DHE), hydroxy-2-nonenal (HNE)-modified proteins in liver microsomes and 8-hydroxydeoxyguanosine (8-OHdG) in liver nuclei were measured in control and PB-treated rats. DHE signal intensity, levels of HNE-modified proteins, and 8-OHdG increased significantly in PB-treated rats. LPS further increased DHE intensity, HNE-modified proteins, and 8-OHdG levels in normal and PB-treated groups. CYP3A inhibitors also inhibited the increases in these items. Our results indicate that the induction or preservation of CYP isoforms further promotes LPS-induced liver injury through mechanisms related to oxidative stress. In particular, CYP3A2 of P450 isoforms made an important contribution to this LPS-induced liver injury.  相似文献   

7.
Increased levels of reactive oxygen species (ROS) by hyperglycemia can induce apoptosis of renal cells and diabetic nephropathy. The redox balance in the renal cell seems, therefore, of the utmost importance. ROS-mediated apoptosis may be further aggravated by an inadequate cytoprotective response against ROS. When there are insufficient cytoprotective and ROS scavenging molecules, ROS lead to considerable cellular damage and to a point of no return in apoptosis. Induction of cytoprotective proteins may prevent or attenuate apoptosis, renal cell injury, and finally diabetic nephropathy. Here, we discuss some mechanisms of apoptosis and several strategies that have been probed to ameliorate, or to prevent apoptosis in the diabetic kidney.  相似文献   

8.
Phospholipase A2 activity was studied in the renal cortex and medulla of stroke-prone spontaneously hypertensive rat (SHRSP) and normotensive rat (WKY), and the subcellular localization of its activity was determined. Enhanced activity was found in both the cortical and medullary microsomes in SHRSP kidneys. In SHRSP, but not in WKY, phospholipase A2 activity progressively increased with age. This phospholipase A2 had substrate specificity toward phosphatidylethanolamine. There were no differences in optimal pH, substrate specificity, heat lability, and responses to Triton X-100 and deoxycholate between SHRSP and WKY. Ca2+ stimulated phospholipase A2 activity in both animals. The maximal activation was achieved at 5 mM Ca2+, and EDTA strongly inhibited the activity. But the response to Ca2+ was different in each. Ca2+ enhanced this activity in SHRSP markedly compared with WKY. It seems that Ca2+ is specifically required for phospholipase A2 activity in SHRSP. Though the influx of Ca2+ into microsomal membranes was not enhanced, the Ca2+ efflux of microsomal membranes decreased in SHRSP. This results in increases of intramicrosomal Ca2+, which may cause the subsequent activation of phospholipase A2. The Ca2+ permeability may be one of the factors in the increased phospholipase A2 activity in SHRSP.  相似文献   

9.
10.
11.
Data from the Framingham Heart Study suggest that women may be more sensitive to the deleterious cardiovascular remodeling effects of aldosterone. Previous studies from our laboratory have shown that chronic treatment with spironolactone, a mineralocorticoid receptor (MR) antagonist, decreases ischemic cerebral infarct size and prevents remodeling of the middle cerebral artery (MCA) in male spontaneously hypertensive stroke-prone rats (SHRSP). Therefore, we hypothesized that MR antagonism would reduce ischemic infarct size and prevent MCA remodeling in female SHRSP. Six-week-old female SHRSP were treated for 6 wk with spironolactone (25 or 50 mg.kg(-1).day(-1)) or eplerenone (100 mg.kg(-1).day(-1)) and compared with untreated controls. At 12 wk, cerebral ischemia was induced for 18 h using the intraluminal suture occlusion technique, or the MCA was isolated for analysis of passive structure using a pressurized arteriograph. MR antagonism had no effect on infarct size or passive MCA structure in female SHRSP. To study the potential effects of estrogen, the above experiments were repeated in bilaterally ovariectomized (OVX) female SHRSP treated with spironolactone (25 mg.kg(-1).day(-1)). Infarct size and vessel structure in OVX SHRSP were not different from control SHRSP. Spironolactone had no effect on infarct size in OVX SHRSP. However, MCA lumen and outer diameters were increased in spironolactone-treated OVX SHRSP, suggesting an effect of estrogen. Cerebral artery MR expression, assessed by Western blotting, was increased in female, compared with male, SHRSP. These studies highlight an apparent sexual dimorphism of MR expression and activity in the cerebral vasculature from hypertensive rats.  相似文献   

12.
Pressor reactivity to a variety of pressor agents after partial ganglionic blockade induced with hexamethonium was investigated in intact, in spinalized, and in chemically sympathectomized, spontaneously hypertensive rats (SHR). Responses of unanaesthetized 6-month-old SHR to noradrenaline, phenylephrine, and angiotensin after hexamethonium administration (32 mg/kg) markedly exceeded those of unanaesthetized, age-matched normotensive Wistar-Kyoto rats (WKR). Responses of anaesthetized SHR to noradrenaline after hexamethonium administration (16 mg/kg) were also increased at the hypertensive stages but not at the prehypertensive stages, when compared with those of anaesthetized normotensive Wistar rats of respective ages. In spinalized and chemically sympathectomized preparations after hexamethonium administration (16 mg/kg), noradrenaline produced equal increases in blood pressure in 6-month-old SHR and WKR. It is suggested that the functional sympathetic nervous system is important for the hyperreactivity of intact SHR.  相似文献   

13.
Systemic acquired resistance (SAR) is induced by pathogens and confers protection against a broad range of pathogens. Several SAR signals have been characterized, but the nature of the other unknown signalling by small metabolites in SAR remains unclear. Glutathione (GSH) has long been implicated in the defence reaction against biotic stress. However, the mechanism that GSH increases plant tolerance against virus infection is not entirely known. Here, a combination of a chemical, virus-induced gene-silencing-based genetics approach, and transgenic technology was undertaken to investigate the role of GSH in plant viral resistance in Nicotiana benthamiana. Tobacco mosaic virus (TMV) infection results in increasing the expression of GSH biosynthesis genes NbECS and NbGS, and GSH content. Silencing of NbECS or NbGS accelerated oxidative damage, increased accumulation of reactive oxygen species (ROS), compromised plant resistance to TMV, and suppressed the salicylic acid (SA)-mediated signalling pathway. Application of GSH or l -2-oxothiazolidine-4-carboxylic acid (a GSH activator) alleviated oxidative damage, decreased accumulation of ROS, elevated plant local and systemic resistance, enhanced the SA-mediated signalling pathway, and increased the expression of ROS scavenging-related genes. However, treatment with buthionine sulfoximine (a GSH inhibitor) accelerated oxidative damage, elevated ROS accumulation, compromised plant systemic resistance, suppressed the SA-mediated signalling pathway, and reduced the expression of ROS-regulating genes. Overexpression of NbECS reduced oxidative damage, decreased accumulation of ROS, increased resistance to TMV, activated the SA-mediated signalling pathway, and increased the expression of the ROS scavenging-related genes. We present molecular evidence suggesting GSH is essential for both local and systemic resistance of Nbenthamiana to TMV through a differential modulation of SA and ROS.  相似文献   

14.
We hypothesized that neutralization of TNF-alpha at the time of reperfusion exerts a salubrious role on endothelial function and reduces the production of reactive oxygen species. We employed a mouse model of myocardial ischemia-reperfusion (I/R, 30 min/90 min) and administered TNF-alpha neutralizing antibodies at the time of reperfusion. I/R elevated TNF-alpha expression (mRNA and protein), whereas administration of anti-TNF-alpha before reperfusion attenuated TNF-alpha expression. We detected TNF-alpha expression in vascular smooth muscle cells, mast cells, and macrophages, but not in the endothelial cells. I/R induced endothelial dysfunction and superoxide production. Administration of anti-TNF-alpha at the onset of reperfusion partially restored nitric oxide-mediated coronary arteriolar dilation and reduced superoxide production. I/R increased the activity of NAD(P)H oxidase and of xanthine oxidase and enhanced the formation of nitrotyrosine residues in untreated mice compared with shams. Administration of anti-TNF-alpha before reperfusion blocked the increase in activity of these enzymes. Inhibition of xanthine oxidase (allopurinol) or NAD(P)H oxidase (apocynin) improved endothelium-dependent dilation and reduced superoxide production in isolated coronary arterioles following I/R. Interestingly, I/R enhanced superoxide generation and reduced endothelial function in neutropenic animals and in mice treated with a neutrophil NAD(P)H oxidase inhibitor, indicating that the effects of TNF-alpha are not through neutrophil activation. We conclude that myocardial ischemia initiates TNF-alpha expression, which induces vascular oxidative stress, independent of neutrophil activation, and leads to coronary endothelial dysfunction.  相似文献   

15.
Reactive oxygen species (ROS) in the apoplast of cells in the growing zone of grass leaves are required for elongation growth. This work evaluates whether salinity-induced reductions in leaf elongation are related to altered ROS production. Studies were performed in actively growing segments (SEZ) obtained from leaf three of 14-d-old maize (Zea mays L.) seedlings gradually salinized to 150 mM NaCl. Salinity reduced elongation rates and the length of the leaf growth zone. When SEZ obtained from the elongation zone of salinized plants (SEZs) were incubated in 100 mM NaCl, the concentration where growth inhibition was approximately 50%, O2*- production, measured as NBT formazan staining, was lower in these than in similar segments obtained from control plants. The NaCl effect was salt-specific, and not osmotic, as incubation in 200 mM sorbitol did not reduce formazan staining intensity. SEZs elongation rates were higher in 200 mM sorbitol than in 100 mM NaCl, but the difference could be cancelled by scavenging or inhibiting O2*- production with 10 mM MgCl2 or 200 microM diphenylene iodonium, respectively. The actual ROS believed to stimulate growth is *OH, a product of O2*- metabolism in the apoplast. SEZ(s) elongation in 100 mM NaCl was stimulated by a *OH-generating medium. Fusicoccin, an ATPase stimulant, and acetate buffer pH 4, could also enhance elongation in these segments, although both failed to increase ROS activity. These results show that decreased ROS production contributes to the salinity-associated reduction in grass leaf elongation, acting through a mechanism not associated with pH changes.  相似文献   

16.
Oxidative stress because of an excessive production of superoxide anion (O2*-) is associated with hypertension. The present study evaluated the hypothesis that in the rostral ventrolateral medulla (RVLM), where the premotor neurons for the maintenance of vascular vasomotor activity are located, increased O2*- contributes to hypertension in spontaneously hypertensive rats (SHR) by modulating the cardiovascular depressive actions of nitric oxide (NO). Compared with normotensive Wistar-Kyoto (WKY) rats, SHR manifested significantly increased basal O2*- production, along with reduced manganese superoxide dismutase (MnSOD) expression and activity, in the RVLM. The magnitude of hypotension, bradycardia, or suppression of sympathetic neurogenic vasomotor tone elicited by microinjection bilaterally into the RVLM of a membrane-permeable SOD mimetic, Mn(III)-tetrakis-(4-benzoic acid) porphyrin (MnTBAP), was also significantly larger in SHR. Transfection bilaterally into the RVLM of adenoviral vectors encoding endothelial nitric oxide synthase resulted in suppression of arterial pressure, heart rate, and sympathetic neurogenic vasomotor tone in both WKY rats and SHR. Microinjection of MnTBAP into the RVLM of SHR further normalized those cardiovascular parameters to the levels of WKY rats. We conclude that an elevated level of O2*- in the RVLM is associated with hypertension in SHR. More importantly, this elevated O2*- may contribute to hypertension by reducing the NO-promoted cardiovascular depression.  相似文献   

17.
Role of reactive oxygen species in intestinal diseases.   总被引:5,自引:0,他引:5  
It is well known that reactive oxygen metabolites are generated during several pathologies, and that they are able to disturb many cellular processes and eventually lead to cellular injury. After intestinal ischemia, reactive oxygen species are produced when the ischemic tissue is reperfused. The enzyme xanthine oxidase is thought to play a key role in this process. As a result of this oxygen radical production, the permeability of the endothelium and the mucosa increases, allowing infiltration of inflammatory leukocytes into the ischemic area. Moreover, reactive oxygen species are also indirectly involved in leukocyte activation. In turn, these inflammatory cells respond with the production of oxygen radicals, which play an important role in the development of tissue injury. Thus, intestinal ischemia and reperfusion evokes an inflammatory response. Also during chronic intestinal inflammatory diseases, reactive oxygen metabolites are proposed to play an important role in the pathology. Scavenging of reactive oxygen species will thus be beneficial in these disorders.  相似文献   

18.
The existence of hypoxia-induced reactive oxygen species (ROS) production remains controversial. However, numerous observations with a variety of methods and in many cells and tissue types are supportive of this idea. Skeletal muscle appears to behave much like heart in that in the early stages of hypoxia there is a transient elevation in ROS, whereas in chronic exposure to very severe hypoxia there is evidence of ongoing oxidative stress. Important remaining questions that are addressed in this review include the following. Are there levels of PO2 in skeletal muscle, typical of physiological or mildly pathophysiological conditions, that are low enough to induce significant ROS production? Does the ROS associated with muscle contractile activity reflect imbalances in oxygen uptake and demand that drive the cell to a more reduced state? What are the possible molecular mechanisms by which ROS may be elevated in hypoxic skeletal muscle? Is the production of ROS in hypoxia of physiological significance, both with respect to cell signaling pathways promoting cell function and with respect to damaging effects of long-term exposure? Discussion of these and other topics leads to general conclusions that hypoxia-induced ROS may be a normal physiological response to imbalance in oxygen supply and demand or environmental stress and may play a yet undefined role in normal response mechanisms to these stimuli. However, in chronic and extreme hypoxic exposure, muscles may fail to maintain a normal redox homeostasis, resulting in cell injury or dysfunction.  相似文献   

19.
Dilated cardiomyopathy (DCM) is a myocardial disorder that is characterized by dilation and dysfunction of the left ventricle (LV). Accumulating evidence has implicated aberrant Ca2+ signaling and oxidative stress in the progression of DCM, but the molecular details are unknown. In the present study, we report that inhibition of the transient receptor potential canonical 3 (TRPC3) channels partially prevents LV dilation and dysfunction in muscle LIM protein-deficient (MLP (−/−)) mice, a murine model of DCM. The expression level of TRPC3 and the activity of Ca2+/calmodulin-dependent kinase II (CaMKII) were increased in MLP (−/−) mouse hearts. Acitivity of Rac1, a small GTP-binding protein that participates in NADPH oxidase (Nox) activation, and the production of reactive oxygen species (ROS) were also increased in MLP (−/−) mouse hearts. Treatment with pyrazole-3, a TRPC3 selective inhibitor, strongly suppressed the increased activities of CaMKII and Rac1, as well as ROS production. In contrast, activation of TRPC3 by 1-oleoyl-2-acetyl-sn-glycerol (OAG), or by mechanical stretch, induced ROS production in rat neonatal cardiomyocytes. These results suggest that up-regulation of TRPC3 is responsible for the increase in CaMKII activity and the Nox-mediated ROS production in MLP (−/−) mouse cardiomyocytes, and that inhibition of TRPC3 is an effective therapeutic strategy to prevent the progression of DCM.  相似文献   

20.
Imaging reactive oxygen species in arthritis   总被引:1,自引:0,他引:1  
Reactive oxygen species (ROS) have been shown to play a role in the pathogenesis of arthritides. Luminol was used as the primary reporter of ROS and photons resulting from the chemiluminescence reaction were detected using a super-cooled CCD photon counting system. Luminol was injected intravenously into groups of animals with different models of arthritis. Imaging signal correlated well with the severity of arthritis in focal and pan-arthritis as determined by histological measurement of ROS by formazan. Measurements were highly reproducible, sensitive, and repeatable. In vivo chemiluminescence imaging is expected to become a useful modality to elucidate the role of ROS in the pathogenesis of arthritides and in determining therapeutic efficacy of protective therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号